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Abstract. The present paper offers strong evidence that there was a particularly advanced, for the era, sense
and application of geometry in the prehistoric civilization of the island of Thera (Santorini), Greece, ca.
1650 BC. First, by applying an original method, it is demonstrated that specific shapes, depicted on so far
unpublished wall paintings initially decorating the third floor of Xeste 3, correspond to advanced geometric
configurations with remarkable accuracy. Thus, it is shown that there are configurations corresponding to
linear spiral prototypes, others matching elliptical prototypes and sets of points lying on isogonal lines that
are radii of regular polygons with 48, 32, and 24 angles. Subsequently, it is shown that the use of geometric
archetypes for drawing played a prominent role in the Late Bronze Age Thera civilization. In fact, it is
demonstrated that celebrated wall paintings have border lines that impressively match a limited number of
linear (Archimedes’) spirals, hyperbolas, and ellipses in a piecewise manner. This practically excludes the
probability that these wall paintings were drawn by freehand, while, on the contrary, it strongly suggests
that they were mainly drawn by means of geometric stencils.

1. Introduction

In the south Aegean Sea, a celebrated Hellenic sea with more than 3,000 islands, the
beautiful volcanic island of Thera (or Santorini) is found. In this island, a very impor-
tant civilization grew in the prehistoric era, in the third and second millennium BC. Ar-
chaeological evidence indicates that in this civilization there was an impressive, for the
era, accumulation of knowledge of pottery making, metallurgy, architecture, navigation,
geography, astronomy, etc. (Doumas 1992). In prehistoric Thera, the arts also flourished,
and were always, along with architecture and spatial organization, anthropocentric and
essentially respected human scale.
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The growth of Theran civilization was abruptly and brutally stopped by the tremen-
dous volcanic eruption, the greatest known in human history, which occurred around 1630
BC. The volcanic eruption was so fierce that considerable layers of Theran volcanic ash
have been found at extreme distances from the epicenter, from Sudan to the eternal ice of
Greenland. Consequently, the whole surface of the very island of Thera was completely
covered by a thick volcanic ash layer up to 15-20 m in height. Thus, the prehistoric settle-
ments and towns existing on the island were totally buried under a huge amount of volcanic
ash, very much like Pompeii in south Italy.

A very important and very well-preserved prehistoric town was found by Professor S.
Marinatos in Akrotiri, in 1967. Since then, continuous effort has brought to light a great
number of archaeological finds of immense value. The most important of these finds seems
to be the artistically superb paintings, which adorned the internal walls of the Akrotiri
houses. These wall paintings are excavated in fragments, since the decorated walls have
collapsed due to the strong earthquakes that preceded the volcanic eruption. These frag-
ments are usually in excellent condition, since the thick layer of volcanic ash ensured
stable conditions of temperature and humidity, creating an ideal conservation environment
for both the plaster and the pigments. Thus, a high degree of recovery and restoration is
nowadays possible but only via a painstaking and time-consuming process.

The assemblages of wall paintings from Akrotiri attest to the Theran artists’ interest
in a remarkable diversity of subjects: abstract patterns, inanimate objects and structures,
plants, animals, human and mythological figures, geometric motifs, etc. There is a set of
unpublished and not yet restored wall paintings belonging to Xeste 3 (House number 3),
in which various geometrical figures are depicted such as spirals, circles, parallel lines, cy-
cloids, crescent-like shapes. These wall paintings have been excavated highly fragmented,
with several parts unfortunately missing. In fact, tenths of thousands of fragments are
likely to belong to this set of wall paintings, while the overall image representation is not
known with certainty at the moment. As a consequence, the restoration of this set of wall
paintings is particularly difficult, so an original information system has been developed in
order to assist the fragment-matching procedure (Papaodysseus et al. 2002).

Careful examination of the depicted geometrical shapes manifests that they were drawn
with a very clear-cut and steady line, a noticeable order, and a noteworthy repeatability.
This implied the idea that the artist (or artists) perhaps used geometrical methods and/or
tools to draw parts of these wall paintings. In order to attest this conjecture, a novel method-
ology, as well as a class of original criteria, has been developed by the authors. It is shown
below that application of this method offers strong evidence that

e All depicted spirals correspond, with impressive accuracy, to linear ones obeying Equa-
tion 1.

e There are configurations indicating knowledge of drawing isogonal (equiangular) lines
and, in particular, those corresponding to a canonical 48-, 32-, and 24-gon.
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318 Fragouliset al.

e The borders of most wall paintings initially decorating the internal walls of Xeste
3 were drawn with the help of geometrical prototypes corresponding to hyperbolas,
ellipses, and linear spirals.

The details of the methodology from the mathematical and computer engineering point
of view, as well as its archaeological implications, will be presented in another paper.
In this paper, we proceed by setting the historical context from a mathematics point of
view, in order to underline the essence of the findings reported in this paper. We would
like to point out that, in the following discussion, for reasons of simplicity, we will refer
to ‘the artist(s)” as the hypothetical person(s) who had the necessary geometric sense and
ingenuity to conceive, design, and implement the geometrical prototypes and draw the wall
paintings in question. Of course, the person who made the geometrical designs may have
been a completely different person than the one who actually drew the wall paintings or
than the one who constructed the geometrical prototypes. It is evident that the interest of
the present essay is in the advanced sense of geometry in this Late Bronze Age civilization,
as well in the ingenious person(s) who conceived and applied this knowledge to drawing
complicated figures on the wall.

2. Related Geometry and Mathematics in the Prehistoric and Historic Era

Simple geometrical prototypes, even in a primitive form, arose in various human activi-
ties even from the Paleolithic era, as a number of related finds manifests (Keller 2001).
However, a noteworthy organization of geometric and arithmetic knowledge seems to
have occurred in a far more recent era. Thus, it is well known (e.g. Neugebauer 1935-
1937; Thureau-Dangin 1938; Neugebauer and Sachs 1945; Bruins and Rutten 1961) that
in the old Babylonian (OB) period (ca. 2000-1600 BC), Babylonians dealt with a variety
of problems of algebra and geometric algebra such as area computation, square root ap-
proximation, attempts to solve quadratic and logarithmic equations. Our knowledge of OB
mathematics is based on numerous archaeological finds, such as the celebrated Plimpton
322, YBC 7289, AO 17264, and the considerable scientific effort made for their inter-
pretation. Thus, Plimpton 322 was initially considered to provide a set of Pythagorean
triads (Neugebauer and Sachs 1945); however, in Friberg (1981, p. 302) it is suggested
that “the purpose of the author of Plimpton 322 was to write a “teachers aid” for set-
ting up and solving problems involving right triangles’. Alternatively, Buck (1980, p. 344)
suggests that ‘the Plimpton tablet has nothing to do with Pythagorean triplets or trigonome-
try but, instead, is a pedagogical tool intended to help a mathematics teacher of the period
make up a large number of “igi-igibi” [i.e. reciprocal pair] quadratic equation exercises
having known solutions and intermediate solution steps that are easily checked’. More-
over, in Robson (2001, p. 176) where a set of criteria for judging the interpretation of an
archaeological find is introduced as well, it is stated that ‘If we believe that Plimton 322
was intended to be a list of parameters to aid the setting of school mathematics problems
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(and the typological evidence suggests that it was), the question “how was the tablet cal-
culated?” does not have to have the same answer as the question “what problems does
the tablet set?” The first can be answered most satisfactorily by reciprocal pairs, as first
suggested half a century ago, and the second by some sort of right-triangle problems. That
is perhaps as far as we can go on present evidence: without closer parallels we run the risk
of crossing the fuzzy boundary from history to speculation. The mystery of the Cuneiform
Tablet has not yet been fully solved” (Robson 2001, p. 202).

In AO 17264, Babylonians dealt with the problem of bisecting trapezia in order to solve
practical problems like generating equal inheritance shares. In their attempt to do so, they
dealt with the solution of a system of three second-order equations. As shown in Brack-
Bernsen and Schmidt (1990), this problem is beyond the capability of Babylonian math-
ematicians, and it looks as if they have given up in despair their attempt at solving this
problem and just given some meaningless computations that lead to a correct result.

Concerning YBC 7289, in Friberg (1982) it was first described that it was ‘a lentic-
ular school tablet with a geometric drawing displaying the very good approximations
V2 =1.245110 [and 1 J2 = .422535]" (in sexagesimal system). In Fowler and
Robson (1998, p. 369), it is pointed out that the function of YBC 7289 may be a ‘rough
work written by a student while solving a school problem’. Fowler and Robson using the
Cuneiform Tablet BM 15285, an OB illustrated geometrical ‘textbook’ containing a num-
ber of problems on finding the areas of certain figures inscribed in squares, have reached
the result that “the author of YBC 7289 most probably took the value of +/2 from a refer-
ence list’.

According to various researchers (Szabo 1968; Heath 1921/1981; Exarchakos 1997),
starting from Proclus (‘IIpdkhoc’), Geometry in Egyptians was even in Thales’ time con-
fined to an area computing stage (‘I'nc Métpnouc’); in other words, it was only an ensemble
of empirical rules for computing surfaces, frequently with errors.

On the other hand, there are a number of researchers (Zeuthen 1896; Neugebauer 1936),
who claim that one can interpret parts of Greek mathematics typified by book I1 of Euclid’s
‘Elements’ as translations of Babylonian algebraic identities and procedures into geomet-
ric language. This position was fiercely supported by Unguru (1975), who argued that
modern accounts of Greek mathematics have been so strongly affected by the concept of
geometric algebra that it is now necessary to rewrite the whole subject. The Unguru point
of view has suffered a number of serious attacks by Van der Waerden (1976a), Freuden-
thal (1977), and Weil (1978). Mueller (1981, p. 44) reached the conclusion that ‘a strictly
geometric reading of The Elements is ... sufficiently plausible to render the importation
of algebraic ideas unnecessary’. Berggren’s view in Berggren (1984, p. 398), where a very
interesting and clear survey of Greek mathematic history is presented, is the following: ‘to
establish geometrized algebra as a historical fact still requires that considerable research
be done on the time and method of transmission of Babylonian mathematical knowledge
to the Greek world’.
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Next, a brief summary of geometric knowledge in Classical Ages related to the content
of the current paper is presented. In the following, when a phrase of the type ‘mathe-
matician or philosopher X first stated and/or proved Proposition A’ is used, we mean that
it is historically well founded that statement or proof of proposition A is onomastically
attributed to person X.

Thales (©airc) 624-546 BC seems to be the first who introduced the concept of proof
in Geometry. He first stated that the circle is bisected by its diameter. One cannot exclude
that this property may have been suggested to Thales by the appearance of certain figures
of circles divided into a number of nearly equal sectors by two, four, or six diameters.
Such figures were, for example, found on Egyptian monuments or represented on vessels
brought by tributary monarchs in the 18th dynasty period (ca. 1560-1320 BC) (Heath
1921/1981 1, p. 131).

Oinopides of Chios in the fifth century BC is so far considered, even by Proclus, the first
to draw the perpendicular to a given straight line from a point outside it using compasses.
He is also considered to be the first who bisected a given angle.

Next, let us consider the following widely accepted proposition in modern mathematics:
consider a circle and a canonical polygon, e.g. an equilateral triangle or a square inscribed
in it. On each side AB of the inscribed triangle or square, consider the perpendicular from
the circle center O and extend it until it meets the arc of the smaller segment of the cir-
cle subtended by the side AB, at a point M. In other words, construct an isosceles trian-
gle MAB subtending the initial canonical polygon, with its vertex on the aforementioned
smaller arc. In this way, one constructs a canonical polygon with double the number of
sides of the initial one. Repeat the previous construction with the new canonical polygon,
thus obtaining an inscribed canonical polygon with four times as many sides as the original
polygon had and so forth.

Antiphon thought that in this way the area of the circle would be used up, and we
should eventually have a polygon inscribed in the circle the sides of which would, owing
to their smallness, coincide with the circumference of the circle. Archimedes, later on,
in his celebrated work ‘Kokhou Métpnowc’ (Measurement of a Circle) used the afore-
mentioned procedure in order to define and compute 7t toward his successful attempt
to calculate the area of a circle and the length of its circumference. However, many
authors consider Antiphon the father of the idea of exhausting an area by means of in-
scribed canonical polygons with an ever increasing number of sides, an idea upon which
Eudoxus founded his method of exhaustion (Heath 1921/1981; Spandagos, Spandagou,
and Travlou 1994/1997/2000).

Concerning spirals, it is well known that spiral shapes appear in various prehistoric
civilizations, even centuries before 1650 BC, namely, before the prehistoric Thera civi-
lization. However, we emphasize that the shape of the linear spiral does not exist in nature
and that, to the best of our knowledge, the Thera wall paintings considered in this work
constitute the first case where drawn figures approximate to such an impressive degree
ideal geometrical shapes or curves obeying a certain corresponding equation. In Classical
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Age Geometry, the conception of the ‘torus spiral’ is attributed to Archytas the Tarantinus
in the fourth century BC. In connection with the linear spiral, the one nowadays bearing
Archimedes’ name, it seems that the idea of its construction and use is, so far, attributed to
Konon (Kévwv) from Samos in the third century BC. In fact, Pappus (I1¢nroc) Alexandri-
nus, in his work *Xuvoywy?’ (Collection) in the fourth century AC, states that the theorem
about the plane spiral was proposed by Konon and proved by Archimedes. Indeed, in ‘On
Spirals’ Archimedes defines the linear spiral and gives fundamental properties connecting
the length of the radius vector with the angles through which it has revolved. He gives
results on tangents to the spiral as well the area of portions of the spiral. Moreover, he uses
this spiral for squaring the circle by rectifying a circle with the use of the spiral tangents
(Heath 1921/1981; Band, Jones, and Bedient 1988; Spandagos, Spandagou, and Travlou
1994/1997/2000).

Concerning conics, it seems that the first who conceived them and realized that they
result from the intersection of a cone with a plane was Menaichmos around 350 BC. Euclid
in around 300 BC seems to be one of the first who wrote about them. In fact, according
to Pappus (320 AD), ‘the four books of Euclid’s Conics, were completed by Apollonius,
who added four more books of Conics’ (Heath 1921/1981). The names of the three conic
types (ellipse, hyperbola, parabola) are attributed to Apollonius. He, moreover, stated and
solved 10 problems concerning contacts. The solutions of these problems, even nowadays,
require complicated methods.

3. Advanced Knowledge and Application of Geometry in the Prehistoric
Thera Civilization

3.1 Knowledge of Constructing an Archimedes (Linear) Spiral Ca. 1650 BC

We start by noticing that the general equation of a spiral in polar coordinates is actually
the one of a circle, where the radius is not constant, but, on the contrary, it is an increasing
function of the polar angle 0. In certain cases, 0 itself may be a function of other indepen-
dent variables as well. Thus, clearly, from the theoretical point of view, there are infinitely
many types of spiral.

Concerning the spirals depicted in Akrotiri, Thera wall paintings (see Figures 1a, b, and
2a, b), after thorough examination we noticed that they are very clear-cut, smooth, and
stable-line figures. This, eventually, imposed the idea that the artist may have used a set
of tools and/or geometrical methods to draw these spirals. In order to test this conjecture,
we have chosen a set of prototype spirals, whose construction we felt that, even though
requiring a considerable degree of novelty, was not completely prohibited by the means of
the era. Thus, we have initially considered a potential prototype to be

(1) The spiral obtained by unwrapping a thread around a peg. Approximations of such a
curve can be, clearly, encountered in nature.
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Fig. 1. (@) A LP1 class actually depicted on wall painting spirals, the S238. (b) Another LP1 class spiral,
the S022.

(2) The logarithmic or exponential spiral, whose polar equation is such that the radius
is an exponential function of the polar angle, 6. This spiral form is encountered in
nature, too, e.g. in the seashells. The construction of such a curve requires a re-
spectable amount of inspiration and novelty for the era.

(3) The linear or Archimedes spiral, whose polar equation is such that the radius is a linear
function of the polar angle, 6, e.g.
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X(0) = Xg+ k(0 — Bg) * cos(6 — do)
y(0) = Yo +x (6 —0p) *sin(6 — o)

where « is a constant, 8¢ is the angle corresponding to the starting point of the spiral part,
and ¢¢ is another angle that depends both on the starting point and the probable rotation
angle. Such a spiral is not encountered in nature, and its conception and construction
requires particular ingenuity.

In order to test if anyone of the above prototype spirals corresponds to the actually drawn
ones, we have set and used three original criteria: two of statistical nature and one based
on the maximal connected discrepancy of the prototype and the drawn spiral. To apply
these criteria, the equation of each prototype spiral was first let converge in its parameter
space to the position that best approximates the spiral part under consideration. The results
obtained by the application of the aforementioned procedure and the related criteria can be
summarized as follows:

1)

(1) The hypothesis that the spirals depicted on the wall paintings were drawn by unwrap-
ping a thread around a peg has been rejected for most available spiral parts.

(2) The hypothesis that the drawn spirals correspond to logarithmic prototypes has also
been rejected for most of the available spiral parts. In any case, the approximation
of the depicted spiral parts offered by the exponential prototype is clearly suboptimal
to the approximation offered by the linear model. To set ideas, consider an actually
depicted spiral, say AS, with a radius ranging from 2.6 to 20.4 cm and an average
radius of 11.6 cm approximately, together with the exponential spiral, say ES, best
matching it. If one uses the standard Euclidean norm in the plane, then the aver-
age distance between the drawn spiral AS and the exponential spiral ES is around
1.0-1.1 cm. The related average percentage error is about 11%, while the maximum
percentage error is about 40%.

(3) The hypothesis that the depicted spiral parts correspond to a linear (Archimedes) pro-
totype can be accepted for all available corresponding drawings. The approximation
the linear prototypes offer to the depicted spiral parts is particularly good indeed,
as shown in Figures 3-6. In fact, application of the aforementioned criteria and the
related analysis shows that the available spiral parts correspond to two classes of pro-
totype linear spirals bearing, of course, different sets of characteristics. We shall call
these Linear Prototype 1 (LP1) and Linear Prototype 2 (LP2). In addition, we will call
CLP1 the Class of spiral parts that best matches LP1 (Figures 1a, b) and CLP2 the
class of spiral parts best approximated by LP2 (Figures 2a, b). Usually, a CLP1 spiral
is of greater dimension than a CLP2 one. All available well-preserved CLP1 spirals,
at least eight in number, are well approximated by a single LP with x = 1.393 cm
approximately. The first LP, together with typical CLP1 spirals best approximated by
it, is shown in Figures 3 and 4.

Spirals depicted on the wall paintings belonging to class LP2 are best approximated
by at least two LPs with x = 0.6263 cm and x = 0.2256 cm. The excellent way the
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Fig. 2. (a) The LP2 class spiral S011. (b) Another LP2 class spiral, the S101.

LP2 prototypes approximate the actual corresponding spirals (the S011 and S101) is
demonstrated in Figures 5 and 6.

Notice that the length of the depicted CLP1 spirals varies within certain limits.
We would like to emphasize that LP1 constitutes a respectable approximation of
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Fig. 3. The excellent way the six stencils (computer-generated red lines) approximate the corresponding
spiral.

AN

\

Fig. 4. The excellent way the six stencils (computer-generated red lines) approximate the corresponding
spiral.

CLP1 spirals. For example, considering S238 and S022 depicted in Figures 1 and 2,
respectively, and using the Euclidian norm, the average distance between the actual
and prototype spirals is between 0.14 and 0.20 cm.

LP2 approximates all CLP2 spirals even better. For example, consider the actual
spirals S011 and S101, depicted in Figures 5 and 6, respectively, with a radius ranging

© Blackwell Munksgaard 2005. Centaurus ISSN 0008-8994. All rights reserved.



326 Fragouliset al.

Fig. 5. Demonstration of the excellent way a LP2 spiral with x = 0.6263 cm (red) approximates the spiral
S011.

Fig. 6. Demonstration of the excellent way the two LP2 spirals with x = 0.6263 (red) and x = 0.2256cm
(green) approximate the pair of spirals S101.

from 4.3 to 8.3 cm approximately, average radius about 6.2 cm, together with the
LP2 placed in the best matching position. Then, the average Euclidian distance be-
tween this LP2 and these depicted spirals is about 0.08 cm, while the corresponding
average percentage error is 1.1% and the maximum one is about 1.6%. Notice that
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the maximum percentage error occurs in the very start of the entire spirals, while the
absolute error remains statistically constant throughout the spiral.

(4) The general analysis of the wall paintings, together with the overall archaeological
consideration of the Thera civilization of the era, suggests that, most probably, the
artist(s) used handicraft stencils or ‘French curves’ in order to accomplish the wall
paintings. Thus, we have examined the possibility that the artist(s) drew the spirals
using a number of stencils. Therefore, applying a proper version of the aforementioned
original algorithms, we have reached the conclusion that all spiral parts belonging to
CLP1 can be exceptionally well approximated by dividing the LP 1 into six parts, thus
producing six ideal stencils. In fact, an arbitrary CLP1 spiral part can be approximated
by a proper assemblage of these six ideal stencils with an average absolute error of
about 0.05 cm, an average relative error of about 0.5%, and maximum percentage
error of about 0.8%. These errors are exceptionally low, in practice. In other words,
the six LP1 stencils approximate all spiral parts of CLP1 so well that the discrepancy
between the model and the actually drawn spirals can be attributed to the digitized
image inaccuracies (see Figures 3 and 4).

LP2 can be divided in two stencils, offering an analogous approximation of CLP2
spirals. However, since the approximation achieved by a single prototype is very good
and since the CLP2 dimensions are smaller, one cannot exclude the possibility that
CLP2 spirals were drawn by means of a single stencil (see Figures 5 and 6).

What the aforementioned analysis has shown is that the depicted spiral parts match par-
ticularly well at least three linear spiral prototypes and exceptionally well if LP1 is divided
into a number of stencils. It is clear, however, that, unless a major archaeological find oc-
curs, one cannot decide with certainty about the exact method the artist(s) used to construct
the prototypes. Strictly speaking, one cannot exclude that the artist used a kind of elastic
rope or thread and unwrapped it around a certain object, so that a figure matching these
linear spiral prototypes arose accidentally. However, the fact that at least three different
prototypes exist essentially reduces the possibility that the Archimedes spiral models oc-
curred by accident. On the other hand, accepting the hypothesis that these LPs have been
formed by means of a geometrical method amounts to recognizing an advanced sense and
application of geometry for in this Late Bronze Age civilization.

In any case, we have decided to momentarily accept the aforementioned hypothesis to
find out where it can lead. Indeed, the next step, after adopting the hypothesis that the
artist generated the linear spiral prototypes using a geometrical method, is to spot at least
one such, acceptable for the era, method. Such a method is shown in Figure 7 and can be
described as follows:

(1) One draws a large number of homocentric circles T', of common center O, where two
consecutive circles have a fixed radius difference, say d.

(2) One divides the 27t entire angle into N equal angles and draws the corresponding
semilines ey, starting at the same center O, where, clearly, en,—1 and e, form an angle
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Fig. 7. A geometric method for generating points lying on a linear spiral.

27t/N. The larger the N, and the smaller the distance d, the better the linear spiral
approximation.
(3) The sequence of points of intersection of e, and I'y, lie on an Archimedes spiral.

It is clear that, no matter how simple looking nowadays, this method incorporates a
considerable amount of novelty not only for 1650 BC, but even for the Classical Years.

3.2 Knowledge of Drawing Isogonal Lines of Canonical 48- and 32-gon

If the artist indeed used the geometrical method described in the previous section for draw-
ing the linear spiral prototypes, then one may be tempted to investigate the possibility that
he/she used a subset of the method for drawing other patterns, as well. Thus, we have
considered the red-spot decoration appearing in the class of LP1 spirals (see Figures 1a,
b), and we have investigated if there is a sequence of isogonal, concurrent semilines ep,
upon which the red-spot centers lie. In order to do so, we have developed an original
algorithm that uses as parameters the position of the common semilines’ center and
the angle ¢ between any two successive ¢,—1 and e,. The algorithm converged success-
fully for all CLP1 spirals, for ¢ = 27t/48. In other words, for each CLP1 spiral, there is a
sequence of isogonal semilines corresponding to radii of a canonical 48-gon, upon which
all centers, when properly grouped, lie (see Figure 8). In other words, the results of the
mathematical analysis fully support the following hypothesis: the artist(s) had a stencil of
equiangular lines, with epicenter angle 27t/48, which he/she was properly placing on the
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Fig. 8. The centers of the red dots, when properly grouped, lie on the radii of a canonical 48-gon, with
exceptionally low angular error. In the first 10-dot group, a radius is skipped each time, most probably for
aesthetic reasons.

wall, in order to generate contiguous sets of red dots. In fact, the average discrepancy of
each red-spot center from the corresponding semiline ¢y, is less than 0.5 degrees, while the
maximum error is less than 0.8 degrees. This discrepancy is exceptionally small, within
the range of error with which the red-spot centers are determined. We stress that this best
€n Sequence is unique and that the related common center O is always close to the drawn
spiral center and frequently coincides with it (see Figure 8). This fact, clearly, is fully
compatible with the hypothesis that the artist drew the Prototype Linear spiral 1 with the
aforementioned geometrical method. Moreover, we would like to point out that the dis-
tance of two consecutive red-spot centers varies greatly and, thus, one cannot claim that
the artist(s) tried to draw red-spots with equidistant centers, and in this way a sequence of
red-spot centers that lie on isogonal lines accidentally arose.

Similarly, after adopting the hypothesis that the artist drew the LP2 spirals by means
of the same geometrical method, we have once more investigated if a part of the related
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decoration may be a byproduct of this method. Hence, we have investigated if the black
spikes pointing at the internal of the tyrian purple crescent-like shapes lie on a sequence of
isogonal concurrent semilines epn. To test this, we have once more applied the aforemen-
tioned original algorithm and thus we have demonstrated that for all CLP2 spirals there is
such a sequence e with angle ¢ = 27t/32 between any two successive semilines, and we
have demonstrated that practically all these black spikes lie on radii of a regular 32-gon,
with center O very close or even at the LP2 center. The O position is again fully compati-
ble with the assumption that the artist drew LP2 via the specific geometrical method. The
angular distance of the black spikes from the corresponding e angle is once more quite
low: the average distance is 0.45-0.7 degrees, while the maximum is 1.5-2.2 degrees (see
Figures 9 and 10).

Clearly, a method for constructing epicenter angles of a canonical 48-gon is to start by
drawing an equilateral triangle or a canonical hexagon and continually dichotomizing their
epicenter angle, thus generating angles of the canonical 12-, 24-, and 48-gon. Similarly,

Fig. 9. The black spikes lie on isogonal lines corresponding to radii of a canonical 32-gon.
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Fig. 10. The black spikes lie on isogonal lines corresponding to radii of a canonical 32-gon.

staring from the diameter of a circle and applying repeated dichotomizations, one may
obtain a square, subsequently a canonical 8-, 16-, and 32-gon.

3.3 Knowledge of Drawing Ellipses

A very important, well-designed wall painting excavated in fragments in Akrotiri, at the
moment unpublished and not completely restored, depicts myrtles or olive trees. Thorough
examination of the well-preserved leaves depicted leads to the conclusion that their borders
are particularly smooth, well defined, with essentially steadier line than other wall painting
figures. This observation indicates possible use of a tool for drawing the leaves’ contour.
Since the previous analysis shows that the artist had an arsenal of geometrical methods to
choose from, we have checked for a probable geometric shape to which the border leaves
correspond. After extensive analysis and related search, we have reached the conclusion
that the most probable candidate stencil for the leaves’ drawing seemed to be an elliptical
one. To test this, we have once more developed a method and corresponding algorithms
that find the parameters of the ellipse that best fit each side of all well-preserved available
border leaves. In other words, since the polar equations of the ellipse are

X = Xg + a c0os(0 — B9)

Y = Yo+ fsin(6 — 60) @)

© Blackwell Munksgaard 2005. Centaurus ISSN 0008-8994. All rights reserved.



332 Fragouliset al.

Fig. 11. The way an elliptical stencil could have been used for drawing both sides of a leaf.

we first spot xo, Yo, 00, @, and £ so that the corresponding ellipse best matches a chosen
side of the leaf in hand.

After spotting these best parameter sets for all border sides of well-preserved leaves,
we have deduced that all these may have been very well generated by two elliptical sten-
cils (see Figure 11). To be specific, there are two prototype ellipses, the first with o =
4.6 cm, f = 2.8 cm and the second with « = 5.5 cm, # = 2.97 cm, which, if properly
placed on the wall painting, can approximate all sides (not the stalk) of the 40 available
border leaves. The average Euclidian distance of each leaf-border side from the corre-
sponding prototype ellipse part lies in the interval [0.03, 0.06] cm. This is an exceptionally
good approximation, which, given the relatively large number of tested borders, as well
as the variation in the prototype ellipse placement, strongly supports the hypothesis that
the artist indeed used a number of stencils for drawing the leaves’ borders. Application of
proper statistical criteria indicates that the probability an arbitrary leaf-border side corre-
sponds to one of the aforementioned ellipse stencils is very close to 1.

3.4 Using Hyperbolas, Ellipses, and Linear Spirals for Drawing
Complicated Themes

Following the analysis introduced in the previous sections, which concerns the so far un-
published wall paintings of the third floor of Xeste 3, the idea emerged among the authors

that the border lines of other wall paintings, like the one depicted in Figure 12, can be
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Fig. 12. A female figure extracted from the celebrated wall painting ‘Gathering of Crocus’, initially deco-
rating the internal wall of the second floor of Xeste 3.

piecewise approximated by geometric prototype shapes. After developing suitable original
algorithms for testing and achieving this approximation, we have reached the conclusion
that there are seven geometric archetypes, parts of which can optimally approximate most
of the wall paintings’ borders initially decorating the internal walls of Xeste 3. These seven
geometrical prototypes are one linear spiral, two ellipses, and four hyperbolas, which are
shown in Figures 13a—c.

In particular, the geometrical prototypes that were found are the following:

(1) A linear spiral with primary parameter k = 0.1693 cm (always depicted in red).

(2) A hyperbola with one of the following four sets of primary parameters: (aq'_* bl"')
(14.24 cm,20.12 cm) (magenta), (ab!, b') = (7.86 cm, 17.63 cm) (cyan), (al', b)) =
(4.11 cm, 6.29 cm) (green), (af!, b') = (2.09 cm, 2.52 cm) (blue).
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Fig. 13. (@) The linear (Archimedes’) spiral archetype used for drawing parts of the wall paintings like
the ones depicted in Figures 14 and 15. (b) The two elliptical stencils used for drawing parts of the wall

paintings like the ones depicted in Figures 14 and 15. (c) The four hyperbolic stencils used for drawing
parts of the wall paintings like the ones depicted in Figures 14 and 15.
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(3) An ellipse with one of the following two sets of primary parameters (af,bF) =
(4.64 cm, 6.03 cm)(yellow), (a5, b5) = (3.08 cm, 4.93 cm) (purple).

We once more emphasize that each part of the border of the selected wall paintings can
be best approximated by only one of the aforementioned geometrical prototypes, shown in
Figures 13a—c. The way the geometrical stencils piecewise approximate the corresponding
border of the considered set of wall paintings is demonstrated in Figure 14. We note that

Fig. 14. The wall painting shown in Figure 12 with the corresponding geometric prototypes superimposed
on its border line parts.
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all lines of the depicted figures are approximated by the obtained set of stencils with an
exceptionally low average error of 3-10~4m.

In addition, the fact that the various parts of the borders are approximated by the seven
aforementioned geometric curves (stencils) with impressive precision strongly indicates
that there was a very neat and precise method of drawing these geometric figures and
constructing the corresponding stencils. One cannot exclude that this method of drawing
these curves was a geometric one. However, it is practically impossible to draw these
particular curves by hand at random.

4. General Remarks and Conclusions

In the previous analysis, we have given strong evidence that a person or a group of persons
were capable of (1) dividing the entire 27t radians angle into 16, 32, and 48 equal angles,
(2) constructing linear (Archimedes’) spirals, and (3) drawing ellipses and hyperbolas, all
with remarkable precision. In connection to these findings, we would like to make the
following remarks:

One can make several hypotheses about the methods and tools the artist(s) used to draw
the corresponding figures. However, unless a major archaeological find takes place, it is
extremely difficult to decide with certainty the exact form of these methods. Still, the
remarkable accuracy with which each prototype geometrical configuration (the linear spi-
ral, the sequence of isogonal semilines, or the ellipse and hyperbolas) approximates the
corresponding drawing strongly supports the conjecture that the artist(s) used geometrical
methods to construct the archetypes. Therefore, we will risk making a number of hypothe-
ses: the fact that the artist(s) knew how to construct such a variety of isogonal straight
lines, like the ones depicted in Figures 8-10, implies the idea that he/she had a method of
dichotomizing an angle. If he/she just knew how to divide the 27t radians angle into 4, 8,
or even 16 equal angles, then one may assume that he/she constructed them by successive
anadiploses (folding) of a circle. We once more stress that Thales seems to be the first who
stated that the circle is bisected by its diameter, 1150 years later. However, the existence of
angles corresponding to the epicenter angle of a canonical 32-gon and, in particular, of a
canonical 48-gon in the wall paintings indicates that he probably used a more complicated
geometrical method.

Concerning spirals, the fact that there are at least two classes, approximated by three
linear spiral prototypes with essentially different sets of parameters, clearly strengthens
the hypothesis that the spirals were drawn not accidentally but via a concrete method. One
can perhaps figure out a number of tools for drawing a linear spiral, including one using
a kind of guided unwrapping. On the other hand, the accuracy with which the drawn spi-
rals match the prototypes supports the hypothesis that the prototypes were constructed by
means of a strict geometrical method. In other words, if the stated hypothesis is correct,
the artist(s) applied a successive dichotomization of epicenter angles in order to generate
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a dense sequence of points lying on a linear spiral and then joined them properly to form
the corresponding continuous curve.

Moreover, the performed mathematical and computational processing by the authors
suggests that the artist probably divided the spiral prototypes into a number of stencils and
then he/she used them to reproduce the spirals on the frescos.

In a similar manner, the fact that more than one elliptical and hyperbolic geometri-
cal prototypes were spotted in the drawings of myrtle or olive leaves and the lady’s wall
painting (see Figures 11 and 14) strongly suggests that the artist had a concrete method
of constructing these prototypes as well. We would like to point out that it is practically
impossible to generate four different hyperbolas with such impressive accuracy, at random
and/or by freehand.

Moreover, we must emphasize the remarkable fact that the artist(s) used a small number
of geometric tools to draw an impressive variety of figures, such as female and male bod-
ies and faces, animals (birds, fish), clothes and their designs, jewelry, plants, household
objects, mythical figures. For example, a single hyperbolic stencil was used to draw bor-
derlines of more than one part of the human body; thus, for example, the same hyperbolic
stencil was used to draw a hunch, both outlines of the forearm, a thigh, an abdominal re-
gion, etc. A small, for space economy reasons, assortment of such drawings, together with
their corresponding stencils, is shown in Figure 15. The aforementioned drawing method-
ology indicates an impressive sense of geometry, symmetry, analogy/proportionality, and
fascinating imagination. To the best of our knowledge, the use of geometric stencils for
achieving high-quality figure representation seems to be unique in the History of Classical
Arts and Sciences.

Fig. 15. Parts of other wall paintings with the corresponding geometric prototypes superimposed on them.
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In any case, it seems that there was an impressive accumulation of geometrical knowl-
edge in a group of persons in the prehistoric civilization of Akrotiri, Thera, around 1650
BC. In congruity with Hoyrup (1996), we feel that one must not see this knowledge from
the mathematical point of view only; on the contrary, one must consider it integrated into
the general historical and cultural framework of the specific civilization. For example,
from the archaeological point of view, it is probable that the wall paintings with geometri-
cal representations were associated with a kind of mysticism pertaining to this prehistoric
society.

For the generation and accumulation of the geometrical sense and skill expressed in the
Thera wall paintings, it seems that a considerable amount of original ideas was necessary,
not directly associated with measurements and fractions. Although one cannot be certain of
the birthplace of these original ideas, the fact that no other drawings or representations with
such impressively accurate approximation of the corresponding geometrical configurations
have been found elsewhere so far strongly supports the hypothesis that these novel ideas
were generated in an Aegean (Akrotiri / Thera? Crete?) civilization. However, even from
the archaeological point of view, it seems utopia to believe that there is no continuous flow
of information between civilizations.

On the other hand, one must not underestimate the role of original ideas generated by a
person or a group of persons. The original ideas, that often make use of existing knowledge,
lead to an expansion of the related gnosiological field. If the degree of originality-novelty
is high, then the resulting gnosiological domain may be substantially different from the
previous one, even if the former has made use of the latter.
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