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Abstract. This paper investigates the performance of trimmed patch boundary elements in sound radiation 
problems, which are described by the Helmholtz equation. Instead of dividing the vibrating surface into a high 
number of boundary elements, this is transformed into a small number of four-sided patches where Coons 
interpolation is applied. In many cases the whole surface is mapped to six surfaces of a curvilinear paralleloid 
and nodal points are arranged only along the twelve sides of the paralleloid. In this way, the number of the 
degrees of freedom is drastically reduced by one dimension and the entire computational procedure is highly 
speed-up. The proposed elements are successfully applied to a vibrating cube due to a monopole. 
 
 
1 INTRODUCTION 

Trim patch boundary elements were initially proposed in 1989 for stress analysis of structures [1]. Tzanakis 
and Provatidis [2] in 3D-elastostatics independently worked out the same idea, at the same period. This method 
was further extended and recently published [3]. Reference [1] was unknown to the author until quite recently a 
reviewer mentioned its existence during the revision of Reference [4] that refers to 2D axisymmetric elastostatics.   

The main idea of the above method is general and therefore can be extended to other classes of problems such 
as sound radiation problems. The details are as follows. Instead of arranging the degrees of freedom along the 
entire boundary (local approximation), these DOF are arranged only along the edges of large patches in which the 
boundary is divided (global approximation). In [1] the unknown variable along a surface patch was interpolated 
using a Lagrange polynomial, which however appear numerical oscillations. Instead, Coons-patch interpolation 
is here proposed; it is very smooth especially when using B-splines [2,3] and not only.  

With respect to the particular application of the Coons-patch method to sound radiation problems, it was 
previously shown that the direct application of the BEM leads to numerical instabilities, which are usually called 
“fictitious eigenvalues”. The problem is overcome using several techniques that may be found in a recent 
publication [5]. 

In this paper the proposed method is applied to a cube radiator for the case of a monopole. The degrees of 
freedom are arranged along the twelve edges of the cube. This technique offers a great advantage. For example, if 
each edge was divided into 5 nodes (4 equal segments), the proposed method requires 12×3+8=44 nodal points 
along the twelve sides, while the conventional BEM requires additional 54 nodes, that is totally 44+(3×3)×6=98 
nodal points of linear type interpolation elements. As it was the case for conventional boundary elements, reliable 
(stable) results were obtained when using an extra point at the centre of the cube [6].  
 

2 GENERAL THEORY 

2.1 Sound radiation formulation 
In sound radiation problems the objective purpose is to solve Helmholtz equation 

022 =+∇ pkp       (1) 

where p denotes the acoustic pressure, k the wavenumber (k=ω/c), ω the cyclic frequency, c the sound velocity 
and ∇  the Nabla operator.  

The weak formulation of eq.(1) in the infinite volume V is: 



Christopher G. Provatidis 

( ) 0d22* =+∇∫ Vpkpp
V
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where *
ip  is the fundamental solution given as:  

( )R
ep

jkR

i π4
* −
=          (3) 

with R denoting the Euclidian distance between the source point ‘i’  and the field one.  
Then, by applying Green’s theorem on Eq (2), one obtains the Direct-BEM-formulation: 
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with n  denoting the outward normal unit vector on the boundary S . The coefficient ic =0, ½ or 1 denotes an 

internal (in V ), a boundary (on S ) or an external (in V ) source point ‘i’, respectively (V =volume surrounded 

by the surface S, while V =exterior volume=infinite).  
Particularly, the Neumann acoustic radiation problem, which is the subject of this paper, consists of the 

calculation of the pressure p on the surface S , which vibrates with a prescribed normal harmonic velocity nv . If 

a  is the boundary acceleration, Euler’s equation relates the pressures as follows: 

va ρωρ jp −=−=∇        (6) 

where ρ  is the density of the fluid that surrounds the vibrating surface and 12 −=j .  

Therefore 

( ) njjq vvn ρωωρ −=⋅⋅−=      (7) 

It is well-known that the above Direct-BEM-formulation [eq.(4)] fails to yield unique solution at certain 
wavenumbers corresponding to eigenvalues of the interior Dirichlet problem of closed surface [5].  

As it can be noticed, in Eq. (4) only boundary integrals are involved. The advantage of BEM is that it reduces 
the dimensionality of the problem by one; from 3D (volume) to 2D (surface) integrals. The common practice is to 
solve Eq. (4) in conjunction with constant, linear or quadratic interpolation of both the acoustic pressure p and 
velocity v along the boundary of the surface S.  

 
2.2 Global approximation 

In order to interpolate p and v in a more efficient way, let us assume that the surface S under consideration is 
made of a few large surface patches. Let us also assume that over each patch the variation of both boundary 
pressures and velocities is adequately smooth (not an abrupt change occurs). The novel idea of this paper is to 
interpolate both boundary pressures and velocities within each patch by applying a global set of cardinal 
functions instead of dividing all surfaces in small boundary elements. In this way, the number of degrees of 
freedom is drastically reduced.  

The global interpolation is performed as follows. Within each patch the pressure and velocity are expressed 
with respect to nodal points arranged along the four surrounding edges. As a result, the nodal points and the 
associated degrees of freedom appear only along the edges of the boundary. So, the boundary pressure 

( )zyxp ,,  inside a patch is approximated by:  

∑
=

Φ=
K

k
kk pp

1

),(),( ηξηξ     (8) 

with ),( ηξkΦ  denoting the global shape function, kp  nodal degrees of freedom appearing only at the 

boundaries of the patch, while ξ  and η  being its normalised  (0 ≤ ηξ , ≤ 1) curvilinear co-ordinates.  

Following Coons [11], the co-ordinates of a point ( )ηξ ,x  inside a four-sided patch can be expressed in a 



Christopher G. Provatidis 

closed analytical form in terms of its four “boundaries” ξ  = 0,1 and η  = 0,1: x(0, η ), x(1, η ), x(ξ , 0), x(ξ , 1):  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
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0,110,011
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In this paper it is assumed that pressure p inside the patch are also implemented in a similar way, as follows: 
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(10) 

 
The “blending” functions shown in Figure 1 (u=p) are given as 

( ) ( ) ηηηη =−= 10 ,1 EE      (11) 
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Figure 1. Boundary curves p(0,η), p(1,η), p(ξ,0), p(ξ,1) and ‘blending functions’ E0 and E1 of the patch. 
 

 
Following Provatidis and Kanarachos [7], having prescribed 3q (different) degrees of freedom (3q nodes) an 

each boundary, ( )ip η,0 , ( )ip η,1 , ( )0,ip ξ , ( )1,ip ξ , i=1,2,…,q, appropriate interpolating formulae for the 

functions p(0,η), p(1,η), p(ξ,0) and p(ξ,1) are sought. Considering that q may be allowed to be a large number, a 
Lagrangian interpolation polynomial would tend to produce undesirable oscillations between two arbitrary 

abscissae iη  and 1+iη , as it may possess as many as (q-1) maxima and minima over its entire interval of 

variation. For this reason, the use of splines is envisaged: 
Given q degrees of freedom on the boundary of the patch at n1, n2, …, nq a spline function B(n) of degree m is 

a function having the two following properties: 
(1) In each interval (ni, ni+1), i=1, 2, …, q-1, B(n) is given by a polynomial of degree m or less. 
(2) B(n) and its derivatives of order 1, 2, …, m-1 are continuous everywhere. 
A commonly used spline function is the truncated power function m

inn− , for any variable n-ni and for any 

positive integer m. This function is defined by: 
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It is easily seen that the function B(n) has a unique representation of the form: 
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with P(n) denoting a polynomial of degree (m-1) and ia  properly chosen constants. The most common case is 

that the spline of order m = 4 (degree 3), that is of cubic B-splines. If now Bj(n), where n is either ξ or η, denote 
cardinal splines of degree m, then the functions p(0, η), p(1, η), p(ξ, 0) and p(ξ, 1) could be written in the 
following form: 
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which, when substituting in Eq. (10), determines the global shape functions ( )ηξ ,kΦ  involved in Eq. (8). 

 

3 NUMERICAL IMPLEMENTATION 

3.1 General procedure 

The co-ordinate vector within the ip-th patch ( pNip ,...,1= ) is interpolated on the basis of the boundaries of 

the patch, which consists of ipN  nodes, as follows  
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It is also considered that both the pressure and velocity vectors at a point ( )ηξ ,P  within the patch are 

interpolated in the same manner (isoparametric macro-element)  
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By substituting Eq. (16) in Eq. (4) one obtains 
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Equation (17) can be written for each node “i” that belongs to the “ip”-th patch out of the total pN  patches, 

as follows 
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where the Jacobian is given by 
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Now, for the purposes of the numerical integration only, the patch is divided into ηξ NN ×  cells where a second 

set of normalized co-ordinates ( )1,1 ≤′′≤− ηξ  is introduced, as shown in Figure 2. So, the term ( ) ηξηξ ddG ,  
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in Eq. (13) is replaced by ( ) ( ) ηξηξηξ ′′′′′⋅ ddGG ,, , which requires a trivial (e.g., 22× , 33× , 44× ) Gaussian 

quadrature.   
 

 
 
 
 
 
 
 
 

 
 

Figure 2. (a) Unit reference and (b) Real patch geometry. 
 
So, the final algebraic system obtains the form 
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where P  is the pressure vector of all nodes on the boundary of the surface (along the patch edges), ipP  and 
ipV  are pressure and velocity vectors referring to the ip-th patch. Also, the matrices ipH  and ipG  are of order 

ip
n NN × , where nN  is the number all nodes of the whole surface S and ipN  is the number of the ip-th patch. 

The elements ip
ijh  and ip

ijg  of the latter matrices are scalars and relate the i-th geometrical node of the surface S 

with the j-th node of the ip-th patch. The C -matrix is a diagonal one of order nn NN × . 

It is here reminded that apart of the particular case of an ideal smooth boundary, in most cases the number 

of the geometry nodes is smaller than the number mN  of traction points [4]. So, Eq. (15) finally becomes  

VGPHPC =+         (21) 

where 

C  : diagonal matrix ( nn NN × ) 

P  : pressure vector ( 1×nN ) 

V  : velocity vector ( 1×mN ) 

Ĥ  : total pressure –influence matrix ( nn NN × )     

G  : total velocity-influence matrix ( mn NN × ) 

Again, the final pressure–influence matrix (Ĥ ) is square while the velocity–influence one (G ) will be, in 
general, nonsquare possessing more columns than rows.  

With respect to the diagonal terms of the matrix HCH ˆ+= , these can be easily calculated as in the 

conventional BEM [5]. In this work, no special attention was given to the singular iig -terms.  

3.2 Fictitious eigenvalues 

As it was mentioned in the introduction, the BEM solution of exterior acoustic problems with Neumann boundary 
conditions becomes singular when approaching the eigenvalues of the associated interior Dirichlet problems. In 
order to circumvent this shortcoming, several remedies have been proposed. In this paper we shall deal with two 
of them: (a) Least-Squares (LSQ): CHIEF and (b) Lagrange-Multiplier (LM). For more details, one can consult 
Reference [5]. Both LSQ and LM require the use of a few points inside the surface S, that is inside the volume 

V . For these internal points, additional integral equations are written and are considered in the system of N 
boundary equations.  
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I. Lagrange-Multiplier formulation (LM) 

Each of the additional integral equations are added to all boundary integral equations using a constant Lagrange 
multiplier. So, the final equations system remains a N×N system without essential computational cost. More 
details may be found in Reference [6].  

 
II. Least-Squares formulation (LSQ) 

The additional integral equations increase the number of the involved equations and lead to a non-square system. 
Then, both sides are multiplied on the left by either the transpose (LSQ) or the conjugate transpose (LSQ-Conj) 
matrix. Obviously, for a large system this procedure seems to be a time-consuming task. However, this “time-
consuming” transpose-matrix concept is only for textbooks, while real industrial problems are always solved by a 
QR-decomposition least-squares solver (which can be found in LINPACK [8], LAPACK [9], etc.). In this way, 
the increase in the solver time is almost negligible when compared to the regular QR-decomposition for a square 
matrix. In its initial formulation, this technique is named Combined Helmholtz Integral Equation Formulation 
(CHIEF) [10].  
 

4 EXAMPLES  

The efficiency of the proposed method will be elucidated by a typical test problem that refers to the sound 
radiation due to a monopole at the center of a cube of unit edges. Throughout the six surfaces of the cube, the 
boundary conditions were taken as the exact velocities due to this monopole [5,6]. The exact solution for the 
acoustic pressure at a distance r from the center of the cube is given by ([12,p.365]; [3, p.311]):  

( ) ( )arjk
a e

jka

kajz
U

r

a
rp −−

+
=

1
0      (22) 

where U a  is the normal velocity on the sphere at r a= , z0 is the acoustic impedance (z0=ρc) and k is the 

wavenumber.  
The meshes applied to this study are shown in Figure 3. Results will be presented at corner, mid-edge and 

mid-surface points, using three (32 nodes) and four subdivisions (44 nodes) of the twelve edges of the cube and 
two different formulations: CHIEF (LSQ: least-squares) and LM (Lagrange-multiplier). With respect to the 
formulations the interested reader may consult Ref.[5]. 

 
 

a

(b)(a)  
 

Figure 3. Different discretizations of a vibrating cube using (a) 32 and (b) 44 nodes. 
 

For the fine mesh, results are presented in Figure 4, where the Coons-patch BEM solution using both 
formulations (LM, LSQ) is very close to the exact solution, in particular for the real part of the acoustic pressure. 
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REAL PRESSURE (Mid-edge point)
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Figure 4. BEM solution using different formulations at a (a) corner point and (b) mid-edge point. 
 
 
Now, results are presented in Figure 5, for the mid-surface point (x=0.5, y=0.5, z=1.0). It can be noticed that the 
Coons-patch BEM solution oscillates around the curve of exact values but a very similar deviation was also 
observed using conventional boundary elements [6].  
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Figure 5. BEM solution using different formulations (mid-surface point) 

 
 
Finally, Figure 6 illustrates results obtained for the coarse mesh. There, one can notice that both LSQ techniques 
lead to very similar results, which are slightly better than those obtained through the LM technique.  
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REAL PRESSURE (Mid-surface)
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IMAG PRESSURE (Mid-Surface)
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Figure 6. Calculated pressure at two characteristic nodes of a vibrating cube (32 nodes). 

5 CONCLUSIONS 

It was shown that it is possible to accurately solve sound radiation problems using the BEM in conjunction 
with large patches, where Coons interpolation is applied. A characteristic of the proposed method is that it leads 
to reliable results even for a few number of boundary nodes. Moreover, a small increase in accuracy appears 
when increasing the number of boundary nodes and/or the number of integration points per cell.  

The criterion of choosing the patches is related to their geometrical smoothness as well as to the absence of 
any abrupt changes in the boundary conditions.  

Finally, it should be mentioned that in all examples of this paper, the boundary is composed of six discrete 
patches, which constitute a generalized curvilinear paralleloid. This paralleloid was analyzed by using only its 
twelve edges. Again, only the boundary data, which are absolutely necessary for the development of the CAD 
(geometry) model, were involved in the analysis. In this sense, the proposed method seems to “marry” CAD with 
CAE.  

REFERENCES 

 [1] Casale M.S., Bobrow J.E. (1989), “The analysis of solids without mesh generation using trimmed patch boundary elements”, 
Engineering with Computers, Vol. 5, pp. 249-257.  

[2] Tzanakis C. (1991), Elastostatic analysis of three-dimensional structures using large boundary elements based on Coons interpolation, 
Diploma Thesis, National Technical University of Athens, (in Greek). Supervisor: C.G.Provatidis.  

[3] Provatidis C.G. (2001), “Stress analysis of 3D solid structures using large boundary elements derived from Coons’ interpolation”, 
Proceedings of Greek-ASME Section, September 17-20, Patras, (CD Proceedings).  

[4] Provatidis C.G. (2002), “Analysis of axisymmetric structures using Coons interpolation”, Finite Elements in Analysis and Design (in 
press).  

[5] Provatidis C.G. and Zafiropoulos N. (2001), “On the Interior Helmholtz Integral Equation Formulation in sound radiation problems”, 
Engineering Analysis with Boundary Elements, Vol. 26, pp. 29-40. 

[6] Provatidis C.G. (1999), “Improving the BEM analysis in sound radiation problems”, Proceedings 3rd National Congress on 
Computational Mechanics, Volos, 24-26 June, Vol. II, pp. 545-552.  

[7] Provatidis C.G., Kanarachos A.E. (2001), “Performance of a macro-FEM approach using global interpolation (Coons’) functions in 
axisymmetric potential problems”, Computers & Structures, Vol. 79, pp. 1769-1779.  

[8] Dongarra J.J., Bunch J.R., Moler C.B., Stewart G.W. (1979), LINPACK User’s Guide, SIAM.  
[9] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, 

Sorensen D. (1999), LAPACK User’s Guide, 3rd edition. SIAM.  
[10] Schenck HA (1968), “Improved Integral Formulation for Acoustic Radiation Problems”, J Acoust Soc Am, Vol. 44(1), pp. 41-58.  
[11] Coons, S.A., Surfaces for computer aided design of space form, Project MAC, MIT (1964), revised for MAC-TR-41. Springfield, 

VA, U.S.A.: Available by CFSTI, Sills Building, 5285 Port Royal Road, 1967.   
 


