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Abstract—In this paper, an original general methodology is
introduced to establish whether a handmade shape corresponds
to a given geometrical prototype. Using this methodology, one
can decide if an artist had the intention of drawing a specific
mathematical prototype or not. This analysis is applied to the
1650 B.C. wall paintings from the prehistoric settlement on Thera,
and inferences of great archaeological and historical importance
are made. In particular, strong evidence is obtained suggesting
that the spirals depicted on the wall paintings correspond to
linear (Archimedes) spirals, certain shapes correspond to canonical
48-gon and 32-gon, while other shapes correspond to parts of
ellipses. It seems that the presented wall paintings constitute
the earliest archaeological findings on which these geometrical
patterns appear with such remarkable accuracy.

Index Terms—Foundation of geometry via image processing,
image processing on paintings, image shape analysis, prehistoric
geometry via pattern extraction.

I. INTRODUCTION

HE excavations at Akrotiri on the Greek island of Thera
T (Santorini) brought to light the ruins of a prehistoric
17th century B.C. town. Numerous important findings were
discovered in this archaeological site, among which include
the magnificent wall paintings of outstanding importance for
furthering human knowledge of the early Aegean world and
beyond. According to prominent archaeologists, these wall
paintings rank alongside the greatest archaeological discoveries.
The late Professor S. Marinatos began the excavations, which
are now continued by Professor C. Doumas. As with the
treasures of Pompeii and Herculaneum, the wall paintings of
Thera were preserved due to the pumice rom the great eruption
of a volcano that buried the settlement [1].

In this paper, it is demonstrated that the artist or artists of a
number of wall paintings had an advanced sense of geometry, if
not knowledge, and used it to develop geometrical methods for
drawing. In order to confirm this statement, an original general
methodology is presented in this paper together with a set of
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original criteria to show that a specilic shape in a painting has
probably been drawn by means of a geometrical method.

In general. it is thought that geometrical shapes such as
the ones appearing in the 1650 B.C. Theran wall paintings
that are drawn with such accuracy, do not appear before
Thales (600 B.C.), Euclid (350 B.C.), and the Greek School
of Geometry of Classical times [2]-[4]. Moreover, the first
accurate drawing of a linear spiral has been attributed so far to
Archimedes and his colleagues at about 250 B.C.; to be specific,
Pappus states that Conon discovered the curve now known as
the spiral of Archimedes [5]. The methodology introduced in
this paper demonstrates that the artist or artists in 1650 B.C.
most probably knew how to draw Archimedes spiral, canonical,
or regular polygons and ellipses. This was an extremely difficult
task not only for people [rom this prehistoric era, but also for
those from Classical times. In fact, according to archaeological
findings known to date, and also the related analysis [2], [3],
[6], the Egyptians’ knowledge of geometry was limited to the
calculation of the slope of lines and planes and of the area of
various geometrical shapes, such as the triangle, the rectangular
parallelogram, and the trapezoid. However, they erroneously
calculated the area of an arbitrary quadrilateral, of the circle,
etc. At the same time, namely after 1500 B.C.. the Babylonians
had a more advanced knowledge of mathematics than the
Egyptians [2], [7], yet their knowledge of geometry was also
limited to the calculation of areas, the practical application of
the Pythagorean theorem, and, at a later period, the knowledge
that the height of an isosceles triangle bisects its base.

However, in the prehistoric town of Akrotiri on Thera, a
number of wall paintings have been found depicting a variety
of geometrical shapes. These wall paintings and in particular
those depicting spirals, myrtle leaves, cycloids, and so on,
manifest an impressively advanced sense, application, and, per-
haps, knowledge of geometry by the artist(s) of this prehistoric
civilization.

Therefore, although relevant written evidence is not available
from the excavations, based on the results of the present paper,
one can assert that the foundations of geometry could very well
be found in this prehistoric civilization, almost 1100 years be-
fore Thales and 1300 years before Euclid.

The wall paintings are frescos, which means that the artist
would have had limited time in which to draw his theme, namely
as long as the plaster on the wall was fresh. Therefore, the use of
specific methods, tools, and stencils was essential to the artist(s}
in order to finish a complicated drawing in a short space of time.

1057-7149/520.00 © 2005 IEEE
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Extensive pattern analysis led us to the conclusion that 3650
years ago the artist most probably used advanced geometrical
methods in order to construct handmade “French curves” (sten-
cils or templates) or other tools and employed these to draw cer-
tain figures.

It should be emphasized that the pattern recognition methods
and related criteria introduced in this paper, and employed thus
far only on the Theran wall paintings, can be applied to any
painted shape. Moreover, we have noticed that research is being
carried out in curve fittings lately. [8]-[11]. However, in this
paper, a methodology is introduced for determining geometrical
shapes or curves, which obey a given equation in paintings.

[t can be seen that since relevant written evidence is not avail-
able at Akrotiri, the analysis presented here is an example of
how image processing and pattern analysis can shed light on is-
sues otherwise unattainable in the absence of written records.

II. CRITERIA FOR TESTING IF AN ARTIST DREW
A SPECIFIC GEOMETRICAL PROTOTYPE

Examine the actual drawn pattern and imagine that one poses
the question: “Does this pattern correspond to a geometrical
prototype?” In other words, did the artist have the intention of
drawing a specific geometrical prototype (model)? In the fol-
lowing analysis, a set of original criteria is proposed to answer
this question, and, subsequently, these criteria are applied to pat-
terns appearing on the prehistoric wall paintings at Akrotiri.

A. Defining the First Criterion
Consider a drawn shape and its digitized image as consisting
—

of N4 pixels described by the sequence of vectors 'r'f‘, t =
1,2,..., N4 starting at a reference center and pointing to each
pixel center, where superscript A stands for actual. Then, sup-
pose that one wants to test if this shape is the successful result

of an artist’s attempt to draw a geometrical prototype, described

—
by the parametric vector equation ™ (¢|TT) where ¢ is the inde-
pendent variable and II is the set of parameters for the curve.
For example, for the ellipse polar parametric equation

™ (1) = (20 + acos (1) + (o + beos(©))] (1)

where ¢ € [0, 27) is the independent variable (the polar angle)

and Il = {z, yo, @, b} is the set of parameters for the ellipse.
Next, we compute the optimal set of parameters 11¢ and the

corresponding sequence of values of the independent variable t,,

— —
i=1,2,..., Ny, sothat 7™ (¢;[II) best fits r{* according to
achosen norm L. The algorithms applied to achieve this are the
well-known conjugate gradient and/or the easier to implement
Nelder—Mead method [ 11] starting from a tentative set of values
of 1T and letting 1T converge to TI? so that L is minimized.

Finally, taking into consideration all the aforementioned
statements, the following criterion is defined for deciding if
the artist did indeed have the intention to draw the geometrical

g
shape 7 (1).

» Actual Shape
+ Model Shape (spiral)

B vt g

Fig. 1. Demonstration of criterion 1. Dark gray line: The actual drawn shape.
Light gray line: The prototype shape (a spiral). Black dashed line: Indicates the
independent variable #. O: The origin (center).

Criterion 1: Consider, in the same plane, both the painted

— —

shape 7';4 model shape (t) that best fits it, placed in a posi-

tion for the best possible match. For a specific example of this,

see Fig. 1, where the actual painted curve is represented by a se-

quence of blue pixels, while the model curve is represented by a

sequence of magenta pixels; O is the center of the model curve
—

and r;* is the ith vector starting at O and ending at the center
of the 4th pixel of the actual curve. Consequently, according to
this criterion, the sequence

— s
or; = Tj"‘ — M (tilﬂ()) , i=1,...,N4 (2)

is considered to be a random variable having a mean value
17 (8r;) equal to zero. Therefore, the hypothesis that the artist
—
actually had the intention to draw the geometrical shape M (1)
may be tested via the statistical hypothesis that £ (67;) = 0.
Itis quite evident that the aforementioned criterion constitutes
a necessary condition for testing that the artist had the intention
to draw a specific geometrical prototype, but this, in itself, is
not sufficient. In fact, relatively large symmetric fluctuations of
the painted shape around the prototype may satisfy criterion 1;
therefore, the following criterion must be defined.

B. Defining the Second Criterion

If an artist has the intention of drawing an object following
a specific geometrical pattern and succeeds in doing so, then
one may expect that the drawn object will remain consistently
close to that specific geometrical object. In other words, suppose
that one makes the hypothesis that an existing drawn shape de-

=y
scribed by the set of points 77, i = 1,2,..., N4 is the result
of the artist’s attempt to draw the geometrical shape described

A,
by the set of points 7 (¢[IT). One may then intuitively expect
that there will not be a connected part of the existing drawn
shape that will have “a great distance” from the model shape.
If a small part of the drawn object deviates from the model one,



864

Fig.2. 1) Ribbon-like set of points Sk, around the prototype shape (a linear
spiral). 2) Demonstration of the fact that actual drawn spiral lies entirely in the
ribbon like set Sgy, of the prototype linear spiral. Blue dots: The actual drawn
shape. Red line: The prototype shape (a linear spiral). Magenta lines: Indicate
the borders of the ribbon like set Syi..

one may assume that the artist made a statistically acceptable
error in the drawing process and then he/she tried to correct it.
On the other hand, if this deviation is considerably great, then
one may assume that the artist intended to draw something else.
In this section, and in the following one, two criteria will be set
that will attempt to make the previous intuitively correct state-
ments quantifiable.

In fact, consider the aforementioned digitized two-dimen-

—
sional geometrical shape ! (¢[TT), expressed in a polar form

=M =z + RM(6) cos (a(6))
y™ =yo + RM(0)sin (a(6)) ?3)

where R (6), () are arbitrary real functions of the polar
angle #.

Moreover, consider the coplanar stripe-like (or ribbon-like)
set of points P°, where superscript S stands for stripe, defined
as follows (see Figs. 2-4):

) =25(0)+y5(8)] :
= 2y + R3(8) cos (a(h)) @
= yo + R5(8) sin (a(6)) [~

- RM(0)| <

_S

b8 _ <

(¢
f)
y>(0)

R5(6)

Following this, for a set of coplanar points §* =

=
rdi=1,2,...,N*} that may represent an actual drawn

figure, let S, be the subset of S consisting of its points lying
outside the stripe-like set P°; clearly, S, may be an empty
set. Now, one may consider S, as being the union of its max-
imally 8-connected disjoined subsets, i.e., one may express

U S¢, where each S¢ is maximally 8-connected in the

sense that there is no 8-connected subset of S, containing S&
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(see Fig. 3, where 5, consists of one maximally 8-connected
subset).

We will call each S¢ “a maximal area of discrepancy”
(hereinafter abbreviated to MARD). The natural measure for
the MARD S is defined as

1 (Sf’) = the number of pixels forming SI-C (5)

and, using it, one may order the MARD. Let us enumerate the
Sf according to their measure, s, starting from the one with
the greatest measure, which is now denoted by SE©, moving on
to the second greatest measure, now symbolized as S$©, and
so on. Nexl, let us consider the set SMS© of ordered MARD
consisting of the one with the greatest measure, together with
those MARD that have a measure greater than or equal to a
significant percentage of ¢« (S¥°7); i.e., consider this in the form
of the equation

MEO —

{59 :n(85°) 2 an(s7°)}. ©

Clearly, since the sets Sf“ are disjoint, one may define a
measure on M “©, via the relation

NGO
H (M%) = 3 1 (55°)
i=1
N =the cardinal number of ME°, (7)

Obviously, if M €O s an empty set, its measure is zero (0).

Then, one may expect that the greater the measure yz (M9,
the smaller the probability that the set of points S has been
generated in the artist’s attempt to draw the model S* . In other
words, suppose that the artist wanted to draw the model S
in his/her attempt random deviations from S™ may occur, and,
thus, drawing S may have been generated. The stripe-like set
P? represents precisely the area where these random deviations
most probably belong. One may accept that perhaps the 8-con-
nected discrepancies from P of small measure 11 (S¢) oceur
as aresult of the random failure of the drawing process. If, how-
ever, there is a set of large 8-connected parts lying outside P°,
then one would be inclined to accept that the artist intended
on drawing some other model or no model at all. Clearly, the
validity of the previous statements can be strengthened by the
proper choice of value for the percentage a, which is related to
the capabilities and intentions of specific artists. However, we
generally believe that there are no essential differences in the
results, as long as a remains close to 1. In the other drawings
that were examined, where it was evident that the artist intended
to draw a known model Sy, e.g., a circle, (see Fig. 4), the sub-
sequent analysis showed an optimum value of ¢ = 2/3. For
simplicity, the symbols M©© and ME/%) will be considered to
be equivalent.

The question that arises now is what is the acceptable random
deviation of S# from S™ resulting from the erratic failures of
the drawing process. In order to answer this question, we used
the following method.
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Fig. 3. 1) The ribbon-like set of points Sy around the prototype shape (an involute of a circle). Demonstration of the fact that parts of the actual drawn spiral
lie outside the ribbon like set Spy of the prototype spiral. 2) Demonstration of one maximally 8-connected subset lying outside Sy . Blue line: The actual drawn
shape. Green line: the prototype shape (i.e.. a spiral generated by unwrapping a thread around a peg). Cyan lines: Indicate the borders of the ribbon like set Sy .

Fig. 5. Demonstration of the accuracy with which the linear (Archimedes)
spiral matches the actual drawn one. The asterisk indicates the spiral center.
Fig. 4. 1) The ribbon-like set of points Sgy, around the prototype linear spiral.
2) The circle that best fits to the contour of an actual drawn object, used for the
determination of jryp. Notice that the very narrow ribbon around the circle is
not shown to avoid confusion in the figure.

+  Suppose that the model S is described by the generic
set of (3) and consider the nearest circle K of RM(f)
al an arbitrary point of the existing painted shape corre-
sponding to the angle #y. It is well known that, indepen-
dently of the exact form of ™M (#), circle K best approx-
imates R () in the least square sense near g, with a
maximum error of order O [ (65 — 90)3) , where 6 is the
angle of the points under consideration with the greatest
distance from #y.

» Next, consider the n first points of the actual drawing
S4 that are a realization of a corresponding part of the
model S™ where n is small relative to the total length
of §4. Consider, moreover, the circular arc K, that best
fits these n points and the distance df(“ of each one of
these points from K. The maximum distances df“ of
these are taken to be the width & (f) of the ribbon at  ;; ¢

- - ) Involute of a circle, i.e., the spiral generated by unwrapping a thread
this particular point fo. around a peg does not match the actual drawn spiral.



* The width of the stripe-like area is chosen to be ¢ =
—
2.4mean < e (0,) : v (6,) € S 3: we have used the co-

efficient 2.4, since 99% of the standard normal distribu-
tion population is less than this number.

Using the aforementioned approach, the [ollowing additional
criterion is proposed for deciding if an artist that has actually
drawn the shape S had the intention of drawing the theoretical
model SM.

Criterion 2: Consider a theoretical model curve S™ and the
ribbon-like area P° around it as is defined above.

1) If measure p (MGCO) = 0 [see (7)], then, clearly, S*
lies entirely inside P~ . Thus, according to criterion 2, the
hypothesis that the artist drew S# in his/her attempt to
draw SM is accepted.

2) If'measure g ( Ifo) > (), then, in order to accept or reject
this hypothesis, knowledge ol the artist’s drawing capa-
bilities is required. A good estimate of his/her capabilities
can be worked out by directly computing p (MS?) in
the instances where the artist’s drawing intentions are
evident or known.

For the present case, we have estimated the upper limit of
pup = p(ME) by directly computing its value, in the case
of drawn circles (see Fig. 4), since, in this instance, the artist’s
intention is evident. Therefore, if pyp < p (MEO), then the
hypothesis that the artist wanted to draw S is rejected.

C. Defining Two More Criteria
Subsequently, one can calculate the value of the norm £ =

= 5
rit— " (4| 11°)|] and use the £, value to accept or reject

the appropriate statistical hypothesis that the artist successfully

—

drew the geometrical shape described by . If this hypothesis
is accepled, one may use a suitable measure of distance between
— —

ri and M (ti TI?) to compute the probability that the artist did

S

indeed intend to draw a geometrical shape r™ (t). Thus, fol-
lowing Pearson [12], one may choose such a measure to be the
quantity

S, R 2
f\‘r‘q ( r."u (tgln()) - 7,;4 )
st=3%" — - ®)
= )

N constitutes the number of points of the actual drawn shape,
which follows a chi square distribution with N —n — 1 degrees
of freedom, where n is the number of independent parameters

in II. One may then set the following criterion that will give an
—

estimate of the probability that the actual drawn shape T{’ isa
—a

(successful) random realization of the prototype shape +* (1).

Criterion 3: Consider the size of population of the chi square

distribution with n degrees ol [reedom, lying at all points that

are greater than S¥'; in other words, consider the probability

P=Pis 2 8. 9)
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This probability is the chosen measure of goodness of fit be-
—

tween the actual painted shape :*, and the geometrical proto-
—_

type M (1).

We will employ the methodology introduced above to demon-
strate that the artist(s) who painted the wall paintings that were
excavated at Akrotiri on Thera had an extraordinary sense of ge-
ometry for that era.

Criterion 4: A Criterion for Plausibility: This criterion is
not a mathematical one, but, rather, it has to do with reasoning
based on archaeological and historical evidence and the poten-
tial for geometric development within specific eras. In fact, in
Section 111, evidence will be given indicating that the artist(s)
at Akrotiri knew how to construct a linear spiral and canonical
32-gon and 48-gon. These two types of canonical polygons can
be constructed using a ruler and a pair of compasses by means
ol an innovative method for that era (the Bronze Age), and even
for Classical times, yet it was not a priori impossible from an
archaeological and historical point of view. On the other hand,
as a clear-cut counter example, we cannot accept that the artist
in 1650 B.C. knew how to construct a canonical 17-gon, as this
requires a tremendous mathematical background, as is verified
by the fact that this problem was solved with difficulty by the
great mathematician Gauss in 1798.

III. REMARKABLE SENSE AND APPLICATION OF GEOMETRY
BY THE ARTIST(S) OF THE WALL PAINTINGS AT AKROTIRI

We have tested various color image segmentation techniques
[14], [15] in order to extract the contours of various objects,
as can be seen in most of the figures. We have also used an
original color image segmentation algorithm that can be applied
more suitably to the images in hand and which is referred to in a
separate paper by the present authors, currently under review. In
this way, many shapes are obtained to which the methodology
introduced in Section II has been applied, and which can be
compared with various geometrical prototypes.

A. Related Spiral Types

The general equation for a spiral is

z(0) =zq + R (6 — o) cos (e (0 — o))
y(0) =yo + R (0 — do)sin (a (0 — ¢o))

where @, Yo are the coordinates of the spiral center, R(f) is
any increasing function of #, and a (# — ¢y) is any function of
f, while ¢ accounts for a probable rotation of the spiral. The
most well-known spirals are the following ones, the equations
of which are written so as to incorporate the instances where one
has to deal with parts of the corresponding spiral that does not
necessarily start at ¢ = 0.
The Archimedes spiral, namely the one with

R(#) =k (08 —0y), and a(f) = (6 — by) — oo

(10)

(1)

where «, (3 are constants.
The involute of a circle with radius rg, namely the spiral gen-
erated when a thread wrapped around a peg is unwrapped

R(0) =ro\/1+ (8 — 90)2,

a(f) = (f — 0y) — arctan (§ — fg) — . (12)
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This spiral seems to be the simpler one to draw.

The logarithmic spiral satisfying

R(6) = ac®®=%)  a(@)=(0—6)—¢o  (13)
where «, (3 are constants and, once more, ¢g accounts for
a probable rotation of the spiral. Notice that most spirals
encountered in nature, such as those found on seashells, are
logarithmic spirals.

We have extracted the line boundaries of all the parts of
the spirals that are depicted in the available excavated fresco
fragments. In this paper, between the two line boundaries of
each part of the spiral, we have mainly chosen the one where
the external region of the spiral is locally convex (see Fig. 2);
we will call this “the internal boundary of the spiral.” Notice
that the same results are obtained if one chooses the “external
boundary,” namely the boundary for which the external region
of the spiral is locally nonconvex.

B. Rejecting the Hypothesis That the Spiral Parts Where
Drawn by Unwrapping a Thread Around a Peg

Applying, once more, the methodology introduced in Sec-
tion II, we want to test the hypothesis that the artist drew the
spirals by unwrapping a thread around a peg, i.e., that the spi-
rals are involutes of a circle. In order to do so, one must repeat
the steps of the previous section.

1) First, one observes that the set of parameters for this
model spiral given by (12) is Iy = {xo, yo. 70,00, @0 }-
Thus, if one considers any actual painted part of the spi-
rals S represented in a digital image by the set of points

=5
(pixels) T;_'j‘, i = 1,2,...,N*, one may then find the
linear spiral SV, where U stands for unwrapping, with
optimal parameters T1$) that best fits S, as is described
in Section II-A.

2) Consider SY placed in the position that best fits S*; one
then applies criterion 1, namely expressing the hypothesis

— —
that F (ér;) = 0, where, br; = Y (6}|Hg) |

.{’1
i = 1,...,N4, ¢; as is shown in Figs. 3 and 6. The
hypothesis is rejected with a confidence level of 99.9%
for 63% of all the available parts of the spirals as is shown
in Fig. 6.

3) Although criterion 2 rejected the hypothesis that the parts
of the spirals are involutes of a circle, we, nevertheless,
applied criterion 3. Thus, consider, once more, SU placed
in the position that best fits S*, one then defines the
ribbon-like set P as is described in Section IT-B. Such a
ribbon-like area is shown in Fig. 3 for a specific part of a
spiral. Next, one determines the connected subsets of g4
that lie outside P° and checks if criterion 2 is satisfied. In
other words, one examines the value of p (SMS®) and
its relation to pyp. The related analysis shows that, for
all the parts of the spirals, u (SMS®) > 0 holds, while
p (MEC) > pyp in all cases, as is shown in Table II.
Thus, the hypothesis that the parts of the spirals were
drawn by unwrapping a thread around a peg is once more
rejected.

4) Since criteria 1) and 2) rejected the aforementioned hy-
pothesis, we did not proceed to applying criterion 3).

T

Notice that the actual drawn parts of the spirals S* corre-
spond to a logarithmic spiral and they too have been tested.
Testing this hypothesis is also essential because, as has already
been mentioned, this type of spiral exists in nature. By applying
the series of steps referred to above, a piecewise approxima-
tion of the parts of the spiral against logarithmic ones is pos-
sible, but a good approximation of the big parts of the spirals
(6 — 0y > 2m) that are frequently drawn by the artist, is not
possible.

C. Knowledge of Drawing Archimedes Spiral in 1650 B.C.

Applying the methodology introduced in Section I, we want
to find out if there is a theoretical model that best fits these
painted spiral patterns, which would have been generated by
the artist(s) with the means we presume to have been available
to them then. In fact, we will give strong evidence to demon-
strate that the artist(s) 3650 years ago had the intention to draw
a linear—Archimedes spiral. In order to do so, we will proceed
as follows.

1) First, one will observe that the set of parameters for a
linear spiral given by (11) is I, = {xq, yo, 5, 0. @0}
Thus, if one considers any actual painted part of a spiral
SA represented in a digital image by the set of points

(pixels) 7';4, i=1,2,..., N, then one can calculate the
linear spiral S” with optimal parameters 119 that best fits
S4, as described in Section IT-A.

2) Consider S* placed in the position that best fits S; one
then applies criterion 1, namely expressing the hypothesis

that & (6r;) = 0, where, ér; = \7'4‘ - ‘T‘M (9,-|Hg)‘,

i=1,...,N?, #, as shown in Fig. 1. The hypothesis
is fully accepted for all available parts of the spirals as is
shown in Table L.

3) Once more, consider S” placed in the position that best
fits S one then defines the ribbon-like set P as de-
scribed in Section II-B. Such ribbon-like areas are shown
in Figs. 2 and 4 for specific parts of the spirals. Next, one
can check if criterion 2 is satisfied, using the connected
subsets of $# that lie outside P In other words, one ex-
amines the value of p (M©) and its relation to yyp. The
related analysis shows that an overwhelming number of
the parts of a spiral ;¢ (M) equals zero (0), while, in all
cases, they remain essentially smaller than pp, as shown
in Table II. Thus, the hypothesis that all the parts of the
spirals were drawn so as to follow the Archimedes spiral
pattern is always accepted on the basis of criterion 2.

4) The probability that the drawn spiral part S* is actu-
ally a random realization of S* is explicitly calculated
by means of criterion 3. We emphasize that this proba-
bility is almost 1 for all the available parts of the spirals,
i.e., 1t 1s almost certain that the artist intended to draw a
linear spiral (see Figs. 2, 4, and 5).

D. A Probable Method for Drawing the Archimedes Spiral
3650 Years Ago

It is clear that one cannot be sure of the method that the artist
employed to draw a linear spiral, unless related evidence can
be brought to light by the excavations. However, by logical de-
duction and the necessary supporting evidence, one may put
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TABLE 1
RESULTS OF THE APPLICATION OF CRITERION | TO ALL THE AVAILABLE PARTS OF THE SPIRALS

Spiral xdim ydim Linear Involute
part (em)  (cm) Mean Tinv Rm t Accepted - Mean Tinv Rm_t Accepted —
(Rm_Diff) (0.9995) Rejected (Rm_Diff) (0.9995) Rejected
#1 9,6 11,1 -1,006E-02 3,5099 -1,0303 Accepted -4,436E-02 3,5099 -3,707 Rejected
#2 10,9 9,0 -3,666E-03 3,4394 -0,4929 Accepted 1,435E-02 3.4394 0,7382 Accepted
#3 9.7 10,4 -1,011E-03 3,515 -0,0666 Accepted -1,113E-02 3,515 -0,6509 Accepted
#4 5,1 8,6 8,053E-03 3,6896 0,6546 Accepted -1,613E-02 3,6896 -1,0553 Accepted
#5 13,2 9,3 4,927E-03 3,3167 1,8407 Accepted 1,232E-02 3.3167 3,65862 Rejected
#6 16,8 16,5 2,110E-02 33152 3,0777 Accepted -8,243E-02 3,3152 -5,7968 Rejected
#7 20,9 20,5 -1,081E-02 3,3179 -1,0604 Accepted -1,343E-02 3,3179 -0,843 Accepted
#8 19.4 16,6 4,034E-02 3,3416 2,4822 Accepted -9,302E-02 3,3416 -4,5988 Rejected
#9 21,5 13,3 7,373E-03 3,3328 0,903 Accepted -9,255E-02 3,3328 -53.587 Rejected
#10 252 26,7 -1,547E-02 3,3361 -1,431 Accepted -8,197E-02 3,3361 -5,3262 Rejected
#l1 29,1 26,6 3,462E-02 3,3135 3,234 Accepted -9,020E-02 33135 -6,837 Rejected
TABLE 11

RESULTS OF THE APPLICATION OF CRITERION 2 TO ALL THE AVAILABLE PARTS OF THE SPIRALS ftyp = 20

Spiral £ Linear Involute
part Accepted —
ws0) ulbmo) e wlse0) ulsfo)  wlmC) e
rejected
#1 5.1 0 0 Accepted 24 19 43 Rejected
#2 5.9 0 0 Accepted 45 0 45 Rejected
#3 6.2 9 9 Accepted 37 0 37 Rejected
#4 5.4 0 0 Accepted 24 18 42 Rejected
#5 5,8 10 10 Accepted 30 22 52 Rejected
#0 5.2 0 0 Accepted 70 0 70 Rejected
#7 5.8 0 0 Accepted 78 0 78 Rejected
#8 6,3 17 17 Accepted 29 21 50 Rejected
#9 ) 0 0 Accepted 22 20 42 Rejected
#10 4.9 0 0 Accepted 47 0 47 Rejected
#11 6.3 12 12 Accepted 66 0 66 Rejected

forward a hypothesis regarding the method used by the artist
to draw these parts of spirals. In fact, according to criterion 4,
the proposed method must be relative to the means we presume
would have been available to them at that time. In any case, it
should be mentioned that the method used by the artist was ex-
tremely innovative for the era in question. The simplest method
we can think of, which is still considered to be extraordinary for
this period, is the following one (see Fig. 7).

1) The artist drew a large number of homocentric circles S g
with the center O, where two consecutive circles had a 0 \\‘ \\\\\‘\‘\3\\\‘\‘3\3‘:" %vg
fixed radius difference. \ X R 5%

2) The artist divided the 27 entire angle into N equal an-
gles and drew the corresponding radii starting at the same
center O.

3) The sequence of points of intersection of consecutive
radii and the homocentric circles lies on an Archimedes
spiral.

It should be emphasized that, although this method may seem Fig. 7. Method for constructing Archimedes spiral. The circles are concentric

simple to us nowadays, it is, in fact, extremely innovative for  and all pairs of consecutive straight semi lines are isogonal.
1650 B.C., and even for Classical times. In fact, accomplishing

!
AR

the task of dividing the 27 radians angle into N equal angles, 2) finding the middle of a given line segment;
presupposes and incorporates advanced sense, knowledge, and 3) creating a line vertical to a given one;
the ability to achieve the following: 4) the perpendicular at the center of the chord of a circle that
1) the construction of an initial canonical polygon, e.g., must dichotomize the corresponding epicenter angle, i.e.,
a square. Euclid was the first to write about canonical it bisects the corresponding angle with the vertex at the

schemes at about 350 B.C_; center of the circle;
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5) the proper repeated application of the above four tasks to
lead to canonical polygons with a continually increasing
number of equal epicenter angles.

This innovation and the difficulty involved in achieving the
aforementioned, is further highlighted when taking into account
the following historical beliefs.

1) Oenopedes is considered to be the first to have divided

a given angle into two equal parts at approximately
450 B.C., i.e., 1200 years later.

2) So far, Archimedes is considered to be the first to have
proposed the method for constructing a linear spiral to-
gether with his colleagues; he is thought to be one of the
greatest mathematicians of all times.

Additional evidence demonstrating that the artist may have

used this method for drawing linear spirals is offered in Sec-
tion III-E.

E. Knowledge of Drawing Regular Polygons

At this point, the idea emerged that, if the artist employed the
method described in Section III-D for drawing the spirals, then
he probably used the equiangular straight lines shown in Fig. 7
for drawing the red dots, too. Thus, we attempted to test this
hypothesis by applying criteria 1, 3, and 4 of Section I1.

In order to test if the red spots lie on straight semi lines that
divide the 27 radians angle into n equal angles, we proceed as
follows.

1) After the proper segmentation of the image showing the
wall painting fragment with the red spots is carried out,
the contour of each of the spots is extracted. The circle
that best approximates this contour is employed and the
center coordinates of this circle are stored, which will be
considered to be the red spot center in the following.

2) We choose an arbitrary point O = (zq.y0) and con-
sider it to be a tentative center of the corresponding
n-gon. We connect O with the center of the N red
Spms thus forming a sequence of straight semi lines &,
j = 1,2....,N% NP being the number of red spots
under consideration.

3) Let 87 be the actual angle of the two semi lines ; and

Bt 2= Nadien i NE, Moreover, let 92 = 37 _, 62.

4) We define 6% as the angle so that 6% = 2’1"/’1", where 1z is

an arbitrary real number, as well as the sequence of angles
07 = 05+ (i—1)0%, where 6 is an arbitrary initial angle.
5) We consider 67 as being a prototype sequence with a set
of parameters IT = {zp,yo,x, #F }, and, in addition, the
norm Fy = Zi\;l |6’f — Hf“. We minimize Fjg in the
parameter space by means of an algorithm that uses a
version of the conjugate gradient method. In this way, we
obtain a set ul‘optimal parameters I1° = {z{, 49, 2°, 6 }.
Point (xf, y5’) will be called “canonical « center.”

We have applied this method to a class of red spots se-
quence depicted in all available fragments, together with the
corresponding parts of the spiral (see Fig. 8). In this way, we
have obtained values of = between 47.95 and 47.97, a fact
indicating that the artist 3650 years ago was most probably
capable of drawing a canonical 48-gon. Fig. 8 strongly supports
the validity of this suggestion. In order to formally confirm
this statement, we have applied criteria | and 3 using the
set of parameters 11° = {z,y0,48,6)}. Indeed, criterion 1

Fig. 8.

Strong evidence that the artist approximately 3650 years ago was
capable of drawing a canonical 48-gon.

confirmed the hypothesis that the centers of two successive red
spots lie on semi lines forming an angle 27r/48 Criterion 3 with

= o (08 - 07)*/8)
shows that the corresponding probability is practically 1. In
other words, Criterion 3 shows that the centers of the red spots
almost certainly lie on semi lines passing through the vertices
of a canonical 48-gon.

It is stressed that the aforementioned procedure has also
been applied to other canonical polygons that have n number
of vertices different to 48. The results that were obtained
indicate that, for n < 45 and n > 51, there is no n-canonical
center that “sees” the centers of the red spots, as is shown
in Fig. 8. Notice that such an mn-canonical center does not
exist, not even in a subset of at least 24 red spots of the ones
shown in Fig. 8. For 45 < n < 51, one can find n-canonical
centers; however, with greater error. In fact, for n = 45, the
minimum error (Fp/N1) is 2.48-1072 rad (= 1.42°), while,
for n = 48, it is 1.13-1072 rad(2 0.64°). Moreover, the
canonical 48-gon can be constructed geometrically starting
from a canonical hexagon and then applying a successive
bisection of the epicenter angle until one arrives at n = 48,
This method of construction although innovative for the era
can be accepted from an archaeological and historical point
of view; in other words, it is compatible with criterion 4.

It is worthwhile noticing that, for all the parts of the spirals
that were examined, the first 16-20 centers of the red spots lay
on a canonical 48-gon, whose center was slightly moved with
respect to the one shown in Fig. 8. The same is also true for
the last 15 red spots. One cannot rule out the possibility that the
artist made this translation of the centers to make the red spots
sequence agree with his aesthetic criteria.

We have considered the probability that the artist(s) used their
knowledge of constructing equiangular straight lines, to make
other decorative shapes, as well. Thus, a thorough examination
of the wall painting fragments indicates that in the class of spi-
rals such as the ones shown in Fig. 9, the acanthus-like vertices
possibly lie on equiangular straight lines. In order to test this,

a measure of goodness of fit $4
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Fig. 9. Notice, that, as in the case of the canonical 48-gon, the center of the canonical 32-gon lies quite close to the start of the linear spiral.

Fig. 10.  Demonstration of the fact that both sides of a myrtle leaf fit an ellipse
with great accuracy.

we have proceeded in the same way as in the case with the red
spots; in this instance, the minimization process lead to the epi-
center angle of a canonical 32-gon. In other words, in all these
spiral patterns, there is always a point lying in the proximity
of the spiral end that, with any two such consecutive vertices,
forms the angle 27 /32 up to €, where ¢ < 2 - 1072, After spot-
ting this point with the aforementioned minimization process,

Fig. 11.
contour.,

Ribbon-like area around an ellipse best fitting to a single myrtle leaf

we applied criteria 1 and 3. Therefore, as before, let 0% be the
actual angle the found center forms with two consecutive ver-
tices; also, let 8 = 37" _, 62 and 032 = 632 + (i — 1)6%2. The
hypothesis then that E (6 — 622) = 0 is verified for all such
patterns that are available, i.e., criterion 1 is satisfied. Moreover,
criterion 3 applied with 4 = Ef_j ((9?2 - 9;4)2/9,?2) con-
firms that the probability that 8¢ = (27/32) is equal to 1.

It should be noted that the centers of the red spots and
the acanthus-like vertices do not lie on the circumference of
a circle. Therefore, one cannot claim that the artist started
drawing equidistant points and accidentally formed canonical
48-gon and 32-gon. On the contrary, the distance between
the centers of two consecutive red spots or two consecutive
vertices greatly varies from point to point. The related statistical
hypothesis that the distance of two consecutive points is fixed
is clearly rejected.
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Fig. 12.

F. Knowledge of Ellipse Drawing

An important wall painting that was excavated and preserved
in a fragmentary state, depicts myrtles. A simple inspection
of the myrtle leaves shows that their borders are smooth, well
defined and with no trembling; This fact suggests that a tool
may have been used to draw them. Since the previous analysis
shows that the artist could use a number of different geometrical
methods to create the drawings, the idea to look for probable ge-
ometrical methods for drawing the borders of the myrtle leaves
emerged. After extensive analysis and a related search, the most
probable candidate for the drawing of the leaves seemed to be
the ellipse. To test this, we have moved along the same lines as
was introduced in Section I1.

The general equation for a conic is

Az® + By> 4+ Cay + Dz + Ey+ F =0

A, B,C,D,E, F eR. (14)
However, the general equation for an ellipse with one of its axes
parallel to the x axis and with its center at (g, yg) is
"o g 2 4 — 7 2
(z ;u) n (y 2140) _1—o,
a b

a,beR. (15)

Demonstration of the fact that the same ellipse stencil matches both sides of a myrtle leaf with great accuracy.

Equation (15) is a direct consequence of (14) after a rotation of
f radians, in the sense that if transformation

X | _ |cost —sinf| |z
Y| |sin@ cosf y
is applied to (14), where
A-B

C
then one obtains (15) with (18), shown at the bottom of the next
page.

At this point, we pick £ = x to be the independent variable of
each myrtle contour, we define IT = {A, B,C, D, E, F} to be
the parameter space of the ellipse defined via (14) and we let

(16)

cot f =

(17)

T b -
M (z|I) = 21 + yj (19)
be the parametric equation of the ellipse whose dependent vari-
able is y.

Subsequently, one applies the methodology introduced in
Section 1I to check if the artist drew the two contours of each
of the myrtle leaves by using a geometrical method for drawing
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an ellipse or by means of an appropriate stencil (a handmade
geometric template). Thus, we define

e ST L Y
?-?Ti = "E‘Tﬂ,z + ym.}ﬂ

m=1,2,... N4 (20)

to be the sequence of vectors corresponding to pixels forming

the digital image of an actual myrtle leaf contour. Mareover, we

define the parametric equation for an ellipse that is assumed to
—

approximate T;?i to be

rM (@ml) = 23T+ yi7, jmyJ @n
—
and the norm of difference between the actual painted 771 and
the model
NA
Epc(ell) = ) (lym - ™ (@mlD)]). @2
m=1

1) We minimize Egp in the parameter space and
we obtain the optimal set of parameters 119 =
{A°,B°,C°, D? EC, F°} for which the ellipse
—
™ (x,,|TI) best approximates the actual drawn leaf

—

contour 7"4

A Let S¥ be the ellipse that best fits the leaf
contour 54 (see Fig. 10).

2) At this point, criterion | has been applied and the hypoth-
esis that £ (yM — yi*) = 0 has been confirmed for all 29
two-sided myrtle leal contour. Therefore, this is the first
strong piece of evidence we have that the artist(s) may
have painted the leaves by drawing an ellipse via a geo-
metrical method.

3) Letus consider S* that best fits S and define the ribbon-
like set P° in a manner analogous to the one described in
Section II-B. In fact, using the polar form of the ellipse
we define the set S¥ as follows:

SE — {(L y) € R2 I:.’L' =xg+ap,

a—e<ap
23
y = yo + bg, } @3

b—e<bg

where € > 0 is defined as in Section II-B. Such a ribbon-
like area is shown in Fig. 11 for a specific leaf contour.
Next, one determines the connected subsets of S that lie
outside Sy and checks if criterion 2 is satisfied. Namely,
one checks the value of ¢ (M) and its relation to uyp.
The related analysis shows that the contour of all the
leaves pu (MS?) equal zero. Thus, we are presented with
further strong evidence indicating that the contours of the
leaves are formed from the parts of an ellipse.
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4) Finally, the probability that the drawn contours of the
leaves S are actually a random realization of S¥ is cal-
culated by means of criterion 3. This probability P¥ is
very close to 1, actually 1 — 1072 < PF < 1 for all the
available leaf contours.

It should be noted that there is evidence supporting the
hypothesis that the artist used a very limited number of ellipse
stencils to draw myrtle leaves (see Fig. 12 where both sides of
the myrtle leaves match the same ellipse stencil with a great
degree of accuracy. This observation, as well as the analogous
one concerning the linear spirals, makes it possible to match
fragments with their corresponding prototype. This is a very
important process in archaeology, which will be the subject
of another paper.

IV. CONCLUSION

The aim of this paper is to introduce an original general
methodology to determine whether a handmade shape corre-
sponds to a given geometrical prototype. To achieve this, three
mathematical criteria are introduced, two of them being of sta-
tistical nature and the other one being based on fuzzy logic. The
application of these criteria to the very important Late Bronze
age wall paintings, decorating the internal walls of an edifice
excavated at Akrotiri, Thera, shows that the spirals depicted on
these wall paintings correspond to linear (Archimedes) spirals
with exceptional accuracy. In addition, it is shown that there are
many sets of decorative elements placed, with remarkable pre-
cision, along radii of various canonical polygons (48-gon and
32-gon). Moreover, a number of other shapes are determined
that correspond to parts of ellipses.
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