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Abstract. This paper investigates the performance of trimmpatth boundary elements in sound radiation
problems, which are described by the Helmholtz @gnalnstead of dividing the vibrating surfacedra high
number of boundary elements, this is transformed & small number of four-sided patches where Coons
interpolation is applied. In many cases the whaldace is mapped to six surfaces of a curvilinearafieloid

and nodal points are arranged only along the twedides of the paralleloid. In this way, the numbérhe
degrees of freedom is drastically reduced by omeedsion and the entire computational procedureigliz
speed-up. The proposed elements are successfpligapo a vibrating cube due to a monopole.

1 INTRODUCTION

Trim patchboundary elements were initially proposed in 1889stress analysis of structures [1]. Tzanakis
and Provatidis [2] in 3D-elastostatics independewtbrked out the same idea, at the same period Miethod
was further extended and recently published [3feR&ce [1] was unknown to the author until quéeently a
reviewer mentioned its existence during the revisibReference [4] that refers to 2D axisymmettaststatics.

The main idea of the above method is general agetfibre can be extended to other classes of pretdesh
as sound radiation problems. The details are #&w®sl Instead of arranging the degrees of freedtmmgathe
entire boundary (local approximation), these DO#-aranged only along the edges of large patchekith the
boundary is divided (global approximation). In fibe unknown variable along a surface patch waspotated
using aLagrangepolynomial, which however appear numerical ostidlss. InsteadCoons-patchnterpolation
is here proposed; it is very smooth especially wiing B-splines [2,3] and not only.

With respect to the particular application of theo@s-patch method to sound radiation problems,ag w
previously shown that the direct application of BEeM leads to numerical instabilities, which areialty called
“fictitious eigenvalues”. The problem is overcomsing several techniques that may be found in antece
publication [5].

In this paper the proposed method is applied take ¢adiator for the case of a monopole. The dsgoée
freedom are arranged along the twelve edges dafuithe. This technique offers a great advantageefample, if
each edge was divided into 5 nodes (4 equal segjnené proposed method requirex328=44 nodal points
along the twelve sides, while the conventional BEequiresadditional 54 nodes, that is totally 44+{3)x6=98
nodal points of linear type interpolation eleme#ts.it was the case for conventional boundary efeémeeliable
(stable) results were obtained when using an gxinat at the centre of the cube [6].

2 GENERAL THEORY

2.1 Sound radiation formulation
In sound radiation problems the objective purpsge solve Helmholtz equation
Vip+kip=0 1)

wherep denotes the acoustic pressucghe wavenumberkéw/c), w the cyclic frequencyg the sound velocity
and V the Nabla operator.
The weak formulation of eq.(1) in the infinite voleV is:
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[p/(V2p+k?p)av =0 @)
\Y

where pi* is the fundamental solution given as:

b =" am) ©

with R denoting the Euclidian distance betweengbercepoint‘i’ and thefield one.
Then, by applying Green’s theorem on Eq (2), ortaiob the Direct-BEM-formulation:

G p, +§ pa dS=fap; ds (4)
S S

where

*

q=nvp ad =P/ (5)

with N denoting the outward normal unit vector on thertetary S. The coefficientC, =0, %2 or 1 denotes an

internal (in\7), a boundary (orS) or an external (i ) source pointi’, respectiverV =volume surrounded
by the surfacé, while V =exterior volume=infinite).
Particularly, the Neumann acoustic radiation problevhich is the subject of this paper, consistehef

calculation of the pressupeon the surfaceS, which vibrates with a prescribed normal harmaritocity V. If
a is the boundary acceleration, Euler's equatioatesl the pressures as follows:

Vp=—-pa=—jopv (6)

where p is the density of the fluid that surrounds theratimg surface and 2=—1.
Therefore

q=-jop-(n-v)=-jepv, 7)

It is well-known that the above Direct-BEM-formutat [eq.(4)] fails to yield unique solution at cart
wavenumbers corresponding to eigenvalues of tieeiantDirichlet problem of closed surface [5].

As it can be noticed, in Eqg. (4) only boundary gnéds are involved. The advantage of BEM is thatduces
the dimensionality of the problem by one; from 3Blgme) to 2D (surface) integrals. The common pecads to
solve Eq. (4) in conjunction with constant, lin@arquadratic interpolation of both the acousticspteep and
velocity v along the boundary of the surfage

2.2 Global approximation

In order to interpolate andv in a more efficient way, let us assume that thiéase S under consideration is
made of a few large surface patches. Let us alson@s that over each patch the variation of botmbary
pressures and velocities is adequately smoothamatbrupt change occurs). The novel idea of thiepas to
interpolate both boundary pressures and velocitigein each patch by applying a global set of caadi
functions instead of dividing all surfaces in smiadlundary elements. In this way, the number of eegrof
freedom is drastically reduced.

The global interpolation is performed as followsitth each patch the pressure and velocity areessad
with respect to nodal points arranged along the fauwrounding edges. As a result, the nodal pant$ the
associated degrees of freedom appear only alongedges of the boundary. So, the boundary pressure

p(X, Y, Z) inside a patch is approximated by:

p(é,ﬂ)=zq’k(§,f7) Py (8)

with Gbk(f,n) denoting the global shape function), nodal degrees of freedom appearing only at the
boundaries of the patch, white and 7 being its normalised (8¢&,7 < 1) curvilinear co-ordinates.

Following Coons [11], the co-ordinates of a po)t(ré,n) inside a four-sided patch can be expressed in a
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closed analytical form in terms of its four “bounéa” & = 0,1 andz = 0,1:x(0, 77), x(1, 17), X(&, 0),x(&, 1):
x(&,7) = (1-&)x(0,7)+ & x(L )+ (1-n7)x(£0)+ 7 x(£ 1)
-([1-£)1-7)x(00)- £(1-7) x(10) ®)
(- &) x(01)-£n x(11)

In this paper it is assumed that presguigside the patch are also implemented in a simikay, as follows:

P& =E ) PO +E ) pAmM+E ) pEO+EMPED-X D EE E () pG.n) (10

1 1
i=0 j=0
The “blending” functions shown in Figure d=p) are given as

Eo(n)=1-7, E\(n)=7 (11)

u(ta)

n=0
E©

Figure 1. Boundary curve®0.,), p(1), p(¢,0), p(¢,1) and ‘blending functiond€, andE; of the patch.

Following Provatidis and Kanarachos [7], havinggerébed 8| (different) degrees of freedomg®odes) an
each boundary,p(O, m; ) p(l, m; ) p(é’i ,O), p(é’i ,l), i=1,2,...0, appropriate interpolating formulae for the
functionsp(0), p(1.), p(&,0) andp(£,1) are sought. Considering tlgatmay be allowed to be a large number, a
Lagrangian interpolation polynomial would tend teooguce undesirable oscillations between two anlyitra
abscissaery; and 77,,,, as it may possess as many @<l maxima and minima over its entire interval of

variation. For this reason, the use of splinesiigsaged:

Givenq degrees of freedom on the boundary of the patoh &4, ..., ng a spline functioB(n) of degreenis
a function having the two following properties:
(1) In each intervalrg, ni.1), i=1, 2, ...,g-1, B(n) is given by a polynomial of degreeor less.
(2) B(n)and its derivatives of order 1, 2, .m;1 are continuous everywhere.
A commonly used spline function is the truncateW@ofunction(n - ni>m, for any variablen-n, and for any

positive integem. This function is defined by:

(n-n)" =(n-n)™ , forn-n)o;

(n-n)"=0 . forn—n (0 (12)
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It is easily seen that the functi&gn) has a unique representation of the form:

B(n)=b0+bln+b2n2+...+bmfln"“l+qz_%‘ai<n—ni>m = P(n)+€lz_%‘ai<n—ni>m a3

with P(n) denoting a polynomial of degrea{l) and &, properly chosen constants. The most common case is

that the spline of orden = 4 (degree 3), that is of cubic B-splines. If nBin), wheren is eitheré or i, denote
cardinal splines of degrem, then the function(0, #), p(1, ), p(¢, 0) andp(&, 1) could be written in the
following form:

PO =Y B (MPOn) PN =B (PLY,)
=1 j=1

q q (24)
p(§IO)=ZBj (é:)p(éj :0) p(é)l):sz (é)p(fj ;1)
j=1 j=1

which, when substituting in Eq. (10), determines gfobal shape functior@k(f;‘,n) involved in Eq. (8).

3 NUMERICAL IMPLEMENTATION

3.1 General procedure
The co-ordinate vector within thg-th patch {p =1,...,N p) is interpolated on the basis of the boundaries of

the patch, which consists ¢¥ P nodes, as follows

N'p
n)zzq)j(é:vﬂ)xj :(I)IJ Xip (15)
=1

It is also considered that both the pressure amacite vectors at a poian(f,i]) within the patch are
interpolated in the same manner (isoparametric oralement)

NP
ﬂ):zq)j(é:’ﬂ) P; :(I);) Pip
=

N (16)
77): zq)j(é:!n)vj :(1)1) Vip
j=1

By substituting Eq. (16) in Eqg. (4) one obtains

G P+ g @, dS p;, = p @, dS;v (17)
2 ffvosesle. -2
Equation (17) can be written for each nodettat belongs to theipi”-th patch out of the totaN b patches,
as follows
6 p+3.{], @l dzdnlp, - {j Pl e didnly, a9
ip=1 ip=.

where the Jacobian is given by

1/2
6= (g7 + 02+ g?)

W% on o oe' T o o o oc P T oe ap  on oc

Now, for the purposes of the numerical integratialy, the patch is divided intd}\If X er cells where a second

(19)

set of normalized co—ordinate(sls &' Sl) is introduced, as shown in Figure 2. So, the t@@n)\dédn
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in Eqg. (13) is replaced bNB(é,n)G’(é',n'){dé’dn'! which requires a trivial (e.g2x 2,3x 3, 4x 4) Gaussian

quadrature.
ATl
S SRR~
0——%—%7 |—4 .
! % g
@ - -1- - L - 4
— e
0 1 ¢

(a) (b)
Figure 2. (a) Unit reference and (b) Real patchhgtoy.

So, the final algebraic system obtains the form

Np ) Np )
CP+) HPPP =) GPVP (20)
ip=1 ip=1

where P is the pressure vector of all nodes on the boyndathe surface (along the patch edgd%}‘,’ and
V" are pressure and velocity vectors referring toipktly patch. Also, the matricelsl® and G® are of order
N, xN ™, where N is the number all nodes of the whole surfaead N ® is the number of thip-th patch.

The elementshiijp and giijp of the latter matrices are scalars and relaté-thggeometrical node of the surfae

with thej-th node of thép-th patch. TheC -matrix is a diagonal one of orddd, x N, .
It is here reminded that apart of the particulasecaf an ideal smooth boundary, in most casesuhwer
of the geometry nodes is smaller than the nunider of traction points [4]. So, Eq. (15) finally becem

CP+HP=GV (1)
where
C : diagonal matrix N, x N )
P : pressure vectorl{ , x1)
V : velocity vector (N, x1)
H : total pressure —influence matrifN(, x N )
G : total velocity-influence matrixld,, x N )

Again, the final pressure—influence matriki() is square while the velocity—influence on& § will be, in
general, nonsquare possessing more columns than row

With respect to the diagonal terms of the matkik=C + H , these can be easily calculated as in the
conventional BEM [5]. In this work, no special aiien was given to the singulay; -terms.

3.2 Fictitious eigenvalues

As it was mentioned in the introduction, the BEMusion of exterior acoustic problems with Neumarmuibdary
conditions becomes singular when approaching thenealues of the associated interior Dirichlet peots. In
order to circumvent this shortcoming, several reigetiave been proposed. In this paper we shallvddatwo
of them: (a) Least-Squares (LSQ): CHIEF and (b)raage-Multiplier (LM). For more details, one camsalt
Reference [5]. Both LSQ and LM require the use ¢ points inside the surfa& that is inside the volume

V . For these internal points, additional integraliapns are written and are considered in the systEN
boundary equations.
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l. Lagrange-M ultiplier formulation (LM)
Each of the additional integral equations are addedl boundary integral equations using a constant lragra
multiplier. So, the final equations system remainiIxN system without essential computational cost. More
details may be found in Reference [6].

1. L east-Squares formulation (L SQ)
The additional integral equations increase the rarmbthe involved equations and lead to a non{ggsgstem.
Then, both sides are multiplied on the left by eitthe transpose (LSQ) or the conjugate transgds®-Conj)
matrix. Obviously, for a large system this procedseems to be a time-consuming task. However,‘tihige-
consuming” transpose-matrix concept is only fotliewks, while real industrial problems are alwaylved by a
QR-decomposition least-squares solver (which cafobed in LINPACK [8], LAPACK [9], etc.). In this ay,
the increase in the solver time is almost neglgilshen compared to the regular QR-decompositiola fguare
matrix. In its initial formulation, this technique namedCombined Helmholtz Integral Equation Formulation
(CHIEF) [10].

4 EXAMPLES

The efficiency of the proposed method will be eliated by a typical test problem that refers to shand
radiation due to a monopole at the center of a @fheit edges. Throughout the six surfaces ofdiige, the
boundary conditions were taken as thectvelocities due to this monopole [5,6]. The exadtison for the
acoustic pressure at a distandeom the center of the cube is given by ([12,p]368% p.311)):

a jzoka —jk(r-a)

ry=—U,——e’!
p(r) r %1+ jka

where U, is the normal velocity on the sphere lat= @, z is the acoustic impedancey€ac) andk is the
wavenumber.

The meshes applied to this study are shown in Ei@urResults will be presented at corner, mid-eatyk
mid-surface points, using three (32 nodes) and $obdivisions (44 nodes) of the twelve edges ofctitee and
two different formulations: CHIEF (LSQ: least-sges)y and LM (Lagrange-multiplier). With respect twet
formulations the interested reader may consult{Ref.

(22)

(Y (b)

Figure 3. Different discretizations of a vibratiogbe using (a) 32 and (b) 44 nodes.

For the fine mesh, results are presented in Figyravhere the Coons-patch BEM solution using both
formulations (LM, LSQ) is very close to the exaslusion, in particular for the real part of the astic pressure.
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2 4 oo 500> 00 1500 | M 2 000 J/ \! ——LMm
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Figure 4. BEM solution using different formulatioata (a) corner point and (b) mid-edge point.

Now, results are presented in Figure 5, for the-smidace pointX=0.5,y=0.5,z=1.0). It can be noticed that the
Coons-patch BEM solution oscillates around the eun¥ exact values but eery similar deviation was also
observed using conventional boundary elements [6].

REAL PRESSURE

1,20
() é'gg | \’f&: —— Exact
2 060 gy’v —=—LSQ-Transpose
3o il LSQ-Trans-Conj
S 0401/
o LM

0,20 +

0,00 -~ ‘

0,00 500 10,00 15,00
Wavenumber (k)

Figure 5. BEM solution using different formulatiofmid-surface point)

Finally, Figure 6 illustrates results obtained tloe coarse mesh. There, one can notice that baghteéhniques
lead to very similar results, which are slightlytbethan those obtained through the LM technique.
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Figure 6. Calculated pressure at two charactenigtites of a vibrating cube (32 nodes).

5 CONCLUSIONS

It was shown that it is possible to accurately sadound radiation problems using the BEM in corfjonc
with large patches, where Coons interpolation igliad. A characteristic of the proposed methodhét it leads
to reliable results even for a few number of boupd@des. Moreover, a small increase in accurapears
when increasing the number of boundary nodes atitdonumber of integration points per cell.

The criterion of choosing the patches is relateth&r geometrical smoothness as well as to theratesof
any abrupt changes in the boundary conditions.

Finally, it should be mentioned that in all exanspte this paper, the boundary is composed of sgrdie
patches, which constitute a generalized curvilimmmalleloid. This paralleloid was analyzed by gsomly its
twelve edges. Again, only the boundary data, wiaich absolutely necessary for the development ofohB
(geometry) model, were involved in the analysisthis sense, the proposed method seems to “maéip with
CAE.
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