

FIG Commission 3 Workshop and Annual Meeting International Symposium Geomat and EGoS General Assembly

FROM VOLUME TO QUALITY BRIDGING THE GAP FOR SPATIAL DATA INSTRASTRUCTURE

laşi 3|7 November 2016

National Technical University Of Athens School of Rural and Surveying Engineering

A proposal for fast, flexible, low-cost and reliable Cadastral Surveys

Konstantinos Apostolopoulos, Surveying Engineer, MSc Charalabos Ioannidis, Professor Chryssy Potsiou, Associate Professor, FIG President

Sustainable Development Goals (SDGs)

Six goals with a significant land component mentioned in the targets

- Goal 1 No poverty
- Goal 2 Zero hunger
- Goal 5 Gender equality
- Goal 11 Sustainable cities and communities
- Goal 15 Life on land
- Goal 16 peace, justice and strong institutions.

GENDER EQUALITY

12 RESPONSIBLE CONSUMPTION

AND PRODUCTION

Sustainable Development Goals (SDGs)

- good land governance
 - wellfunctioning country wide land administration systems

Modern Land Administration

systems are expected to deliver, the **necessary infrastructure** related to:

- √ land tenure
- √ Land value
- ✓ Land use
- √ Land development
- √ Housing

Land Administration Systems advantages:

- Governance support and safety
- Protection of public property
- Poverty reduction
- Land conflicts management
- Land tenure safety
- Good land development

- Real estate support
- Infrastructure development
- Investments security
- Environmental and natural resources
 management
- Land and property taxation
- Data and statistics management

Global effort to:

- **✓** Reduce costs
- √ Simplify the procedures

Fit-For-Purpose approach

Spatial Framework:

Aerial imageries country wide Participatory field adjudication Incremental improvement Continuum of accuracy

Legal Framework:

Enshrine FFP approach in law Secure all land rights for all Human rights, gender equity Continuum of tenure - STDM

Institutional Framework:

Holistic, transparent & cost effective Sustainable IT approach Ongoing capacity development Continuum of services

Three fundamental characteristics:

- ***** Focus on the purpose
- Flexibility
- **❖** Incremental improvement

Three core components:

- Spatial framework
- Legal framework
- Institutional framework

Main stages of the Hellenic Cadastre Survey

permanent Cadastral Office

Cadastral manual for the citizen

HELLENIC CADASTRE ISSUES

- ❖ Vague land tenure (in many areas the objections were observed to exceed in number the cadastral registrations)
- Local legislation (Ionian Islands law system)
- Public sector deficiency to meet project's demands
- ❖ Not defined and published forest maps and coastal zones in under Cadastral Survey areas
- Inaccurate property declarations
- **Lack of information regarding legal consequences**
- ❖ Lack of legal titles in abandoned rural areas non defined parcels non identified properties

Proposed process for Cadastral Surveys

Core components

- Citizens participation (CrowdSourcing)
- Usage of **IT tools**, mobile devices, low cost commercial and in-house software, m-services etc.

Scope

- Eliminate the cost and time
- Improve the **reliability** of collected data
- Completion of the National Cadastral Survey

Proposed procedure for Cadastral Surveys

Phase 1

Compilation of preliminary cadastral maps – Declaration of rights

• Phase 2

Back office process – Data evaluation

Phase 3

Publishing of cadastral data

Phase 4

Objections – Initial registration

Use of mobile applications

- Esri's Collector for ArcGIS
- BoundGeometry

ESRI's **Collector for ArcGIS** consists of:

- The server side
- The client side

Applications' Capabilities

- Parcel boundaries digitization
- Building boundaries digitization
- Collection of parcel's images
- Collection of parcel's data ownership

Sign in

Selection of Cadastral Map

Basemap's Selection

Parcel's data collection

Impovement of parcel nodes

Additional data upload tool

BoundGeometry

BoundGeometry application provide user with additional **geometric tools**

It is an <u>assisting</u> application for the Collector for ArcGIS in cases:

- Geometrical Restrictions
- Parcel Boundaries
 Distortions (e.g. trees and vegetation hiding points)

Video guide

This video guide aims to raise citizen awareness for the Cadastral Surveys and how to participate with their mobile devices.

It is a **simple**, **step-by-step** guide of:

- Applications
- Their features and their tools

Any Citizen can be informed and trained how to identify his/her parcel on the orthophotos and digitize it properly

ESRI'S COLLECTOR FOR ARCGIS + BOUND GEOMETRY

VIDEO GUIDE

Applications target group

- Any age group
- Any educational background
- Any digital capacity

ESRI'S COLLECTOR FOR ARCGIS + BOUND GEOMETRY

VIDEO GUIDE

Pilot Case study in a Rural area (2/6)

• Time: August 2016

• Basemap: orthophoto of the NCMA

• Team: 27 volunteers + 1 surveyor → digitized 114 land parcels (~ 450 acres)

• Lso: 0.5 m

• Entire process time: 15 hours (3 days x 5 hours)

Application: Esri's Collector for ArcGIS
 BoundGeometry (application was not of much help due to the random shape of the parcels)

Pilot Case study in a Rural area (3/6)

Main problems:

- Shifting of property boundaries
- Missing property boundaries (that are not marked on the ground)
- Complex property boundaries (inaccurate digitization)

Pilot Case study in a Rural area (4/6)

Comparison with

Chicksisa Chicks to althoup

area (NCMA)

Pilot Case study in a Rural area (5/6)

Only 5/114 land parcels with obvious errors at their boundaries (land parcels no19, 20, 23, 25, 43)

- Land parcels no19 and 20 have different property boundaries
- Land parcels no23 and 25 are separated in a different way

Land parcel no43 is presented as 2 different land parcels (possibly by mistake during the formal Cadastral

Survey)

Pilot Case study in a Rural area (6/6)

Comparison with NCMA'S Cadastral Map

Slight Variations in shape & orientation

NCMA'S technical specifications:

Rms_{xy} for rural areas is 1.41m

Only 17/114 land parcels exceed these specifications (14.9% of the digitized crowdsourced land parcels)

Average deviation → 0.55m

Max deviation → 1.8m

Conclusions

- A fast, flexible, low-cost and reliable procedure is proposed
- Combination of commercial IT tools + In-house developed Software
- Motivation and active participation of citizens was satisfactory
- Resulted accuracies cover NCMA's technical specifications for rural areas

- ✓ Advantages:
- 1) Safe identification of land parcels by owner or neighbors
- 2) Cost reduction for collection of cadastral data → work of volunteers
- 3) Significant time reduction

