
 
Abstract—The present work encounters the solution of the defect 

identification problem with the use of an evolutionary algorithm 
combined with a simplex method. In more details, a Matlab 
implementation of Genetic Algorithms is combined with a Simplex 
method in order to lead to the successful identification of the defect. 
The influence of the location and the orientation of the depressed 
ellipsoidal flaw was investigated as well as the use of different 
amount of static data in the cost function. The results were evaluated 
according to the ability of the simplex method to locate the global 
optimum in each test case. In this way, a clear impression regarding 
the performance of the novel combination of the optimization 
algorithms, and the influence of the geometrical parameters of the 
flaw in defect identification problems was obtained. 
 

Keywords—Defect identification, genetic algorithms, 
optimization. 

I.  INTRODUCTION 

VOLUTIONARY methods in general, and more 
specifically genetic algorithms (GA), are optimization 

methods (OM) that were used in a vast majority of 
optimization problems. The main feature of such applications 
is the fact that the design process of artificial systems like 
structural or mechanical components is simulated by 
biological processes based on heredity principles (genetics) 
and the natural selection (the theory of evolution) [1]. 

Inverse problems, particularly crack or void identification 
problems, can be stated as an optimization task. Inverse 
problems are defined as the problems where the output is 
known and the input or source of output remains to be 
determined. They are contrary to the direct problems, in which  
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output or response are determined using information from 
input [2]. In the case of the Inverse Elastostatics Problem 
(IESP) of internal flaw detection, the location, the orientation 
and the size of the flaw are unknown but the displacements 
along the boundaries are known. In order to analyse this kind 
of problems, the boundary displacements, usually called 
“experimental data”, are obtained under known boundary 
conditions and compared with the calculated ones. 

The boundary element (BEM) and the finite element (FEM) 
methods are the two computational methods mainly used to 
obtain the displacement field. The FEM is a well-established 
procedure for structural analysis and has formed the basis of 
most early inverse methods. On the other hand, the BEM has 
become a popular alternative, possessing many advantages, 
like meshing only on the boundaries and low computational 
effort, over the more established FEM [3]. Especially, in 
inverse problems these advantages are important, since each 
iteration step requires the reconstruction of the mesh and a 
new numerical solution.   

The standard BEM equation for static analysis is:         
where vectors u and t include all 

boundary displacements and tractions while G and H are 
suitable influence matrixes. Theoretical details about the BEM 
can be found, among others, in [4]. 

In 1997, Koghuchi and Watabe [5] used GA in order to 
improve the search of defects in structures using the BEM. In 
their paper an elastic structure involving several defects of 
circular and elliptical shapes is considered. The position, the 
size, the shape and the number of defects were unknown. The 
results were encouraging in the sense that they managed to 
identify the correct location of the defect and orientation as 
well as their number. However, a large number of generations, 
consequently of function evaluations, were needed [5]. 
Evolutionary algorithms have been also used in crack 
identification in rotors [6], and in shape optimization [1]. 
Burczynski et al. used distributed evolutionary algorithms 
while Shim and Suh [7] used a parallel computing 
environment for the performance of crack identification in 
beams using evolutionary algorithms. Both these studies used 
distributed and parallel computing to speed up the used 
algorithms since they are characterized by a large number of 
evaluations until convergence is achieved. 

The idea of the sequential combination of two algorithms 
with different features is not new. Simulated annealing has 
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been used combined with GA and artificial neural networks by 
Plumb et al. [8] in the problem of optimum of a tablet coating 
formulation requiring minimization of crack velocity and 
maximization of film opacity. Furthermore, GA has been also 
combined with neural networks in the crack identification 
problem [9,10].  

The objective of the present work is to present (a) the 
different performance of GA as stand-alone and of the 
combination of GA with a simplex method in a defect 
identification problem, as well as (b) the investigation of the 
influence of the use of different amount of data, in the cost 
function, in the above hybrid optimization method. 
Furthermore, the influence of the location of the center and the 
orientation of the ellipsoidal flaw to be identified is 
investigated. 

II.  OPTIMIZATION ALGORITHMS 
For the purposes of this work, the GA as stand-alone and in 

combination with Fminsearch, as implemented in the 
optimization toolbox of Matlab [11], was tested. By the term 
“combination”, it is meant that the GA optimization is 
performed for a standard number of generations and 
sequentially the Fminsearch is used using the outcome of GA 
as a starting vector. 

Both GA and Fminsearch were used as unconstrained OMs. 
However, the constraints were introduced into the objective 
function in a weighted manner through a penalty. Specifically, 
in the current work a simple scheme was used; if either a small 
or a large constraint violation occurred then the objective 
function obtained a very high value. A brief description for 
GA and Fminsearch follows. 
 

A.  Genetic Algorithms 
The idea of the GA was firstly introduced by John Holland 

in the 1970’s [12]. A genetic algorithm is a general 
optimization method that can be used for various kinds of 
optimization problems.  

The general idea of this method is to resemble an 
“algorithm” that is used in natural evolution processes. The 
algorithm operates on a set of designs, called population in a 
current generation, and the approach is to allow its individuals, 
i.e. designs, to reproduce and cross among themselves in order 
to obtain designs with better fitness. The fittest designs, i.e. 
those with low objective function values in the case of 
minimization, have good genetic characteristics and these are 
given higher probability of becoming chosen as parents to 
progenies, i.e. new designs where the characteristics of the 
parents are combined. A population of N feasible random 
designs is initially generated where each design is represented 
by a binary string of 0’s and 1’s (binary encoding) or by its 
numerical value (real encoding). The objective function value 
for each design is calculated and used to compute the 
corresponding fitness value (a low objective function value 
imply a higher fitness value). Four basic operators are now 
used to generate the next generation of designs: reproduction, 
crossover and mutation and migration.  

Reproduction is an operator that basically selects designs 
from the population at the current generation and transfers 

them into a mating pool, i.e. a new population of same size, N. 
More fit designs have higher probability of getting selected 
and the same design can be selected more than once.  

The idea of crossover is to generate new designs by 
exchanging characteristics of designs from the mating pool. 
Starting and ending positions in two randomly selected design 
strings from the mating pool are therefore selected using 
random numbers. The strings between these positions on the 
two design strings are then exchanged and the two new 
designs, i.e. progenies, replace their parents in the mating 
pool.  

Mutation is used to generate new designs by a mutation of 
existing designs. This is accomplished by changing the digit, 
i.e. 0 to 1 or vice versa in binary encoding, at a random 
location in a number of randomly selected design strings from 
the mating pool. The process of operating and updating the 
population is continued until a stopping criterion is satisfied. 

Finally, migration specifies how individuals move between 
subpopulations. When migration occurs, the best individuals 
from one subpopulation replace the worst individuals in 
another subpopulation. Individuals that migrate from one 
subpopulation to another are copied. They are not removed 
from the source subpopulation.  

As mentioned above, the GA implemented in this work 
belongs to the optimization toolbox of Matlab. The values of 
the genetic parameters have been determined through a series 
of runs for algorithm performance comparison and have the 
values that are mentioned below [13]. The specific 
implementation has the following structure: 
1. Creation of a starting population of 24 individuals. Every 
individual is created in real encoding with the use of a random 
number generator 
2. Evaluation of every individual. 
2.1 Sorting of the individuals according to the value of the 
function. 
2.2 Calculation of the average fitness. 
3. Creation of a mating pool. 
3.1 Scaling of the raw scores based on the rank of each 
individual instead of its score. The rank of an individual is its 
position in the sorted scores. The rank of the fittest individual 
is 1; the next most fit is 2, and so on. 
3.2 Making of copies of the fittest members for reproduction. 
Selection is made with the use of stochastic uniform function; 
this way of selection lays out a line in which each parent 
corresponds to a section of the line of length proportional to its 
scaled value. The algorithm moves along the line in steps of 
equal size. At each step, the algorithm allocates a parent from 
the section it lands on. The first step is a uniform random 
number less than the step size. 
4. Performance of the crossover operation with the 
probability 0.8 and give birth to the new individuals. 
5. Mutation of some of the individuals. 
6. Every 20 generations migration is performed. The 
direction of migration is set to forward meaning that migration 
takes place toward the last subpopulation and the migration 
fraction is set to 0.2.  
7. If the maximum number of generations (450 for just the 
GA and 150 for the combination of methods) is reached the 
algorithm is terminated else go to step 3. 

International Journal of Applied Mathematics and Computer Sciences Volume 4 Number 2

89



0 0 0 0 0, ,  X X l X X l X X= − = + =−

B.  Fminsearch 
The algorithm of Fminsearch uses the Simplex search 

method of [14]. This is a direct 
search method that does not use numerical or analytical 
gradients. If n is the length of the design variables vector, a 
simplex in n-dimensional space is characterized by the n + 1 
distinct vectors that are its vertices. In two-dimensional space, 
a simplex is a triangle while in three-dimensional space, it is a 
pyramid. Each simplex defines n+1 solutions in the search 
space. The simplexes throughout the   optimization, using this 
method, can be expanded, contracted or reflected. These three 
moves are defined respectively as:  where X0 is the vector of 
the starting vertex, or of the vertex to be changed. As it is 
obvious, during a reflection the volume of the simplex is 
invariant. There are of course several combinations of the 
above moves. 

The structure of the Fminsearch method proposed for the 
combination with GA is as follows. 

1. At each step of the search, a new point in or near the 
current simplex is generated.  

2. The function value at the new point is compared with the 
values of the function at the vertices of the simplex and, 
usually, one of the vertices is replaced by the new point, 
giving a new simplex.  

This step is repeated until the diameter of the simplex is less 
than the specified tolerance.  

III.  DESCRIPTION OF THE TEST CASES 
All the test cases consist of a plane strain plate with one 

depressed ellipsoidal flaw. The plate is square with edge L=10 
and the material constants are the shear modulus G=1×105 and 
Poisson's ratio ν = 0.30. The ellipsoidal flaw has axis ratio 
1/10, meaning that the semimajor axis is 1.00 and the 
semiminor axis is 0.10. All quantities are in compatible units.  

The flaw is introduced to be in a 4×4 pattern that leads to 16 
different locations and to have 4 different angles (-45o, 0o, 45o 
and 90o) as shown in Fig. 1.  

Moreover, the left-hand side external edge (ad) is fixed in 
both directions and a tension loading is applied on the right-
hand side edge (bc) with a value equal to P = 1000, in the 
horizontal Ox coordinate direction. 

 
Fig. 1 Geometry and boundary conditions of the test cases with angle 

-45o, 0o, 45o, and 90o, from left to right (true scale) 

Obviously, the test cases with ellipse orientation -45o on the 
lower half of the plate, which is the area under investigation, 
are symmetric to those with 45o orientation on the upper half, 
and vice-versa. Due to symmetry along the line ZZ' (y=5) only 
the 8 cases of different locations of the center are encountered 
and a total of 32 different IESP has been solved.  

For the solution of the direct problem using the BEΜ, the 
boundaries of the plate are discretized by means of quadratic 
boundary elements. In all test cases presented here, the 
external boundary is discretized by means of 40 boundary 
elements (i.e. a total of 80 nodes) and the elliptical flaw is 
discretized by means of 8 boundary elements (i.e. additional 
16 nodes). 

The coordinates of the eight different center locations are 
22(2.00,2.00), 24(2.00,4.00), 42(4.00,2.00), 44(4.00,4.00), 
62(6.00,2.00), 64(6.00,4.00), 82(8.00,2.00), 84(8.00,4.00). 
The data concerning the possible location and orientation of 
the flaw was selected in order to be representative of what 
happens on the whole area of the plate. 

For the formulation of the identification problem as an 
optimization process, the spatial coordinates of the centre of 
the ellipsoidal flaw (x,y) and the semimajor axis r are 
considered as design variables, the semiminor axis is 
considered known and has the value of 0.05.  

Two different cost functions were used for the combination 
of the OM. The first one uses the normal displacements of the 
nodes on each of the three free edges while the second one 
uses only the normal displacements of the nodes on the edge 
that the tensile loading is applied (bc). The cost functions are 
defined as cost function 1 (CF1):  
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where Δui is the difference between the calculated 
displacement on ith direction, ui

calculated, and the corresponding 
experimental data, ui

real  [15].  
The four design variables are used in an automatic 

procedure to create a suitable mesh for the flaw and the 
displacements u are calculated at the corresponding boundary 
for every cost function. 

In Fig. 2 the displaced boundaries of the plate and the 
ellipsoidal flaw (grey) under the abovementioned load are 
shown. In order to make the displacements visible, they have 
been scaled by 10.  

In the present work, the design variables corresponding to 
the location of the center lies in the interval of [0.5, 9.5], the 
semimajor axis in [0.1, 2.0] and the orientation in [–90o, 90o] 
for the individuals of the initial population. The constraints of 
the optimization problem, which were applied for all the 
generations, are set so as for all the designs to have a physical 
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meaning, referring to the fact that the flaw specified by the 
design variables must lie completely inside the plate. This 
condition is ensured in the minimization process through the 
imposition of geometric constraints.  
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Fig. 2 displaced (grey) and undisplaced (black) plate with a flaw with 

center location (4.0, 4.0) and orientation 45o 
 

The resulting 32 test have been firstly solved with GA with 
the use of CF1 and then with the abovementioned combination 
of the GA and Fminsearch with the use of both cost functions. 
In all cases the results concern 10 runs for each test case in 
order to minimize the effect of a particular random seed used 
in the generation of the initial population of the GA. 

IV.  RESULTS 
Since the main subject of this paper is the investigation of 

the performance of the combination of the two OM, the results 
concerning GA are presented briefly. In Fig. 3 the successful 
runs per location of the center and orientation are presented in 
a 3D diagram for the use of CF1. For all test cases GA 
performed 10824 iterations. The height of each cone indicates 
the number of runs for which the OM identifies successfully 
the defect. By the term “successful runs” are meant those with 
variations of the design variables less than 10%. 
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Fig. 3 successful runs for GA per angle and location with the 

utilization of CF1 
 

In the following figures the results of the combination of the 
OM with both CF1 and CF2 are presented. For all test cases 

GA performed 3624 iterations. To retain a better insight, the 
results are presented in the form of diagrams according to 
common parameters. In Figs. 4 – 7, the results concern the 
normalized success which is the ratio of “successful runs” to 
the amount of total runs performed, with respect to different 
parameters of the problem. In this case, by the term 
“successful runs” it is meant the runs that lead to the 
identification of the correct defect with variation less than 
0.005%.  
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Fig. 4 Normalized success per angle with respect to the y location of 

the center using CF1 
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Fig. 5 Normalized success versus orientation in respect to the y 

location of the center using CF2 
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Fig. 6 Normalized success versus orientation using CF1 and CF2 
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Fig. 7 Number of function evaluations needed for the convergence of 

FminSearch for the use of different amount of data per angle 
 

The importance of the orientation of the depressed ellipse is 
presented in Fig. 4 and Fig. 5 for all the test cases with the use 
of CF1 and CF2, respectively. The results are grouped 
according to y coordinate of the center location. The first 
column represents the defects with the center lying on the line 
y = 2 while by the second column the defects with a center 
lying on the line y = 4 are represented.  

The effect of the different cost function in accordance with 
the orientation and the location of the center on the x 
coordinate are presented in Fig. 6 and Fig. 7. In both figures 
the perpendicular axis is this of the normalized success.  
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Fig. 8 Normalized success versus x location using CF1 and CF2 

 
In Fig. 8 the average number of the performed evaluations 

versus the orientation of the flaw is plotted. In each couple of 
columns, the first one represents the use of CF1 while the 
second the use of CF2. The average number of evaluations 
concerns the FminSearch algorithm since as it is mentioned 
above the GA is set so as to have a population size of 24 and 
be executed for 150 generations which leads to a total of 3624 
iterations for all runs. 

In Fig. 9 that follows the “successful runs” per location of 
the center and orientation are presented analytically in a 3D 
diagram for both (a) CF1 and (b) CF2. The height of each 
cone indicates the number of runs for which the combination 
of the OMs identifies successfully the defect. 
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(b) 

Fig. 9 successful runs for the optimization algorithm per angle and 
location with the utilization of (a) CF1 and (b) CF2 

V.  DISCUSSION 
By the use of GA as stand alone, the need of a large number 

of iterations it was observed, since the value of the cost 
function even after 10000 iterations was still high. However, if 
as successful runs are considered those with variations of the 
design variables less than 10%, the total success is 78%. On 
the other hand, the total success of the combination, after less 
than 4000 iterations, with successful runs those with variation 
of design variables less than 0.005%, rises to 84%. This 
different definition of successful runs was imposed to us by 
the different nature of the algorithms. The use of Fminsearch 
cancels the stochastic nature of the GA and leads either to the 
finding of the global optimum or to the entrapment of the 
method in a local optimum, explaining why differences in the 
order of 10% did not exist.   

From this point on, the discussion of the results concerns 
not only the effect of the geometry of the flaw to be identified 
but also the role of the amount of data used in the cost 
function.  

The geometrical parameters, i.e. the location and the 
orientation of the ellipsoidal flaw, seem to play an important 
role in the performance of the OM. When CF1 is used the 
influence of the y coordinate of the center seems to be 
important (Fig. 4). For three out of the four orientations the 
OM has higher normalized success for y = 4. The opposite 
happens for 0o where the OM performs better when the flaw 
center lies on y = 2. The flaws with this orientation are parallel 
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to x axis as well as to the traction that has been applied, fact 
which makes these test cases particular. 

Observing the same results for the use of CF2 in Fig. 5 it is 
obvious that there is no clear effects of the y coordinate. It is 
remarkable that only for the orientation of 0o there is an 
advantage for the location of y = 4, which opposes to the 
results obtained for the use of CF1.  

In Fig. 6 it is shown that the use of CF2 generally leads to 
lower normalized success ratio than the use of CF1. However, 
at the orientation of -45o CF2 achieves to retain almost the 
same normalized success with CF1 and at the orientation of 
45o their difference is less than 15%. 

On the other hand, the x coordinate of the center seems to 
influence the performance of the OM in a straightforward 
manner (Fig. 7). Regardless of the cost function that is used 
the higher value of x gives better results, in the sense that it 
leads to higher normalized success ratio. This can be 
explained by the influence of the fully constrained edge (da). 
Furthermore, the difference of the performance of the OM 
between the use of CF1 and CF2, for the x locations 2 and 4, 
is considerably bigger than for the two other locations. This 
means that as long as the defect lies on the left half the use of 
less data is less efficient than for the other half. 

It has been already mentioned that while for the execution 
of GA the iterations are the same regardless the cost function 
and the test case, in Fminsearch the iterations for convergence 
differ. For the convergence of FminSearch (Fig. 8) in the first 
three out of four different orientations almost half of iterations 
are needed for the use of CF1 compared to the use of CF2. 
Briefly, it can be said that the more data is given the fastest it 
is for this OM to converge. The only case that differentiates 
from this rule is the orientation of 0o. In this case Fminsearch 
with the use of CF2 can perform successfully only if the 
outcome of GA is close to the correct one so few iterations are 
needed. 

In Fig. 9, where the results are presented in details, the 
behavior of the OM for each test case is shown. In this figure 
some exceptions to the abovementioned general results are 
shown. Firstly, concerning the results with the use of CF1, the 
two symmetric orientations (-45o and 45o) should have similar 
results but this does not happen for the center 22. This flaw 
has a different behavior since it is close to the lowest corner 
(a) and its orientation (45o) is the one of the bisector. 

Another exception is the few successes of the center 44 and 
orientation 0o, where better results were expected because it is 
close to the center of the plate, though due to the boundary 
conditions seems to have so small effect to the boundary 
displacements that the algorithm results in a local minimum. 

Concerning the optimization of the test cases with the use of 
CF2 the exception is this of the center 24 with orientation 0o 
where the results are much better than the results of every 
other test case with the same orientation. The case of the 
center 22 at the orientation of 45o has the same performance as 
it had with the use of CF1. Also for the center 44 and 
orientation 90o the successful runs are less than expected. 

VI.  CONCLUSION 

This paper shows that although the use of GA in a 
complicated inverse problem could have prohibitive 

computational cost, if it is combined with a pattern search 
method results in a lower computational cost increasing 
actually the success in most of the test cases, regardless the 
amount of “experimental” data used. The combination of the 
two optimization methods performs satisfactory with the use 
of CF1 and identifies successfully the defect in all the test 
cases and in the majority of runs. Although with the use of 
CF2 the normalized success is lower, it still leads to total 
success of 62%.  
  The parametric study concerning the geometrical parameters 
of the IESP has shown that it is possible to find the location, 
the size and the orientation of an ellipsoidal flaw that is 
significantly depressed in all of the combinations. The 
coordinates of the center influence the results and there is a 
tendency to facilitate the identification of the flaws away from 
the boundaries. Concerning the orientation of the flaw, it is 
obvious that the most difficult test cases are those with the 
angle of 0o for both the use of CF1 and CF2.   
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