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ABSTRACT

This paper proposes a new technique to improve the
efficiency of the Boundary Element Method so that to become
capable of drastically reducing the number of collocation
points involved. The method refers to an elastic solid structure
of arbitrary shape, consisting of several curvilinear boundary
patches. For each patch the new method applies the well-
known Coons’ interpolation formula, which is the simplest
mathematical representation of a surface in Computational
Geometry. By using Coons’ formula, all three: geometry,
boundary displacements and tractions are interpolated in terms
of their values along the edges of the patch in which they
belong. As a result, no degrees of freedom appear within the
patches excepting their edges. Since the involved geometrical
entities can be the absolutely necessary quantities that built-up
the CAD-model, the proposed method seems to “marry” CAD
with CAE. The efficiency of the method is elucidated with
three numerical examples.

KEYWORDS
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INTRODUCTION

Thirty-four years after the first practical application of the
Boundary Element Method (BEM) in stress analysis by Rizzo
[1], it is now a well-established technique. The key ingredient
is to apply the historical Somigliana’s [2] integral equations in

conjunction with constant, linear or quadratic interpolation of
both the displacements and tractions along the boundary of a
solid structure [3, 4]. The advantage of BEM is that it reduces
the dimensionality of the problem by one; from 3D (volume)
to 2D (surface). This paper investigates the possibility of using
as less boundary information as possible and achieves to
reduce the dimensionality of the problem by one more; from
3D (structure’s volume) to 1D (lines of the patches).

NOMENCLATURE

14 volume of the structure

K i number of nodes in the whole structure

N, number of points on patch boundary

N n total number of nodes in the whole structure
N P number of patches in the structure

b, body force

ip ascending number of a patch

Dy traction

u, boundary displacement
u; fundamental solution
r boundary of the structure

D, global shape functions
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&,m normalized co-ordinates

O‘ij stress tensor

THE GENERAL CONCEPT
In stress analysis problems the objective purpose is to
solve equilibrium equations that are written in tensor form as

oo, B
/xj +b =0 6))

A solution of Eq. (1) can be derived by applying BEM,
characterized by the well-known integral equation [3,4]

c'u, +ﬁp;ukdf = Plu,, p, AU + |u, b, dV
r I 12

)

As it can be noticed, in Eq. (2) only boundary integrals are
involved, excepting the body forces. The advantage of BEM is
that it reduces the dimensionality of the problem by one; from
3D (volume) to 2D (surface) integrals. The common practice
is to solve Eq. (2) in conjunction with constant, linear or

quadratic interpolation of both the displacements %, and
tractions p, along the boundary of a solid structure [3, 4].

In order to interpolate #, and p, in a more efficient

way, let us assume that the solid structure under consideration
is made of large surface patches. Let us also assume that over
each patch the variation of both boundary displacements and
tractions is adequately smooth (not an abrupt change occurs).
The novel idea of this paper is to interpolate both boundary
displacements and tractions within each patch by applying a
global set of cardinal functions instead of dividing all surfaces
in small boundary elements. In this way, the number of
degrees of freedom is drastically reduced.

The global interpolation is performed as follows. Within
each patch the displacements and tractions are expressed with
respect to nodal points arranged along the four (or three)
surrounding edges. As a result, the nodal points and the
associated degrees of freedom appear only along the edges of
the boundary.

GLOBAL INTERPOLATION
In the proposed method, the boundary displacement vector

ll(x, ¥, Z) inside a patch is approximated by:

Mém=2ﬁn@mwk 3)

with @, (£,77) denoting the global shape function, U, nodal
degrees of freedom appearing only at the boundaries of the
patch, while £ and 77 being its normalised (0 <&,7< 1)
curvilinear co-ordinates. Dependent on the type of the patch
under consideration, two cases are distinguished.

1. Four-sided patch

Following Coons [5], the co-ordinates of a point X(§ 5 77)

inside a four-sided patch can be expressed in a closed

analytical form in terms of its four “boundaries” éf =0,1 and

n =0,1:x(0, 17), x(1, 7),x(&, 0), x(&, 1):

x(&,)= (1~ &) x(0,7)+ & x(1, 7)+ (1-7) x(&,0)+ 7 x(£.1)
~(1-¢)1-n) x(0,0)-£(1- 1) x(1,0) )
~ (=& x(0,1)-&n x(L1)

In this paper it is assumed that displacement u inside the patch

are also implemented in a similar way, as follows:

u(g,m) = E,(&)u(0,m)+E, (& ud,n)
+E,(mu(&,0)+E; () u(S,1) )

- E©) E,(n)u,.n,)

i=0 j=0

The “blending” functions shown in Figure 1 are given as

Eo(n):l_na El(ﬂ)=77 (6)

Fig. 1: Boundary curves u(0,n), u(1,n), u(,0), u(é,1) and
‘blending functions’ E, and E, of the patch.

1I. Three-sided patch

The co-ordinates of a point X(f ; 77) inside a three-sided patch
can be also expressed in a closed analytical form in terms of
its “boundaries”. The interested reader may consult Barnhill et
al. [6-8].

This paper extends the idea of Kanarachos [9-12] applied
in two-dimensional FEM analysis, where the displacement had
been interpolated within the patch using Eq. (5), and applies it
here for the tractions, too. In both configurations, four- or
three-sided patch, the next step will be to determine a suitable
discretization scheme along the boundaries of the patch.
Having prescribed 3¢g (different) degrees of freedom (3¢
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nodes) an each boundary, u(O,nl.), u(l,nl.), u(f;.,O),
ll(fl. ,l), i=1,2,...,q, appropriate interpolating formulae for
the functions u(0,7), u(l,n), u(é,0) and u(é,1) are sought.

Considering that ¢ may be allowed to be a large number, a
Lagrangian interpolation polynomial would tend to produce

undesirable oscillations between two arbitrary abscissae 77,

and 177,,,,
minima over its entire interval of variation. For this reason, the
use of splines is envisaged:

Given g degrees of freedom on the boundary of the patch
atny, n,, ..., nq a spline function B(n) of degree m is a function
having the two following properties[9]:

(1) In each interval (n;, ny,), =1, 2, ..., g-1, B(n) is given by

a polynomial of degree m or less.

(2) B(n) and its derivatives of order 1, 2,
continuous everywhere.
A commonly used spline function is the truncated power

as it may possess as many as (g-1) maxima and

..., m-1 are

m & I
function (# —n.) , for any variable n-n; and for any positive
i y i yp

integer m. This function is defined by:
(n—ni>m:(n—ni)'” , forn—n,)O0;
(n—n))" =0 , forn—mn.0 @
It is easily seen that the function B(n) has a unique

representation of the form:

B(n)=b, +bn+b,n* +...+b, _n""
-1
+Safn-n)"
t:l_l
= P(n) +Zai<n —ni>m
i=1

with P(n) denoting a polynomial of degree (m-1) and a,

®

properly chosen constants. The most common case is that the
spline of order m = 4 (degree 3), that is of cubic B-splines. If
now Bj(n), where n is either  or s, denote cardinal splines of
degree m, then the functions u(0, s), u(1, s), u(r, 0) and u(r, 1)
could be written in the following form:

u(0.5) =Y B,(u®,n,) u(ln)=3 B, (u, 7))

wE0=Y B @0 uEh=3 8, EuEn O

which, when substituting in Eq. (5), determines the global
shape functions @, (f,?]) involved in Eq. (3).

NUMERICAL PROCEDURE
The co-ordinate vector within the patch is interpolated on
the basis of the boundaries of the patch as follows

N, _
x(f,n)=z<bj(§,r7)x{ =Px (10)
j=1
It is also considered that both the displacement and
traction vectors at a point P(Zj,?]) within the patch are

interpolated in the same manner (isoparametric macro-
element)

=20, (&l = du

an

N, '

n)=2.®,(n)p/ =@p
j=1
By substituting Eq. (11) in Eq. (2) one obtains
c'a’ + p,®,dl tu

; C_H- Ik

(12)

—Z cﬁ.ulk(I) dl'vp,

ip=1 l_p
Equation (12) can be written for each node “Ip” out of the

N total nodes as follows

e+ S [ o, En)Glem) dsanb,

" (13)
~>{[ w0, o) asante,
ip=1
where the Jacobian is given by
1/2
G| =(g> +2 +2?)
_ 0% 0% 0Ox, ox
$ 7% oy on o
0x, Ox, Ox, Ox, (14)

Now, for the pumos;ﬁs of the numerical integration only, the
patch is divided into N £ XN, cells where a second set of

normalized co-ordinates (—l &0 £ l) is introduced, as
shown in Fig. 2. So, the term |G(§,n)]d§ dn in Eq. (13) is
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replaced by ‘G(é’,?])- G'(f',?]']df'd?]', which requires a
trivial (e.g., 2% 2,3x 3, 4 x 4) Gaussian quadrature.
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Fig. 2 (a) Unit reference and (b) Real patch geometry.

So, the final algebraic system obtains the form

CU+) H”U” =) G"P” (15)
ip=1 ip=1

where U is the displacement vector of all nodes on the
boundary of the structure (along the patch edges), U? and
P? are displacement and traction vectors referring to the ip-
th patch. Also, the matrices H” and G” are of order
3N, ><3Kip, where NN, is the number all nodes of the
whole structure and K ;p 18 the number of the ip-th patch.

Their elements H;ﬂ and GZ.] , each of order 3x3, relate the i-
th geometrical node of the structure with the j-th node of the
ip-th patch. The C-matrix is a diagonal one of order
3N, x3N,.

It is here reminded that apart of the particular case of an ideal
smooth boundary, in most cases the number of the geometry

Q @
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=~ e NN
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(@)

(b)

nodes is smaller than the number N, of traction points [4].
So, Eq. (15) finally becomes

CU+HU=GP (16)
where
C : diagonal matrix (3N, x3 N )
U : displacement vector (3N, x1)
P : traction vector (3N, x1)
H : total displacement —influence matrix (3N, x3 N )
G : total traction-influence matrix (3N, x3 N )

Again, the final displacement—influence matrix (ﬁ) is square

while the traction-influence one (G) will be nonsquare
possessing more columns than rows.
With respect to the diagonal terms of the matrix

H=C+ﬁ, these can be easily calculated as in the
conventional BEM [3, 4] on the basis of rigid body
considerations. In this work, no special attention was given to

the singular G, -terms.

NUMERICAL EXAMPLES
The proposed method is sustained by three examples.

Example 1: Cube in tension
A cube of unit length is fixed at its one surface (x,=0)

while the opposite side is uniformly loaded in tension (P, =1).

Elastic modulus and Poisson’s ratio are: E=1, v=0.

This problem was solved for three different uniform
meshes of twenty, forty-four and sixty-four geometry
(displacement) nodes, respectively, as shown in Fig. 3.

1777777

(©)

Fig. 3 Clamped unit cube model using (a) twenty, (b) forty-four and (c) sixty-four nodes, uniformly distributed
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Each case was also solved for three different Gaussian
quadratures: 2x2, 3x3 and 4x4 per cell. Results are presented
in Table 1.

Table 1 Calculated displacement at the loaded surface:

Tension

Number Gauss points per cell Exact
of 2x2 3x3 4x4 solution
nodes
20 0.939 0.972 0.984 1.000
44 0.978 0.989 0.994 1.000
68 0.989 0.994 0.997 1.000

Example 2: Cube in bending
A cube of unit length is fixed at its one surface (x,=0)
while the opposite side is loaded by a uniform shear traction in

bending (P, =3.2). Elastic modulus and Poisson’s ratio are:
E=1, v=0.2. This problem was solved for a uniform mesh of
forty-four geometry (displacement) nodes (Fig. 3b) using
three different Gaussian quadrature schemes: 2x2, 3x3 and
4x4 per cell. As only approximate closed formulas exist for
this example, now the results shown in Table 2 are compared
with the commercial FEM-code ALGOR (for the same
number of divisions).

Table 2 Calculated displacement at the loaded surface:

a*P b? a’ P b®
Ot L B S p C]

&g :% s U :%(O'g”‘/o'r)

Ee,=0,-vo

roo

5
5
Y

Fig. 4 One-fourth of a thick cylinder

Boundary nodes

Table 3 Radial displacement (u, x 10%) on the internal
boundary

Bending

2x2

3x3

4x4

Exact

1.79

1.83

1.85

1.87

Displacement Gauss points per cell ALGOR
2x2 3x3 4x4
u 9.53 10.06 10.25 10.13
1% 0.00 0.00 0.00 0.00
W 20.18 21.14 21.49 21.35

Table 4 Circumferential stresses o, (MPa) on the

Example 3: Thick hollow cylinder under internal pressure.

A thick hollow cylinder (R=10mm, R, =20mm) and height
L=20 mm is subjected to a uniform internal pressure P=20
MPa. The model consists of one-fourth (90 degrees)
circumferentially where lower and upper sides do not move
alond the axis of revolution but they only roll on the plane
(xy,x,) shown in Fig. 4. The material is isotropic and linear
elastic (£=210000 MPa, v=0.3).

The numerical model consists of forty-four geometry
(displacement) nodal points. In other words it consists of six
patches with sixteen nodes per patch. Numerical results are
presented at boundary nodes (Tables 3 and 4) as well as at
internal points. In all cases these are compared with the
analytical solution given as

boundary
2x2 3x3 4x4 Exact
-36.10 -34.58 -34.28 -33.33

Internal nodes

Table 5 Radial displacement (u, x 10%) in the interior at

X, =L/2=10
Radius Gauss points per cell Exact
R) 2x2 3x3 4x4
125 1.60 1.56 1.57 1.59
15.0 1.38 1.39 1.41 1.43
17.5 1.31 1.32 1.31 1.33
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Table 6 Circumferential stresses o, (MPa) in the

interior at x;=L/2=10

Radius Gauss points per cell Exact
(R) 2x2 3x3 4x4
12.5 24.92 24.30 23.41 23.73
15.0 17.35 18.07 18.26 18.52
DISCUSSION

A characteristic of the proposed method is that it leads to
reliable results even for a few number of boundary nodes.
Moreover, a small increase in accuracy appears when
increasing the number of boundary nodes and/or the number
of integration points per cell.

The criterion of choosing the frontiers of the involved
patches is related to their geometrical smoothness as well as to
the absence of any abrupt changes in the related boundary
conditions.

Finally, it should be mentioned that in all examples of this
paper, the boundary is composed of six discrete patches,
which constitute a generalized curvilinear paralleloid. This
paralleloid was analyzed by using only its twelve edges.
Again, only the boundary data, which are absolutely necessary
for the development of the CAD (geometry) model, were
involved in the analysis. In this sense, the proposed method
seems to “marry” CAD with CAE.

CONCLUSIONS

A new method was proposed for the development of large
boundary elements that are extended over a significant part of
the boundary. The background is the application of Coons’
interpolation formula in conjunction with B-splines. The
method was tested in elastostatic analysis and was found to
converge fast and be reliable even for a small number of nodal
points.
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