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Abstract: - In this paper, a very efficient novel methodology for the automatic recognition of musical 
recordings is presented. The core of this system employs a set of mathematical characteristics, extracted from 
a musical recording, whose determination was based on human perception. For the automatic recognition 
realization a musical signal is sampled, similar features are extracted from it and they are compared with 
model ones, via proper comparison algorithms. Thus, automatic recognition of musical recordings that may 
have suffered a very high distortion of an arbitrary type is accomplished, with a considerable success rate.  
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1   Introduction 
It is worthwhile noticing that human ear is capable 
of identifying sounds in noisy environments. 
Systems that perform the same identification task 
can be used in many applications, like broadcasting 
monitoring, audio appliances, internet file sharing 
systems management, legal rights protection etc. 
Several systems have been proposed that exploit 
information related to various spectral features.  In 
[1], recognition is performed using Spectral Flatness 
Measure, while in [2] Mel-Frequency Cepstrum 
Coefficients are used and in [3] the difference of 
energy in 33 bark-scaled bands is used. However, 
these systems, do not offer the same high success 
rates when noise is present in the unknown signal. 
Kurth et al. in [4] presented a system that can deal 
with highly distorted audio material, but the success 
rate that is offered, in the noisiest case, is not greater 
than 80%, while processing time is longer.   
The methodology presented in this work uses some 
of the principles introduced in [5], but drastically 
upgrades the performance capabilities of the 
recognition system in the presence of noise. This 
approach is based on the assumption that there exist 
invariant characteristics in time and spectral domain, 
which are independent of the kind and degree of 
distortion and are exploited by the human ear in 
order to identify a sound and exploits some of the 
basic mechanisms of human hearing that are related 
to frequency selectivity and masking. The high 
efficiency of the presented methodology relies on: 
• Application of temporal masking processing, in 

addition to frequency masking, 
• An extended set of spectral features, used for the 

recognition process that incorporates the spectral 
frame centroid derivative. 

• An extensive study and successful confrontation 
of the problem of reproduction speed change.  

• An octave based division of the audibility 
domain into bands. 

• Determination of a proper frequency range of the 
masking function.  

• Implementation of a novel, fast, very efficient 
final stage pattern-matching criterion.  

A brief description of the musical recordings 
recognition problem, which is tackled by the 
proposed methodology follows: 1. A set of 
recordings considered as model signals is given. 2. 
A sampled recording is considered as an unknown 
signal. 3. Find if the unknown signal matches a 
specific model signal. 
 
 
2. The Problem Of Musical 
Recordings Automatic Recognition 
The term musical recording (MR) is used to describe 
a recorded piece of music, performed by an artist or 
group of artists. MRs may have suffered a very 
serious distortion, due to reasons like: Analog or 
digital transmission through radiowaves, playing 
speed difference, time shift, cropping, volume 
change by a slightly varying factor, audio coding 
e.g. MP3, equalization, bandlimiting, dynamic range 
compression, random noise present in the signal, 
loudspeaker-microphone transmission etc. 
The aforementioned reasons may cause drastic, 
obvious differences of the sampled unknown MRs 
from the corresponding model ones, both in time 
and frequency domain. As a consequence, features 
used in content based retrieval such as: number of 
zero crossings, DFT peaks amplitude, time and 
frequency envelopes, energy distribution in time 
both in linear and logarithmic scale, etc. [6], 
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completely fail as related extended experiments 
performed by the authors confirm. 
Moreover, an applicable system for the automatic 
recognition of musical recordings must be able to 
recognize one, among many tenths of thousands of 
others. It is obvious that one must manipulate a huge 
amount of information, with the best possible time 
performance. 
 
 
3 Feature Extraction And 
Organization  
3.1 Division of the audible frequency 

domain into bands 
It is well known that the human hearing system 
operates obeying a logarithmic rule [7]. Thus, we 
divide the whole audibility domain into sixty (60) 
logarithmic bands of the type [ )updown CC , , where: 

 24 2/notedown FC = ,  24 2.noteup FC =    

and 12 2110 ⋅⋅= iFnote ,    60...,,2,1=i . 
This division resembles the octave based note 
production in western music and offers a very 
satisfactory recognition success rate.  
 
3.2 A first step towards the band 

representatives vectors  
Suppose that a part of length ML of a musical 
recording is sampled at a frequency Fs and a N 
sample frame of this part is kept for processing. On 
the N samples of this “test frame”, the maxima of 
the absolute value of the Discrete Fourier Transform 
(DFT) are spotted and both their amplitude and 
position in the test frame are stored in two arrays. 
Subsequently, a “first envelope” of the DFT 
absolute value is obtained by linear interpolation of 
all points ( )ii Px , , where iP  is an arbitrary peak 

amplitude and ix  its position in the test frame. Next, 
the maxima (peaks) of this “first envelope” are once 
more spotted and both their amplitude and their 
position are stored in two arrays. If the number N of 
the test frame samples is greater than or equal to 

142 , then the aforementioned procedure is repeated. 
So, eventually two arrays are kept:  
One containing the DFT amplitudes first (if 

142<N ) or second (if 142≥N ) envelope maxima, 
the other the position of these maxima in the test  
frame (in samples). 
 It is well known that the human hearing system is 
subjected to a so called masking phenomenon, 
according to which, when a lot of signal energy is 
present at one frequency, the ear is far less sensitive 

at nearby frequencies, so that, practically cannot 
hear them. A similar phenomenon takes place when 
adjacent frequencies appear with a small difference 
in time. As it is usually said, the louder frequency 
masks the softer ones and for this reason it is called 
the masker (see [8] and [9]).  
To incorporate the masking phenomenon in the 
introduced method, the following procedure is used: 
the highest amplitude peak of the first or second 
envelope having a position 0n , in samples, is 
selected. Then the “masking function”, given by Eq. 
(1), is built around it, where 0f  is the frequency 
corresponding to the peak position 0n  in samples. 
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However, by making a significant deviation from 
the original masking procedure, the domain of the 
function )( fF  is limited between the frequencies 

Wf −0  and Wf +0 , where 0f  is the masker 
frequency and W a properly chosen positive number. 
It has been experimentally observed that for the 
automatic recognition system presented here, the 
optimal value of W is 30 Hz. According to the 
methodology presented in this paper, if the 
amplitude of a peak of the first or second DFT 
envelope in the interval [ ]WfWf +− 00 ,  is smaller 
than the value of )( fF , then this peak is removed 
from the corresponding array of sorted peaks. This 
procedure is repeated, for all the spotted peaks. 
The phenomenon described above refers to 
simultaneous masking, which takes place in a single 
time instance, taking into account information only 
from the frequency domain. A similar phenomenon, 
observed in the time domain is forward masking. 
According to it, presence of a loud frequency at one 
time point affects the adjacent frequencies of the 
following time points due to human ear adaptation. 
In order to take into account this phenomenon, we 
consider two consecutive “test frames” a and b at 
time instances t1 and t2 respectively. The a

in  
“masker spectral peaks” of the a frame have been 
estimated and subsequently their magnitude is 
reduced by a logarithmic factor, ke . Then we 
compute the b

jn  “masker spectral peaks” of the b 
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frame. To the superimposition of a
in  and b

jn  the 
masking function of equation (1) is applied, thus 
obtaining the b

ln  “final masker spectral peaks” of 
the b frame.  
This procedure is carried on, for all the final masker 
spectral peaks, and when so, two arrays are 
constructed: In the first one, the amplitudes of the 
final masker spectral peaks; we name these max-
masked peaks. In the second array the max-masked 
peaks position is kept. At this point, the max-
masked peaks obtained by the above procedure are 
classified into bands, according to the adopted band 
division. We define the “band amplitude” for each 
band as the amplitude of the greater max-masked 
peak within this band. Subsequently, the L  bands 
with greater amplitude are selected from the 60 
bands, and their indices are stored in a separate 
array, we will name “band representatives vector”. 
The elements of this array will be called “band 
representatives”. The experiments performed 
indicate that an appropriate choice for L  is: 

2517 ≤≤ L .  
 
3.3 Taking into account playing speed 

differences 
The “band representatives” extraction introduced 
above leads to an identification procedure with 
excellent results for MRs that have suffered an even 
very high distortion in the frequency domain. This 
procedure, however, degrades in the case that the 
musical recording has suffered a considerable 
distortion in playing speed, more than one and a half 
percent (1.5%) approximately. In order to deal with 
this additional type of distortion, the method 
introduced in the present section has been 
developed. 
Thus, consider once more, the N samples test frame 
and the two arrays of the corresponding DFT 
absolute value maxima amplitudes and position. To 
take into account the distortion in playing speed, the 
peaks positions are multiplied by a properly chosen 
factor Nii ∈,λ , called “the i th stretch factor”. The 

range of iλ values depends on the expected speed 
distortion; so, for decisively most cases of radio or 
TV broadcasted musical recordings, one may safely 
state that iλ belongs to the interval [ ]12.1,88.0 . 

So, for a specific iλ , one considers that every peak 

position kx  of the DFT absolute value is moved to 

the position 












ixk λ* , where [ ]y  stands for the 

integer part of R∈y . In other words, a new peaks 
position vector is obtained: 

[ ] [ ] [ ] [ ][ ]ipiiii xxxxSP λλλλ ∗∗∗∗= ...,,,, 321)( ,  (4) 
which is considered to represent the MR DFT 
absolute value peaks played with a different speed 
than the model one, corresponding to the specific 
stretch factor. Extended experiments show that in 
order to cover the playing speed range of radio/TV 
stations, it suffices to consider a limited number of 

iλ , differing by a step of the order of 0.007 to 
0.012. Thus, by choosing a specific STEP , we 
obtain a sequence of recognition stretch factors: 
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that give rise to a corresponding sequence of shifted 
(stretched) position vectors.  
Next, for each such shifted position vector )(iSP , the 
procedure described in sub-section 3.2 is repeated, 
thus finally obtaining a “ i -stretch band 
representative vector” having as elements L  “ i -
stretch band representatives”, where again 

2517 ≤≤ L . In this way one obtains the general 
class of band representatives vectors for the specific 
frame. 
 
3.4 The set of compact spectral centroid 

derivative vector 
Band representative vectors, as defined above, can 
be considered as a very precise sound fingerprint. 
However, such large information cannot offer a fast 
indexing in an audio database. However, we can use 
a more compact, lossy, form that enables very fast 
indexing within a database. Using frames of length 
N, as above, band-pass filtering is applied between 
110 Hz and 12 260110 ⋅⋅ Hz, the mean value of 
spectral centroid is estimated and its value is 
assigned to one of the 60 audibility domain bands. 
Next, the band index difference between successive 
frames is calculated with a step of K samples and 
the sign of this difference is stored using a single bit. 
Thus, a sequence of (song length)/K-N bits is 
obtained.  
From this sequence we extract all possible KL-bit 
subsequences, which we call compact spectral 
centroid derivative vectors, and store them in a 
database along with their exact position. In this way 
it is possible to locate the exact sample of the model 
MR that corresponds to each compact spectral 
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centroid derivative vector. This information does not 
offer such a high accuracy as the band representative 
vectors but on the other hand can be used to 
drastically speed up the recognition process. 

 
3.5 The sets of band representatives vectors 

for the model musical recordings 
To each model signal a procedure analogous to the 
one described in sub-section 3.2 is applied. Thus, a 
“model set of band representative vectors” is 
obtained, for all samples of the model signal, 
without applying any stretching procedure, like the 
one described in sub-section 3.3. Notice that, very 
frequently, two or more frames starting at 
consecutive time samples correspond to identical 
model band representatives vectors. So, to each such 
vector we attach the number of starting time samples 
for which it remains the same, called “repetitions 
number of the vector”. In the following, when we 
refer to a band representatives vector we consider 
that a number of repetitions is attached to it. 
The creation of the model set of band 
representatives vectors would require a considerable 
amount of computational complexity, since it 
involves a N -samples FFT computation for each 
sample of the model signal in hand. For this reason, 
an adaptive FFT computation algorithm is used 
([10], [5]). In order to obtain a more efficient coding 
of the band representatives vectors, we have used 
the ideas presented in [5], slightly modified to take 
into account the different division in 60 frequency 
bands. 
 
 
4. The Developed Matching Test 
The introduction of the band representative compact  
and spectral centroid derivative vectors, provides the 
ability to successfully and rapidly check for 
matching between an unknown and a model musical 
recording via the use of the comparison methods and 
the matching criteria described below. 
 
4.1 Spectral centroid derivative vectors 

comparison 
Consider two recordings of the same musical 
composition, an unknown and a model MR, starting 
at a sample corresponding to exactly the same piece 
of music. If one applies the procedure described in 
section 3.4 and obtains the spectral centroid 
derivative vectors for both MRs, he will observe that 
there exists a stretch factor iλ  for which these 
vectors are identical, in almost every case. A 
specific vector may exist in more than one MR or 
more than once in the same MR. Therefore this 

information can not be used as an autonomous 
matching criterion. However, it drastically reduces 
the required recognition time since we only need to 
explore further a very small subset of the band 
representative vectors.  
Notice that in the case of very high distortion, two 
corresponding spectral centroid derivative vectors 
may differ by one or two bits. To diminish the error 
probability we compare more than one vectors.  
 
4.2 Single frames comparison 
Consider two recordings of the same musical 
composition, an unknown and a model MR and 
suppose at first that they have both been played with 
the same speed. In addition, consider that one 
arbitrarily selects two N samples frames of these 
signals, corresponding to exactly the same piece of 
music, and computes the band representatives 
vectors of these two frames. All entries of these 
vectors cannot be identical due to the existent 
distortion. However, extended experiments 
performed by the authors show that, even in the case 
the unknown musical recording has suffered a 
particularly heavy distortion of the type described in 
section 2, then, still, the two band representatives 
vectors have at least L*49.0  common elements, 
independently of the position the frame in hand is 
chosen and of the kind of musical composition. 
In the case the unknown MR has been played with a 
different speed than the model one, then the 
performed experiments clearly indicate that there is 
a stretch factor iλ  for which the corresponding i -
stretch band representatives vector has at least 

L*49.0  elements in common with the band 
representatives vector of the counterpart model 
frame. 
Therefore, one might consider that a first criterion 
for deciding if two musical recordings match, would 
be the demand that there are two frames of these two 
signals whose band representatives vectors share at 
least L*49.0  elements. Such a criterion, however, 
is not sufficient for automatic recognition, since: 
First, there may be considerably more unknown 
MRs satisfying the above criterion and second this 
criterion does not take into consideration the signal 
evolution in time. Hence, an efficient matching 
criterion described in the subsequent sub-section has 
been adopted. 
 
4.3 The final stage identification criterion 
Let ik,V  be the k th band representatives vector of 
the unknown part being calculated at a N  samples 
frame starting at sample un ; the second index i  of 
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this vector corresponds to the stretch factor iλ , as 

defined in Eq. (5). Moreover, let Rn,k,U  be the k th 
band representatives vector of the R th model MR 
in the database; the second index n  of this vector 
corresponds to the starting time sample of the model 
frame-window from which the representatives 
vector in hand has been generated. In the sampled 
broadcasted signal part, we select M frames of N  
sample length, where two consecutive frames have 
an l -samples distance and we construct the band 
representative vectors for each such frame and all S 
stretch factors iλ . In this way one obtains S 
sequences of M vectors. [ ]iM,i2,i1, V,...,V,V . 
Next, for an arbitrary musical recording of the 
model database, one retrieves the band 
representatives vectors [ ]i],i**1)(M[nM,],1i*[n2,n,11, U,...,U,U λλ ll −++  

corresponding to M samples of the model recording, 
where the first sample is n  and all consecutive 
samples have a distance iλ*l . Subsequently, one 
compares the pairs of band representative vectors 
( ) ( ) ( ),1*1)(MnM,iM,,1n2,i2,n,11,i1, U,V...,,U,V,U,V ll −++  
and then performs the following steps: 
1). One checks if the number of common elements 
between each pair members ik,V  and ),1*1)(k(nk,U l−+  , 

1M1,2,...,k −= is greater or equal than L*49.0 . 
2). If one pair of vectors ( )),1*1)(k(nk,ik, UV l−+,  has a 
number of common elements less than L*49.0 , 
then one decides that the sampled signal does not 
match to the sample  n  of model MR in hand, for 
the specific stretch factor iλ . Hence, one proceeds 
to comparing the sequence of vectors 
[ ]111 +++ iM,i2,i1, V,...,V,V , corresponding to the next 

stretch factor 1+iλ . 
3). If comparison 1) fails for all stretch factors iλ , 
then, one proceeds to comparing the sequence of 
vectors [ ]iM,i2,i1, V,...,V,V  with the sequence of 
model band representatives vectors [ ]i],i**1)(M[nM,],1i*[n2,,1n1, U,...,U,U λλ ll −+++++ 111  

corresponding to a set of M samples, where the first 
sample is, now, ( )1+n  and, once more, all 
consecutive samples have a distance iλ*l . 
4) If the condition described in (1) above is satisfied, 
then the algorithm proceeds to the comparison 
between the mean values of common elements 

between all the previous pairs of band 
representatives vectors: 
( ) ( ) ( ),1*1)(MnM,iM,,1n2,i2,n,11,i1, U,V...,,U,V,U,V ll −++ . 
5) If this mean value is greater or equal than 

L*72.0  and if only at most [ ]3/L  of the above 
pairs of vectors had common elements in the 
interval [ ]LL *72.0,*49.0 , then the first matching 
criterion is satisfied and the system proceeds to the 
final stage criterion described in the next section. 
6) Otherwise, if the mean value is smaller than 

L*72.0  or if more than [ ]3/L  of the above pairs 
of vectors had common elements in the interval 
[ ]LL *72.0,*49.0 , then the matching criterion is 
not satisfied. The algorithm considers that no 
matching exists and it proceeds to the comparison of 
the two new sequences of vectors [ ]i],i**1)(M[nM,],1i*[n2,,1n1, U,...,U,U λλ ll −+++++ 111 . 

7) If all sequences of vectors [ ]i],i**1)(M[nM,],1i*[n2,n,11, U,...,U,U λλ ll −++  of the model 

musical recording in hand have been compared to 
the sequence [ ]iM,i2,i1, V,...,V,V  without successful 
matching, then the algorithm decides that the 
unknown signal part does not correspond to the 
specific model recording. 
Notice that the above algorithm is executed very 
fast, since there is a minimal number of comparisons 
for each couple ( )),1*1)(k(nk,ik, UV l−+,  as we fully 
exploit the stored encoded information pertinent to 
the specific model recording. In fact, two vectors, 

Rn,k,U  R,nk,U 1+ corresponding to two consecutive 
samples n and n+1, in practice, are identical or in 
most cases differ by 1 band representative or by two 
or rarely by 3 and in some extreme cases by more 
than three. The different band representatives 
between any two consecutive samples, as well as the 
number of repetitions for any vector Rn,k,U  are 
encoded [5] and stored in a database. Now, clearly if 

Rn,k,U  and R,nk,U 1+  are identical no comparison is 
necessary, if they differ by a single band 
representative only two comparisons are needed etc. 
If the whole database of possible candidate model 
set of band representatives has been exhausted and 
no matching is reported, then one deduces that the 
specific unknown musical recording does not 
correspond to any model musical recording of the 
database. If this matching criterion is proved 
successful then the current value of the shift factor, 
say mλ , is stored as well as the exact samples 
numbers where fulfillment of the first matching 
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criterion occurs and then, we proceed to the final 
criterion described in sub-section 4.4. 
 
4.4 The final stage identification criterion 
Suppose that the previous matching criterion is 
satisfied at a specific time sample q  of the k th 
model musical recording for the shift factor mλ . In 
order to verify that this specific model musical 
recording is the exact counterpart of the unknown 
recording in hand, the final stage criterion is applied.  
This criterion is essentially based on the comparison 
of a large number of band representatives vectors 
between the model and the unknown MR. Therefore, 
a number P  of N  sample frames are selected from 
the unknown part, where 5032 ≤≤ P  and the 
starting sample of the i th frame has a distance l  
samples from the starting sample of the ( )1−i th 
frame. The procedure described in sub-sections 3.2 
and 3.3 with the stretch factor mλ  is applied to each 
one of these frames and in this way P  band 
representative vectors P1,2,...,k,mk,W =  are obtained. 
Next, the pairs of vectors: 
( ) ( )
( )k],m**1)(P[qP,mP,

k],m*[q2,m2,kq,1,m1,

1P

1

U,W...,

,U,W,U,W

λ

λ

−−+

+

l

l

 

are compared as described in section 4.2. If the 
mean value of common elements between all the 
above pairs of band representatives vectors is greater 
or equal than L*73.0  and if only at most 
[ ]L*175.0  of the above pairs of vectors had 
common elements less than L*73.0 , then the final 
matching criterion is satisfied. Otherwise, the final 
matching criterion is not satisfied. In this case, the 
criterion considers that no matching exists at the 
specific time sample of the model musical recording 
in hand. Both the first stage criterion and mainly the 
final stage one are very powerful since they 
incorporate essential information from the frequency 
domain well distributed in the time domain.  
 
 
5. Developing and Testing a System  
 
5.1 System Description 
Based on the methodology presented above we have 
developed a system that can operate in common PCs 
and performs automatic recognition of broadcasted 
musical recordings. The developed system consists 
of three modules, namely:  
1) a database of the band representative vectors,  

2) the acquisition of signals module that samples 
signals through various sources 
3) the recognition module 
In fact, due to the extraordinary large number of 
band representative vector combinations, it is not 
possible to perform identification using any known 
indexing method. In order to drastically speed up the 
identification process the system exploits the 
additional information stored in the compact spectral 
centroid derivative vectors. This information 
provides a fast index, and diminishes the set of 
model band representative vectors under 
comparison. The system proceeds to accomplishing 
the matching procedure via the criteria described in 
section 4, as follows: 
(a) The no-stretch case, ( 10 =λ ) is treated first, 
with M=10. So, the band representative vectors 

10,...,2,1,, =k0kV  of 20=L  elements are 
computed in ten windows of length 1024*8=N , 
where the first starts at the first sample of the 
unknown signal, while each subsequent window 
starts at a distance of 21000=l  samples from the 
previous one. In addition, the compact spectral 
centroid derivative vectors are calculated. 
(b) Then, the system uses a value 011.0=STEP , 
to obtain a sequence of stretch factors. The upper 
and lower limits of this sequence are defined by the 
user, according to the expected maximum degree of 
playing speed distortion. Our observations show that 
a practically absolute upper limit is 1.12, while a 
corresponding lower one is 0.88; however, one can 
cover almost 99,5% percent of cases by choosing 
these limits to be 1.06 and 0.94 correspondingly. 
Hence, the S  sequences of the band representatives 

10,...,2,1,, =kikV  are computed for the unknown 
signal. Next, for each stretch factor, we obtain the 
compact spectral centroid derivative vectors. 
(c) For each of the compact spectral centroid 
derivative vectors that have been computed, we 
perform a query in the database to find the 
corresponding MRs and sample positions. Thus, we 
obtain a set of model MRs that is the candidate set 
for recognition. 
(d) Subsequently, the matching criterion is applied 
for these S  groups of vectors, on the candidate set 
for recognition. If this criterion is satisfied at a 
specific sample mn  of the k th model MR for the 

shift factor mλ , then the system proceeds to the final 
stage criterion, employing 42=P  vectors. The first 
vector is computed in the window starting at the first 
sample of the unknown signal, while the other 
vectors are computed in windows each one starting 

Dim
G. Roussopoulos et al.: Mathematical Characteristics for the Automated Recognition of Musical Recordings   703



at a distance of [ ]1P* −mBL λ  samples from its 
previous one. If the final stage criterion is 
satisfied too, then the system decides that the 
specific model recording is indeed the counterpart of 
the unknown MR in hand, and proceeds to the next 
sampling. 
If the candidate model set of band representatives 
have been exhausted, without the final stage 
criterion being satisfied, then the system decides that 
the unknown recording in hand does not correspond 
to any one of the model MRs. 
 
5.2 System Performance 
We have used a model database consisting of twelve 
thousand one hundred and eighty six (12186) MRs 
obtained from CDs and the overall system 
performance for more than 100.000  
pseudosamplings was ninety eight point eight per 
cent (98.8 %). No erroneous matching of an 
unknown MR with a non-corresponding model one 
has been signaled at all. 
Another important test for the system is the one 
described below performed in concert with three 
radio and one TV stations, where the system has 
operated in actual, practical conditions. In fact, the 
system has monitored the four stations in predefined 
time intervals for seven (7) days. During these hours 
the stations personnel kept record of the transmitted 
songs, so that a direct evaluation of the system 
performance could be realized. Eventually, the 
system has reported one thousand nine hundred 
seventy two (1972) identifications which all have 
been confirmed by the two stations playlists. 
Moreover, we emphasize that, all other musical 
recording transmitted by the two stations in the 
predefined time intervals, did not have a counterpart 
in the system model database. In other words, the 
system had a hundred per cent success in identifying 
musical recordings stored in the model database, 
while at the same time, it never generated an 
erroneous identification. 
Perhaps the most important test is the one performed 
with five different cellular phones. A mobile phone 
is placed near a sound source and the audio signal is 
transmitted, recorded and used as an unknown MR. 
One hundred and sixty (160) different pieces of 
MRs have been recorded. The system showed an 
average recognition performance of more than 92%, 
while no false recognition has been reported. 
 
 
6.   Conclusion 
In this paper, a methodology for the automatic 
recognition of musical recordings is presented. For 

the automatic recognition realization, proper 
patterns are extracted from a set of selected model 
musical recordings based on human perception. A 
similar set of patterns is extracted from an unknown 
musical recording and they are compared with the 
whole database in two stages, via proper comparison 
algorithms. Thus, automatic recognition of musical 
recordings that suffered even a very high distortion 
in both time and frequency domain is accomplished, 
with an average success rate of more than 97%, 
without any erroneous identification.  
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