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Abstract. This paper discusses a recently appeared methoidhvis here called “Coons-patch”-macroelement
approach, where degrees of freedom appear at thendries only. This method is compared with thd-wel
known Boundary Element Method for the same nodaltp@n the boundary. The comparison refers to both
static (Laplace) and eigenvalue two-dimensionakptial problems with straight and curvilinear bouwangbs in
three characteristic examples with known analytidaked solutions.

1 INTRODUCTION

Most engineering boundary-value problems are ugsalved by either the Finite Element Method (FEM)
or the Boundary Element Method (BERL) The advantage of the FEM lies on the fact thist éasily applicable
to all type of problems but it suffers from the imggneration task. On the contrary, the applicatibthe BEM
requires the discretization of only the boundarg #@ns capable of solving linear problems as veslinonlinear
ones, where, sometimes, internal cells are coreidand associated domain integration is perforimegeneral,
BEM is characterized by fully-occupied and nonsyrrinenatrices that can be also properly symmetriZed

In case of dynamic analysis, the FEM requires twostantmatrices (mass matrid, stiffness matrix<),
while the BEM requires twérequency-dependentatrices K andG). The latter disadvantage of the BEM led to
the alternative Dual Reciprocity Method (DRN). Within the last twenty years, a lot of auth&s” have
claimed that DRM works satisfactorily but in acacgtigenvalue problems a different opinion prev&itd.

In this context, a question arises whether it maypbssible to construct a class of new large el&srbat are
sufficiently accurate in static analysis as weliragigenvalue acoustic analysis. In both casesltijective is to
reduce the time of data preparation task. Fromnaigé point of view, macro-elements that straightg global
cardinal shape functions may be introduced. Gelyetatween the possibilities of constructing stshctions,
one may choose to fulfil the homogeneous partifédintial equation (PDE) or alternatively only theundary
conditions and not the PDE. Moreover, it is possitd fulfil both the PDE and the boundary condisioas
shown by Provatidis and KanaracHdssome years ago. From the practical point of vite, disadvantage of
applying global shape functions fulfilling the POE& the fact that these fail to reproduce eigenmoées
example, in the case of the wave-propagation emudti a rectangular acoustical cavity, harmonicbglo
functions, which in other words fulfilaplacés equation, are not capable of approximating te#-lknown non-
harmonic sinusoidal modes, excepting the casetafdocing internal degrees of freed .

In the context of fulfilling the boundary conditieronly, the use of large finite-elements basedCoons-
Patch (CP) interpolation theory'®, with degrees of freedom appearing only at thenete boundaries has
appeared in two-dimensional and axisymmetric pateand elasticity problems’2%. Up to now, this method
was found to have excellent behaviour in both statid dynamic problems.

This paper extends the theory of the CP-elememtstduarther investigates its accuracy in compariso the
BEM in typical static and dynamic examples whereaatiages and disadvantages of both methods arenshow

2 GENERAL THEORY

Two-dimensional potential problems mainly include:
i) Laplace equation
2 2
vay=24, 09U _g (1)
ox®  oy?

and also
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u=u.(t) onT, 3)
a=qr (t) only

In (1), (2) and (3)u denotes the potentia(h,:a%n the flux (=outward unit normal vectorg,the velocity of the

i) Wave propagation equation

The boundary conditions are:

wave propagationy the Nabla operatot,the time, and’; andT’, parts of the boundary where the potential
and the flux, respectively, is prescribed (Figuye 1

BoundanT';
(u=prescribed

BoundaryI',
(g=prescribed)

Figure 1. Problem domain and boundary conditions

The problem domain is considered as a four-sideéchpa the K,y)-plane. This patch is mapped to a reference
patch €,n), where the normalized curvilinear coordinates(are £, <1) as shown in Figure 2.

E@ Y ¢

6]

Figure 2. Reference Coons patch

According to Coons’ interpolation formul&, each point(&,7)={x(, 1), Y(&, 7)} " along the patch can be
approximated by its boundarié:s(é ,O), x(§ ,1), X(O, 77), x(:L 77)) as follows (see also [20]):

x(&,17) = Eo(&)x(0,)+ E,(£)x(L17)+ E, ()x(£.0)+ E, (17)x(& 1)~ E4 () E, (7)x(0.0) @)
~ E,(£)Eo(7)x(20)~ E, (£) E, (7)x(02) - E, (£) E, ()x(11)
where for C-continuity discrete problems the blending funcsi@me linear and equal to:

Eo(&)=1-¢, E(&)=¢ (5)
Eo(n)=1-n . Efn)=n

Following the idea of isoparametric elemefttsequation (4) is extended from the geometricahtjtias x(x,y)
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to the interpolation of the potentialc,,), as follows.

u(&,7) = Eq(£)u(0.n)+ E,(§)ull. )+ E(n)u(§ 0)+ E,()u(§ 1)
— Eo(£) B, (17)u(00) - E,(¢) B (17)u(10) ©)
~ Eo(§)E,(1)u(01)- E,(¢)E, (7)u(11)
If the boundary values(&,0), u(¢,1), u(07) andu(l,) are interpolated by any set of trial functionsd ahen

equation (5) is collocated to all boundary nodesjdie the reference macro-element, the soluti@y) is
approximated by:

N, 7
u(§,n):ZNk(§,77)uk(t)' ™

k=1
with Uk(t) denoting nodal degrees of freedom appearing drilyeaboundaries of the macro-eleméwtthe total

number of the nodes along that ands,,) the global shape functions. In the particular ckothat trial
functions is to use cubic B-splines, (¢,,)are given as [21]:

i) Corner nodes:

NA(§:’7): EO(SZ)BS;:‘)(U)"‘ Eo(ﬂ) Bl(l)(g)_ EO(SK)EO(U)

N (&.7) = Ei(§)B{ () + Eo()BY (&)~ E(§)Eg () (8)

NC(§,77)= El(ég) Béf)(U)Jr E1(77) Bl@(f)_ El(é:) E1(’7)

N, (&7) = E,(6) B r)+ En)BE(E)- £, 0B
i) Interior nodes to AB: N, (&,7)=E,(n)BY(E) , 2<j<q,-1 9)
i) Interior nodes to BC: N;(&n)=E(£)BP(7) , 2<j<q,-1 (10)
iv) Interior nodes to CD: N;(&n)=E(n)BP() , 2<j<q,-1 (11)
) Interior nodes to DA: N, (&7)=E (B (y) , 2<j<q,-1 (12)

Typical global shape functions for a rectangulacmalement of fifty nodes may be found in Refeemnc
[18-21]. Again, these are cardinal functions (Jitype), as it happens in the case of conventibagrangian or
Serendipity finite elements (definitions may berfddor example in Ref.[1]).

3 INTERNAL POINTS

To each couple of natural co-ordinaigsy;) the corresponding couple of Cartesian ofiey) is found in a
straight way through Eq.(4). On the contrary, wttenpotential at an internal poi(»g , yi) is requested, then the
corresponding couple of natural co-ordinagsy, ) have to be found by trial-and-error (nonlinearqeaure). In
simple rectangular domains tfie ,; )s can be easily determined by inspection or miradcutations even by

hand. However, in case of more complicated cum@dindomains (circle, ellipse, et cetera) a simf@eafive
scheme such as Newton-Raphson is required. Themdtential is calculated on the basis of boundatyes
and global shape functions using Eq.(7). Obviouslg,calculation of the global shape functions ttatespond
to each internal point is a trivial task. A similarocedure is followed for the internal fluxes hiffatentiating

Eq.(7).

4 EXAMPLES

The accuracy of the proposed CP-macroelementdwittlucidated through three test cases where aalyt
solutions are known. Comparison is performed witledr and quadratic boundary elements with the same
number of boundary nodes.

4.1 Example 1: Singular temperaturein rectangular adiabatic plate

This example was taken from [3,17] and refers toimrectangular plate free of heat sources, inedlat the top
and bottom surfaces with dimensidns2a=6 andb=12 (Figure 3). The analytical solution is given as

T(xy)=T, [Sinl‘(”%j/sinh(ﬂ%ﬂ cos(%) (13)

with the temperatureT,, being equal toT,,=100°C. Obviously, the above exact solution is a vergept
exponential function along theaxis of symmetry. Due to the symmetry of the peoblwith respect to thgaxis,
only half the domain is to be analyzed.
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L T=Tn -sinirx/ 2a)

ar/an=0 l T=0
b

2
J\ / X
bo——a——l
FEM : 77 nodes C-Elem. : 32 nodes

Figure 3. Rectangular adiabatic plate

The problem is analyzed using FEM, BEM and CP-neleroents and the samen-uniformmesh on the
boundary. In the last case, two different options eonsidered. The first option was previously &guplin
Ref.[17] and it is characterized by linear blendingctions in both directions according to Eq.(5).

The second option is applied in this paper foit firee and it is characterized by linear blendingdtions in
y-direction (eq.(5)) andinusoidalones irx-direction:

Eo(¢)= co{”jj . Ef(¢)=1- co{”jj (14)
Eo(n)=1-7., E)=n

Despite the fact that the linear blending functians not sufficient to sufficiently approximate tbelution, the
sinusoidal oneslramatically reduce the numerical error as shown in Table adglved bottom area: mean
average error=0.52%). Obviously, this occurs beedns sinusoidal blending function accurately apjpnates
the sinusoidal boundary condition on the top offitate.

Table 1: Temperature distribution in a rectangular adiabalate withL=6 (L=2a) and b=12. Comparison
between the 32-node CP-element with the FEM(77-fedienode bilinear elements) and the BEM (32-nddes

Errors in %
; Macro-element CP-element
y Exact Solution FEM BEM 32-DOF 32-DOF
77 DOF 32 DOF Ref.[17, p.105] | Present paper

12.000 100.0000 Data Data Data Data
11.781 89.2034 0.09 0.32 0.34 -0.024
11.345 70.9852 0.32 0.40 0.84 -0.004
10.691 50.3861 0.75 0.49 3.08 +0.047
9.818 31.9046 1.51 0.68 6.33 +0.093
8.727 18.0200 2.73 1.04 10.00 +0.172
7.418 9.0768 4.59 1.77 13.80 +0.363
5.891 4.0729 7.29 3.25 16.58 +0.692
4.145 1.6152 10.91 6.30 16.65 +1.237
2.182 0.5257 14.97 12.95 10.00 +2.073

0. 0. Data Data Data Data

Mean average absolute error (%) 4.80 3.02 8.62 0.52
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4.2 Example 2: Elliptic bar under tension

This example refers to an elliptical bar under itors(Laplace equation) shown in Figure 4. Supptse &
uniform isotropic rod is fixed at one end, and thay section of the rod at distanzdérom the fixed end is
twisted through an anglgz, so thatg is the angle of twist per unit length. The displaentw in the direction

of z-axis is independent af Under Saint-Venant type torsion the displacemarggyiven by [22,23]:
U=-0yz,v=+0 Xz, W=+0¢ (15)

whereg is the torsion angle per unit length ag(g, y) is the warping function given by

V=0 (16)

In the particular case of an elliptic section, #malytical solution of Eq.(16) is given by
(@ -b7)
__ X (17)

¢ a’+b? y
The boundary conditions refer to tractions norroghe boundary that are identically zero, hence

o0¢ -

= =|r|codr,t (18)

2 —rlcod©)

x3

x2 >

¢
—=Irlcos (r,1)
on

K o-0

(a) ical definitions and Syl

Figure 4. Elliptical section in torsion

For the case of an ellipse this becomes,

2 2
o9 ___a-b (19)

on - la4y2+b4xz
Since for all interior problemsleumannboundary conditions do not insure theiquenes®f the solution, the
nodal point at ¢ = a, y = 0) was assigned a zero value.

The dimensions were assumed toas@0 ando=5 and values of on the boundary and at two selected internal
points (x= 2,y =2) and(x = 4,y = 35) were computed.

The boundary was divided into thirty-two nodal gejrwhich also define (Figure 4):
e One CP-macroelement
e Thirty-two linear boundary elements or
e Sixteen quadratic boundary elements.
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Results for some representative boundary nodestwodnternal points are compared with the knowncéxa
solution in Table 2. It is noted that the natutgy) co-ordinates for the above mentioned two intepuahts are
(0.566,0.284) and (0.580,0.101), respectively. Aes vexplained in Section 3, these were found udiag t
Newton-Raphson method.

Table 2: Calculated potentials at representative boundadyisternal nodes using the proposed Coons-patch B-

splines method and conventional (linear, quadratie)ndary elements.

Boundary node Coons-patch Boundary elements Exact potential solutign
macroelement
Linear Quadratic
X, = 8814
x, = 236 -12.437 -12.412 -12.506 -12.489
X = 6174
x, = 3933 -14.703 -14.501 -14.576 -14.570
x, = 3304
x, = 4719 -9.276 -9.34 -9.363 -9.356
Internal points
X =2
X, = 2. -2.371 -2.399 -2.400
X =4
X, =35 -8.358 -8.402 8.400

The mean average value of absolute errors forrbygosed and BEM is 0.95% and 0.24%, respectivalpther
words, in this particular problem the proposed @G#rent is less accurate.

43 Example 3: Circular acoustic cavity

The last example refers to a circular acoustic tgaef unit radius (a=1) with Neumann (u/én = 0)
boundary conditions and velocity 1m/s and exact eigenvalues givenyagka)= 0, m= 012... where j’ (ka) IS
the derivative of the Bessel function of first kiotlorderm and k = w/c the wavenumber.

In the beginning, the boundary of the circle waganmly divided into thirty-two boundary segmentsthw
equal number of nodal points. These points alterelgtdefine:

e One 32-noded Coons patch macroelement
e Thirty-two constant boundary elements or
e Thirty-two linear boundary elements
The following analysis includes two types of masgnues, i.e. consistent and lumped ones.

I. Consistent mass matricegere obtained in a similar way as in [15], baseadtlte standard Nardini-Brebbia
massM , [4], which leads to the final masg =L G *M _F* and the equivalent stiffness mauc{xeq =LGH.-

As it is shown in Table 3, the proposed Coons-patabroelements are sufficiently accurate whileBEdI-
solution usingboundary-onlyconical base functions (DRM: Nardini-Brebbia) ist tapable of approximating
upper modes. It is noted that the superiority @& @P-macroelement is here less clear than whatdtheen
found in Reference [17] for the case of a rectamgcivity.

Moreover, it is noted that the BEM-based mass maies not preserve (exceeds) the area of the cirele
the sum of all elements of mass matrix (properhtiplied) differs than the total mass of the cirdResults were
obtained forN=16,32,64 and 128 boundary nodes. It is remark#ize although the discretized domain is a
polygoninscribedto the circle, it has amaller area that what the circle has (3.1415926), everafemall
number of boundary nodes the calculated massderand it hardly converges to the correct valueinilar
result has been found earlier for a rectangulaitcfi0].
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Table 3: Coons-patch macroelement and BEM solution withsistentmasses for a circular acoustical cavity of
unit radius, c=1m/s ang{, =32 nodal points (Neumann boundary conditions).

EXACT CALCULATED EIGENVALUES
EIGENVALUES CP-macroelement Boundary Elements
Linear B-Splines

Constant Linear
o? = 0000 0.000 0.000 0.000 0.000
o =w? = 3390 3.570 3.531 3.833 3.836
ol =o0? = 9328 10.057 9.676 10.354 10.472
ol = 14682 19.359 18.041 20.563 20.760
o? =w; = 17650 20.921 19.691 34.340 34.648
ol = ol = 28277 34.421 31.623 52.237 52.640

Il. Lumped mass matricagere also studied. As shown in Reference [15tudysconcerning acoustical cavities,
the BEM is not capable to handle lumped massedddaan the boundary. On the contrary, when thespédd
masses are distributed within the domain, then B&dWieves to accurately solve the algebraic eigemval
problem. Similar observations were made in elastiadycs of plates [24].

In Reference [15] there were made three attempdsvelop BEM lumped masses, as follows:
(a) Equivalent stiffness matrix =L G*H was combined with boundary lumped masses; eatheaof
was equal to 1/32 of the total mass inside thdec{rec1°=3.14)
(b) Cardinal shale functions that satisfy the Laplapeation were used.

(c) Lumped masses on the boundary (each of them equal3R) were introduced into the partial
differential equation, as Dirac inertia terms.

For the purposes of this paper a fourth attemptmade by adding all elements of the correspondimgin the
consistent BEM mass, which was obtained throughr#éal basis fj = R. It was validated that all these

lumped masses were equal each other.
With respect to Coons-patch macroelements, twhdurattempts were made:

e Lumped masses were created by adding all elemetitg icorresponding row of consistent mass matrix.
In this case, the masses at the corners (A,B,CDgraf the reference macroelement were found to be
negative and the four lowest eigenvalues wereragative!

e Due to the geometrical symmetry of this particydaoblem, in analogy to the consistent matrix, only
five lumped masses were considered as the exp#diables in aninimizationproblem with objective
function OBJ:(a)fca,c_a)fexact)z and similar. Starting from the abovementioned "bauitial value,
both unconstrained (FMINUNC) and constrained (FMINQ optimization algorithms in MATLAB
6.1 (Release 12.1) resulteddquallumped masses!

e A summary of the new and older results are shoviraine 4.

Table 4: Calculated eigenvalues of the circular cavityngsseveral formulations ddimpedmass.

EXACT CP-macro Nardini Reference [15]
(@ (b) (©
0.000 0.000 0.000 0.000 0.000 0.000
3.390 2.000 1.897 2.013 1.987 2.028
9.328 3.936 3.829 4.062 3.898 4,112
14.682 5.987 5.805 6.159 5.660 6.246
17.650 7.670 7.831 8.309 7.210 8.422
28.277 22.178 9.907 10.511 8.502 10.623
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It can be there noticed that:
e All formulation fail to approximate even the firsdbnzero eigenvalue.

e All formulations lead to essentially similar result

5 DISCUSSION - CONCLUSIONS

It was shown that the proposed Coons-patch macnegits are capable of accurately solving potentiablpms
such as steady-state temperature distributionptopoblems of beam sections, as well as natuegluencies of
acoustical cavities. With respect to the BEM solotiit was found that:
1. In static problems, the proposed Coons-patch mémrmnt is competitive in accuracy with BEM.
However, in its present form the method is not bépaf dealing with internal holes and exterior
domains.

2. In dynamic problems, the accuracy of the proposethad is superior to the BEM since it converges
without requiring internal degrees of freedom. Thethod does not work in conjunction with lumped
masses.
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