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Abstract. This paper discusses a recently appeared method, which is here called “Coons-patch”-macroelement 
approach, where degrees of freedom appear at the boundaries only. This method is compared with the well-
known Boundary Element Method for the same nodal points on the boundary. The comparison refers to both 
static (Laplace) and eigenvalue two-dimensional potential problems with straight and curvilinear boundaries in 
three characteristic examples with known analytical closed solutions.  
  
 
1 INTRODUCTION 

Most engineering boundary-value problems are usually solved by either the Finite Element Method (FEM)[1] 
or the Boundary Element Method (BEM)[2]. The advantage of the FEM lies on the fact that it is easily applicable 
to all type of problems but it suffers from the mesh generation task. On the contrary, the application of the BEM 
requires the discretization of only the boundary and it is capable of solving linear problems as well as nonlinear 
ones, where, sometimes, internal cells are considered and associated domain integration is performed. In general, 
BEM is characterized by fully-occupied and nonsymmetric matrices that can be also properly symmetrized [3].  

In case of dynamic analysis, the FEM requires two constant matrices (mass matrix M, stiffness matrix K), 
while the BEM requires two frequency-dependent matrices (H and G). The latter disadvantage of the BEM led to 
the alternative Dual Reciprocity Method (DRM) [4]. Within the last twenty years, a lot of authors [2,5-7] have 
claimed that DRM works satisfactorily but in acoustic eigenvalue problems a different opinion prevails [8-13].  

In this context, a question arises whether it may be possible to construct a class of new large elements that are 
sufficiently accurate in static analysis as well as in eigenvalue acoustic analysis. In both cases the objective is to 
reduce the time of data preparation task. From a general point of view, macro-elements that straightly use global 
cardinal shape functions may be introduced. Generally, between the possibilities of constructing such functions, 
one may choose to fulfil the homogeneous partial differential equation (PDE) or alternatively only the boundary 
conditions and not the PDE. Moreover, it is possible to fulfil both the PDE and the boundary conditions, as 
shown by Provatidis and Kanarachos [3] some years ago. From the practical point of view, the disadvantage of 
applying global shape functions fulfilling the PDE is the fact that these fail to reproduce eigenmodes. For 
example, in the case of the wave-propagation equation in a rectangular acoustical cavity, harmonic global 
functions, which in other words fulfil Laplace’s equation, are not capable of approximating the well-known non-
harmonic sinusoidal modes, excepting the case of introducing internal degrees of freedom [8-15].  

In the context of fulfilling the boundary conditions only, the use of large finite-elements based on Coons-
Patch (CP) interpolation theory [16], with degrees of freedom appearing only at the element boundaries has 
appeared in two-dimensional and axisymmetric potential and elasticity problems [17-21]. Up to now, this method 
was found to have excellent behaviour in both static and dynamic problems.  

This paper extends the theory of the CP-elements and it further investigates its accuracy in comparison to the 
BEM in typical static and dynamic examples where advantages and disadvantages of both methods are shown.   

2 GENERAL THEORY 

Two-dimensional potential problems mainly include: 

i) Laplace equation 
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ii) Wave propagation equation 
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The boundary conditions are: 
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In (1), (2) and (3) u  denotes the potential, 
n

uq ∂
∂=  the flux (n=outward unit normal vector), c the velocity of the 

wave propagation, ∇  the Nabla operator, t the time, and Γ1 and Γ2 parts of the boundary Γ where the potential 
and the flux, respectively, is prescribed (Figure 1).   
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Figure 1. Problem domain and boundary conditions 

 
The problem domain is considered as a four-sided patch in the (x,y)-plane. This patch is mapped to a reference 
patch (ξ,η), where the normalized curvilinear coordinates are ( 1,0 ≤≤ ηξ ) as shown in Figure 2.  
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Figure 2. Reference Coons patch 

 
According to Coons’ interpolation formula [16], each point x(ξ,η)={x(ξ, η), y(ξ, η)} Τ along the patch can be 

approximated by its boundaries ( ) ( ) ( ) ( )( )ηηξξ ,1,,0,1,,0, xxxx  as follows (see also [20]): 
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where for C0-continuity discrete problems the blending functions are linear and equal to: 
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Following the idea of isoparametric elements [1], equation (4) is extended from the geometrical quantities x(x,y) 
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to the interpolation of the potential u(ξ,η), as follows.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1,11,0

0,10,0

1,0,,1,0,

1110

0100

1010

uEEuEE

uEEuEE

uEuEuEuEu

ηξηξ

ηξηξ

ξηξηηξηξηξ

−−

−−

+++=
        (6) 

If the boundary values u(ξ,0), u(ξ,1), u(0,η) and u(1,η) are interpolated by any set of trial functions, and then 
equation (5) is collocated to all boundary nodes, inside the reference macro-element, the solution u(ξ,η) is 
approximated by:  
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with ( )tuk
 denoting nodal degrees of freedom appearing only at the boundaries of the macro-element, Ne the total 

number of the nodes along that and( )ηξ ,kN  the global shape functions. In the particular choice that trial 

functions is to use cubic B-splines, ( )ηξ ,kN are given as [21]: 

i) Corner nodes: 
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ii)  Interior nodes to AB:           ( ) ( ) ( )( ) 12,, 1
1

0 −≤≤= qjBEN jj ξηηξ        (9) 

iii)  Interior nodes to BC:  ( ) ( ) ( ) ( ) 12,, 2
2

1 −≤≤= qjBEN jj ηξηξ        (10) 

iv) Interior nodes to CD:  ( ) ( ) ( )( ) 12,, 3
3

1 −≤≤= qjBEN jj ξηηξ        (11) 

v) Interior nodes to DA:  ( ) ( ) ( )( ) 12,, 4
4

0 −≤≤= qjBEN jj ηξηξ        (12) 

Typical global shape functions for a rectangular macro-element of fifty nodes may be found in References 
[18-21].  Again, these are cardinal functions ([1-0]-type), as it happens in the case of conventional Lagrangian or 
Serendipity finite elements (definitions may be found for example in Ref.[1]).  

3 INTERNAL POINTS  

To each couple of natural co-ordinates ( )ηξ ,  the corresponding couple of Cartesian ones ( )yx,  is found in a 

straight way through Eq.(4). On the contrary, when the potential at an internal point ( )ii yx ,  is requested, then the 

corresponding couple of natural co-ordinates ( )ii ηξ ,  have to be found by trial-and-error (nonlinear procedure). In 

simple rectangular domains the ( )ii ηξ , s can be easily determined by inspection or minor calculations even by 

hand. However, in case of more complicated curvilinear domains (circle, ellipse, et cetera) a simple iterative 
scheme such as Newton-Raphson is required. Then, the potential is calculated on the basis of boundary values 
and global shape functions using Eq.(7). Obviously, the calculation of the global shape functions that correspond 
to each internal point is a trivial task. A similar procedure is followed for the internal fluxes by differentiating 
Eq.(7).  

4 EXAMPLES  

The accuracy of the proposed CP-macroelements will be elucidated through three test cases where analytical 
solutions are known. Comparison is performed with linear and quadratic boundary elements with the same 
number of boundary nodes.  

4.1 Example 1: Singular temperature in rectangular adiabatic plate 

This example was taken from [3,17] and refers to a thin rectangular plate free of heat sources, insulated at the top 
and bottom surfaces with dimensions L=2a=6 and b=12 (Figure 3). The analytical solution is given as  
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with the temperature Tm being equal to Tm=100oC. Obviously, the above exact solution is a very steep 
exponential function along the y-axis of symmetry. Due to the symmetry of the problem with respect to the y-axis, 
only half the domain is to be analyzed.  
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Figure 3. Rectangular adiabatic plate 

The problem is analyzed using FEM, BEM and CP-macroelements and the same non-uniform mesh on the 
boundary. In the last case, two different options are considered. The first option was previously applied in 
Ref.[17] and it is characterized by linear blending functions in both directions according to Eq.(5).  

The second option is applied in this paper for first time and it is characterized by linear blending functions in 
y-direction (eq.(5)) and sinusoidal ones in x-direction: 
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Despite the fact that the linear blending functions are not sufficient to sufficiently approximate the solution, the 
sinusoidal ones dramatically reduce the numerical error as shown in Table 1 (shadowed bottom area: mean 
average error=0.52%). Obviously, this occurs because the sinusoidal blending function accurately approximates 
the sinusoidal boundary condition on the top of the plate.  

Table 1: Temperature distribution in a rectangular adiabatic plate with L=6 (L=2a) and b=12. Comparison 
between the 32-node CP-element with the FEM(77-node four-node bilinear elements) and the BEM (32-nodes).  

 
 
y 
 

 
 

Exact Solution 

Errors in % 

 
FEM 

77 DOF 

 
BEM 

32 DOF 

Macro-element 
32-DOF 

Ref.[17, p.105] 

CP-element 
32-DOF 

Present paper 
12.000 100.0000 Data Data Data Data 
11.781 89.2034 0.09 0.32 0.34 -0.024 
11.345 70.9852 0.32 0.40 0.84 -0.004 
10.691 50.3861 0.75 0.49 3.08 +0.047 
9.818 31.9046 1.51 0.68 6.33 +0.093 
8.727 18.0200 2.73 1.04 10.00 +0.172 
7.418 9.0768 4.59 1.77 13.80 +0.363 
5.891 4.0729 7.29 3.25 16.58 +0.692 
4.145 1.6152 10.91 6.30 16.65 +1.237 
2.182 0.5257 14.97 12.95 10.00 +2.073 

0. 0. Data Data Data Data 
Mean average absolute error (%) 4.80 3.02 8.62 0.52 
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4.2 Example 2: Elliptic bar under tension 

This example refers to an elliptical bar under torsion (Laplace equation) shown in Figure 4. Suppose that a 
uniform isotropic rod is fixed at one end, and that any section of the rod at distance z from the fixed end is 
twisted through an angle zθ , so that θ  is the angle of twist per unit length. The displacement w in the direction 

of z-axis is independent of z. Under Saint-Venant type torsion the displacements are given by [22,23]: 

φθθθ +=+=−= wzxvzyu ,,      (15) 

where θ  is the torsion angle per unit length and ( )yx,φ  is the warping function given by 

02 =∇ φ        (16) 

In the particular case of an elliptic section, the analytical solution of Eq.(16) is given by 
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The boundary conditions refer to tractions normal to the boundary that are identically zero, hence 
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Figure 4. Elliptical section in torsion 

For the case of an ellipse this becomes,  
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n 2424
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Since for all interior problems Neumann boundary conditions do not insure the uniqueness of the solution, the 
nodal point at ( 0, == yax ) was assigned a zero value.  

The dimensions were assumed to be a=10 and b=5 and values of φ  on the boundary and at two selected internal 

points ( )2,2 == yx  and ( )5.3,4 == yx  were computed.  

The boundary was divided into thirty-two nodal points, which also define (Figure 4): 
• One CP-macroelement 
• Thirty-two linear boundary elements or  
• Sixteen quadratic boundary elements.  
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Results for some representative boundary nodes and two internal points are compared with the known exact 
solution in Table 2. It is noted that the natural (ξ,η) co-ordinates for the above mentioned two internal points are 
(0.566,0.284) and (0.580,0.101), respectively. As was explained in Section 3, these were found using the 
Newton-Raphson method. 

Table 2: Calculated potentials at representative boundary and internal nodes using the proposed Coons-patch B-
splines method and conventional (linear, quadratic) boundary elements.  

Boundary node Coons-patch 
macroelement 

Boundary elements Exact potential solution 
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The mean average value of absolute errors for the proposed and BEM is 0.95% and 0.24%, respectively. In other 
words, in this particular problem the proposed CP-element is less accurate.  

4.3 Example 3: Circular acoustic cavity 

The last example refers to a circular acoustic cavity of unit radius ( )1=a  with Neumann ( )0=∂∂ nu  

boundary conditions and velocity c=1m/s and exact eigenvalues given as ( ) ,...2,1,0,0 ==′ mkaJm
 where ( )kaJm′  is 

the derivative of the Bessel function of first kind of order m and ck ω=  the wavenumber.  

In the beginning, the boundary of the circle was uniformly divided into thirty-two boundary segments with 
equal number of nodal points. These points alternatively define: 

• One 32-noded Coons patch macroelement 

• Thirty-two constant boundary elements or  

• Thirty-two linear boundary elements 

The following analysis includes two types of mass matrices, i.e. consistent and lumped ones.  

I. Consistent mass matrices were obtained in a similar way as in [15], based on the standard Nardini-Brebbia 
mass Mα [4], which leads to the final mass 11 −−= FMGLM a

 and the equivalent stiffness matrix HGLK 1−=eq
.  

As it is shown in Table 3, the proposed Coons-patch macroelements are sufficiently accurate while the BEM-
solution using boundary-only conical base functions (DRM: Nardini-Brebbia) is not capable of approximating 
upper modes. It is noted that the superiority of the CP-macroelement is here less clear than what it had been 
found in Reference [17] for the case of a rectangular cavity.  

Moreover, it is noted that the BEM-based mass matrix does not preserve (exceeds) the area of the circle, i.e. 
the sum of all elements of mass matrix (properly multiplied) differs than the total mass of the circle. Results were 
obtained for N=16,32,64 and 128 boundary nodes. It is remarkable that although the discretized domain is a 
polygon inscribed to the circle, it has a smaller area that what the circle has (3.1415926), even for a small 
number of boundary nodes the calculated mass is larger and it hardly converges to the correct value. A similar 
result has been found earlier for a rectangular cavity [10].  
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Table 3: Coons-patch macroelement and BEM solution with consistent masses for a circular acoustical cavity of 
unit radius, c=1m/s and 

bN =32 nodal points (Neumann boundary conditions). 

 
EXACT 

EIGENVALUES 

CALCULATED EIGENVALUES 

CP-macroelement Boundary Elements 
Linear B-Splines 

Constant Linear 

000.02
1 =ω  0.000 0.000 0.000 0.000 

390.32
3

2
2 ==ωω  3.570 3.531 3.833 3.836 

328.92
5

2
4 ==ωω  10.057 9.676 10.354 10.472 

682.142
6 =ω  19.359 18.041 20.563 20.760 

650.172
8

2
7 ==ωω  20.921 19.691 34.340 34.648 

277.282
10

2
9 ==ωω  34.421 31.623 52.237 52.640 

II. Lumped mass matrices were also studied. As shown in Reference [15], a study concerning acoustical cavities, 
the BEM is not capable to handle lumped masses located on the boundary. On the contrary, when these lumped 
masses are distributed within the domain, then BEM achieves to accurately solve the algebraic eigenvalue 
problem. Similar observations were made in elastodynamics of plates [24].   

In Reference [15] there were made three attempts to develop BEM lumped masses, as follows: 

(a) Equivalent stiffness matrix HGLK 1−=eq
 was combined with boundary lumped masses; each of them 

was equal to 1/32 of the total mass inside the circle (π×12=3.14) 

(b) Cardinal shale functions that satisfy the Laplace equation were used. 

(c) Lumped masses on the boundary (each of them equal to π/32) were introduced into the partial 
differential equation, as Dirac inertia terms. 

For the purposes of this paper a fourth attempt was made by adding all elements of the corresponding row in the 

consistent BEM mass, which was obtained through the radial basis Rf j = . It was validated that all these 

lumped masses were equal each other.  

With respect to Coons-patch macroelements, two further attempts were made: 

• Lumped masses were created by adding all elements in the corresponding row of consistent mass matrix. 
In this case, the masses at the corners (A,B,C and D) of the reference macroelement were found to be 
negative and the four lowest eigenvalues were also negative!  

• Due to the geometrical symmetry of this particular problem, in analogy to the consistent matrix, only 
five lumped masses were considered as the explicit variables in a minimization problem with objective 

function ( )22
,1

2
,1 exactcalcOBJ ωω −=  and similar. Starting from the abovementioned “bad” initial value, 

both unconstrained (FMINUNC) and constrained (FMINCON) optimization algorithms in MATLAB 
6.1 (Release 12.1) resulted in equal lumped masses! 

• A summary of the new and older results are shown in Table 4.  

Table 4: Calculated eigenvalues of the circular cavity using several formulations of lumped mass.  

EXACT CP-macro Nardini Reference [15] 
(a) (b) (c) 

0.000 0.000 0.000 0.000 0.000 0.000 
3.390 2.000 1.897 2.013 1.987 2.028 
9.328 3.936 3.829 4.062 3.898 4.112 
14.682 5.987 5.805 6.159 5.660 6.246 
17.650 7.670 7.831 8.309 7.210 8.422 
28.277 22.178 9.907 10.511 8.502 10.623 



Christopher G. Provatidis 

 

It can be there noticed that: 

• All formulation fail to approximate even the first nonzero eigenvalue. 

• All formulations lead to essentially similar results.  

5 DISCUSSION - CONCLUSIONS 

It was shown that the proposed Coons-patch macroelements are capable of accurately solving potential problems 
such as steady-state temperature distribution, torsion problems of beam sections, as well as natural frequencies of 
acoustical cavities. With respect to the BEM solution, it was found that: 

1. In static problems, the proposed Coons-patch macroelement is competitive in accuracy with BEM. 
However, in its present form the method is not capable of dealing with internal holes and exterior 
domains.  

2. In dynamic problems, the accuracy of the proposed method is superior to the BEM since it converges 
without requiring internal degrees of freedom. The method does not work in conjunction with lumped 
masses.  
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