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Abstract

An exact analysis of the numerical errors being generated during the computation of the Zernike moments, by using the well-known

‘q-recursive’ method, is attempted in this paper. Overflow is one kind of error, which may occur when one needs to calculate the Zernike

moments up to a high order. Moreover, by applying a novel methodology it is shown that there are specific formulas, which generate and

propagate ‘finite precision error’. This finite precision error is accumulated during execution of the algorithm, and it finally ‘destroys’ the

algorithm, in the sense that eventually makes its results totally unreliable.

The knowledge of the exact computation errors and the way that they are generated and propagated is a fundamental step for developing more

robust error-free recursive algorithms, for the computation of Zernike moments.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Image moments have been used in image processing

applications through the years, since their first introduction

by Hu [1]. Their main contribution in the engineering science is

their usage as object descriptors, for image coding and pattern

classification tasks. Geometrical, central and normalized

moments were for many decades the only family of applied

moments. The main disadvantage of these descriptors was their

disability to fully describe an object in a way that, by using the

moments set, the reconstruction of the object could be possible.

In other words, they were not orthogonal.

Orthogonal moments come to fill this gap. Their ability to

describe an image fully, with minimum information redun-

dancy, due to their orthogonality property, as well as their

robustness in noisy environments, has established them as the

most efficient among the moment descriptors.

The most widely used family of orthogonal moments is the

Zernike moments, firstly introduced in image processing by

Teague [2]. Zernike moments are a set of orthogonal moments
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that have complex kernel functions based on Zernike

polynomials. They have been successfully used, as a tool in

image processing and pattern recognition [3–6], because of

their ability to decompose an image into its high and low

resolution components. Increasing the order of computed

Zernike polynomials theoretically to infinity, full image

representation can be achieved.

However, there are some computational errors for which

one has to be aware, while trying to calculate the Zernike

moments. Since these moments are defined as double

continuous integral over the domain of normalized coordinates,

as it will be presented in Section 2, errors from the discrete

approximation of the continuous integrals and of the

transformation of the image coordinate system into the domain

of the orthogonal polynomials [7], will be involved during the

computation. These disadvantages of the continuous orthog-

onal moments, led to the recently introduced discrete

orthogonal moments [7], which are defined directly to the

discrete domain.

Additionally, it is proved that there is an inherent limitation

in the precision of computing the Zernike moments due to the

geometric nature of a circular domain [8]. This error appears

owing to the fact that the area used for the moment

computation is not equal to that of the unit disk, since some

pixels (those which their centers fall outside the unit disk) are

not entirely inside the circle and on the other hand, some parts

of the circle are not covered by pixels.
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The above errors that tend to corrupt the accuracy of the

computed Zernike moments are referred to the case of

computing the moments by using the Zernike polynomials

through their definition formula. According to this formula, as

it will be discussed in Section 2, there are a lot of computations

(factorials) that should be carried out. For this reason, many

researchers have introduced methods for fast computation of

Zernike polynomials, by computing them recursively [9].

During the last years, a significant research of the error

generation and propagation in some signal processing iterative

algorithms, with interesting conclusions has been done

[10–15]. These approaches have led to the conclusion that

there are formulas, which may involve a number of

fundamental operations, additions, multiplications, divisions,

and subtractions that in an arbitrary iteration of the algorithm,

generate finite precision error and some other formulas,

propagate this error along the algorithm execution.

Recently, a discussion about the appearance of numerical

errors in computing moments by using recurrence equations

has been made by Mukundan [16]. However, no research

results have been reported on the numerical behaviour of the

recursive equations recently used for fast computation of the

Zernike moments.

In the present paper, an analysis of the finite precision error,

during Zernike moments computation, is attempted along the

lines introduced in [9]. More specifically, the authors decided

to study the numerical behaviour of the well-known

q-recursive method [9] as it considered to be the most efficient

among the recursive methods used for the Zernike moments

computation.
2. Zernike moments

As it has already been mentioned, Zernike moments are the

most widely used family of orthogonal moments due to their

extra property of being invariant to an arbitrary rotation of the

object that they describe. They are used, after making them

invariant to scale and translation, as object descriptors in

pattern recognition applications [3–5,17–19] and in image

retrieval tasks [20,21] with considerable results. Recently, due

to their popularity, many methods for accelerating their

computation time have been proposed [9,22–26] in order to

make them more useful, especially in real time applications,

where time is a critical factor.

In the following, the direct computation of Zernike

moments that uses the definition of the radial Zernike

polynomials is presented, and the computational difficulties

for this procedure are discussed.

2.1. Direct computation

The introduction of Zernike moments in image analysis was

made by Teague [2], using a set of complex polynomials,

which form a complete orthogonal set over the interior of the

unit circle x2Cy2Z1. These polynomials [3,4] have the form

Vnmðx;yÞZVnmðr;qÞZRnmðrÞexpðjmqÞ (1)
where n is a non-negative integer and m positive and negative

integers subject to the constraints nKjmj even and jmj%n, r is

the length of vector from the origin ð �x; �yÞ to the pixel(x,y) and q

the angle between vector r and x axis in counter-clockwise

direction. Rnm(r), are the Zernike radial polynomials [27] in

(r,q) polar coordinates defined as:

RnmðrÞZ
XðnKjmjÞ=2

sZ0

ðK1Þs,
ðnKsÞ!

s! nCjmj
2

Ks
� �

! nKjmj
2

Ks
� �

!
rnK2s: (2)

Note that Rn,Km(r)ZRnm(r).

The polynomials of Eq. (2) are orthogonal and satisfy the

orthogonality principleðð
x2Cy2%1

V *
nmðx;yÞ$Vpqðx;yÞdx dyZ

p

nC1
dnpdmq (3)

where dabZ1 for aZb and dabZ0 otherwise, is the Kronecker

symbol.

The Zernike moment of order n with repetition m for a

continuous image function f(x,y), that vanishes outside the unit

disk is

Znm Z
nC1

p

ðð
x2Cy2%1

f ðx;yÞV *
nmðr; qÞdx dy (4)

For a digital image, the integrals are replaced by

summations [3,4] to get

Znm Z
nC1

p

X
x

X
y

f ðx;yÞV *
nmðr;qÞ; x2 Cy2%1 (5)

Suppose that one knows all moments Znm of f(x,y) up to a

given order nmax. It is desired to reconstruct a discrete function

f̂ ðx;yÞ whose moments exactly match those of f(x,y) up to the

given order nmax. Zernike moments are the coefficients of the

image expansion into orthogonal Zernike polynomials. By

orthogonality of the Zernike basis

f̂ ðx;yÞZ
Xnmax

nZ0

X
m

ZnmVnmðr;qÞ (6)

with m having similar constraints as in (1). Note that as nmax

approaches infinity f̂ ðx;yÞ will approach f(x,y).

The method of computing the Zernike moments by making

use of (2), is called direct method, due to the fact that it

computes the Zernike radial polynomials by using their

definition formula.
2.2. Recursive computation

As it can be seen from Eq. (2), there are a lot of

computations (factorials) that should be carried out, if the

direct method chosen for the calculation of the Zernike

moments. For this reason, many researchers have introduced

fast computation methods [9,22–26] that eliminate the need of

such time consumptive calculations. Among these, the well-

known q-recursive method [9] is considered to be the most
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efficient and is used in this paper. The method permits the

evaluation of radial polynomials by using the following

recursive equations

RnnðrÞZ rn for nZm (7)

RnðnK2ÞðrÞZ nRnnðrÞKðnK1ÞRðnK2ÞðnK2ÞðrÞ

for nKmZ 2
(8)

RnðmK4Þ ZH1RnmðrÞC H2 C
H3

r2

� �
RnðmK2Þ otherwise (9)

where the coefficients H1, H2 and H3 are given by:

H1 Z
mðmK1Þ

2
KmH2 C

H3ðnCmC2ÞðnKmÞ

8

H2 Z
H3ðnCmÞðnKmC2Þ

4ðmK1Þ
C ðmK2Þ

H3 Z
K4ðmK2ÞðmK3Þ

ðnCmK2ÞðnKmC4Þ
:

(10)

When calculations of quantities through recurrence relations

are involved in the main body of any algorithm, the danger of a

numerical error, which may appear in a step of the algorithm, to

be carried out to next steps, threads the stability and the

accuracy of the whole procedure.

In the present paper, a detailed study of the way the

computations of the q-recursive method are performed is

attempted.
Table 1

Input values Output value

n r Rnn

23 0.01 64 bit 1.00000000!10K46

32 bit 0.00000000!10C00

24 0.01 64 bit 1.00000000!10K48

C00
3. Numerical error analysis

It has already been discussed in Section 1 that there are

some computational issues [7,8], regarding the accuracy with

which the Zernike moments are computed. However, no

research results have been reported on the numerical behaviour

of the recursive equations, recently used for fast computation

of the Zernike moments.

In this section, an exhaustive analysis of the numerical

stability of the q-recursive method is introduced. There are two

kinds of errors generated in the execution of this algorithm, the

overflow error, due to computers’ limitation about the

maximum magnitude that a number can reach and the finite

precision error due to the finite precision representation that a

number can have.

32 bit 0.00000000!10

25 0.01 64 bit 1.00000000!10K50

32 bit 0.00000000!10C00

26 0.01 64 bit 1.00000000!10K52

32 bit 0.00000000!10C00

27 0.01 64 bit 1.00000000!10K54

32 bit 0.00000000!10C00

27 0.02 64 bit 1.34217728!10K46

32 bit 0.00000000!10C00

28 0.01 64 bit 1.00000000!10K56

32 bit 0.00000000!10C00

28 0.02 64 bit 2.68435456!10K48

32 bit 0.00000000!10C00
3.1. Overflow error

Overflow is the situation in which a quantity takes a higher

value, from the range of its data type. For example, the float

(seven digit precision) data type has a valid range (1.18!10K45,

3.40!1045), while the double (15 digit precision) data type has

a valid range (2.23!10K308, 1.79!10308), in the case of IBM

PC compatible computers.

The appearance of an overflow condition is an undesirable

event, for the accuracy of the algorithm, since it corrupts the
final results. The study of the overflow error in the execution of

the q-recursive algorithm follows.

RnnðrÞZ rn (11)

This equation is the main source of an overflow error, since

it includes raising to a power. Table 1 illustrates some

combinations of the input parameters to the above equation,

which generate an overflow. In order to clarify the presence of

the overflow, two representations of the computed results, with

32 and 64 bit have been used.

RnðnK2ÞðrÞZ nRnnðrÞKðnK1ÞRðnK2ÞðnK2ÞðrÞ (12)

The only case in which this equation generates an overflow

is when the Rnn and R(nK2)(nK2) quantities have been computed

by Eq. (11) with an overflow, too. Thus, Eq. (12) is responsible

for the overflow propagation that might have been generated by

Eq. (11). Table 2 depicts the way the overflow error generated

by Eq. (11) influences Eq. (12).

RnðmK4Þ ZH1RnmðrÞC H2 C
H3

r2

� �
RnðmK2Þ (13)

Eq. (13) manifests behaviour similar to Eq. (12), in the sense

that it propagates the overflow error generated in Eq. (11).

To conclude, the previous analysis shows that during the

evaluation of the Zernike moments via the q-recursive

algorithm, in certain cases some radial polynomials may be

zeroed due to overflow. Therefore, according to Eq. (5), the

presence of zeroed polynomials causes the disappearance of

some quantities in the summation, and finally the inaccurate

computation of the corresponding Zernike moment.

It is clear from the previous analysis that polynomial

overflow depends on two factors, the magnitude of the

polynomial degree n and the radius r of the corresponding

pixel for which the polynomial is computed. Moreover, one

can deduce the following results, in a straightforward

manner:



Table 2

Input values Output value

n r Rnn R(nK2)(nK2) Rn(nK2)

25 0.01 64 bit 1.00000000!10K50 1.00000000!10K46 K2.39975000!10K45

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

26 0.01 64 bit 1.00000000!10K52 1.00000000!10K48 K2.49974000!10K47

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

27 0.01 64 bit 1.00000000!10K54 1.00000000!10K50 K2.59973000!10K49

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

28 0.01 64 bit 1.00000000!10K56 1.00000000!10K52 K2.69972000!10K51

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

29 0.01 64 bit 1.00000000!10K58 1.00000000!10K54 K2.79971000!10K53

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

29 0.02 64 bit 5.36870912!10K50 1.34217728!10K46 K3.75653946!10K45

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

30 0.01 64 bit 1.00000000!10K60 1.00000000!10K56 K2.89970000!10K55

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00

30 0.02 64 bit 1.07374182!10K51 2.68435456!10K48 K7.78140700!10K47

32 bit 0.00000000!10C00 0.00000000!10C00 0.00000000!10C00
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1. The closer r is to 1, the higher the value of the

polynomial degree n, for which the overflow appears.

2. The closer r is to 0, the lower the value of the polynomial

degree n, for which the overflow occurs.

Therefore,

3. The computation of the Zernike moments for large

images, presents more overflowed polynomials than that

of small ones, since the same normalized coordinate

system [K1,1], is attached to further pixels and thus more

pixels have low radius r.
3.2. Finite precision error

Although, the computational power of the modern

computers is impressively increasing, the number represen-

tation always introduces flaws and errors in the computations.

These problems have to be taken under consideration,

during the development of any algorithm, and especially the

recursive ones. In fact, in the iterative algorithms a numerical

error generated in one iteration may be accumulated or even

amplified in subsequent recursion.

An efficient methodology, which explores the way the finite

precision errors are generated and propagated, during a

recursive algorithm, has been introduced and used in very

popular signal processing algorithms [10–15]. This method-

ology employs a number of fundamental propositions

demonstrating the way the four operations addition, multipli-

cation, division and subtraction, influence the generation and

transmission of the quantization error. These propositions are

described in the following.
3.2.1. General remarks

The propositions stated in this paper hold true independently

of the radix of the arithmetic system. However, the numerical

error generation and propagation will be studied in the decimal

representation, because the decimal arithmetic system is far
more familiar and clear to users. In this arithmetic system,

precision comparison between two numbers will be made in

accordance with the following:

Definition 1. Consider two numbers, n1 and n2, written in the

canonical exponential form, with the same number, n, of

decimal digits in the mantissa, i.e.

n1 Z d1d2d3/dn!10t; n2 Z d1d2d3/dn!10r

with

tRr

Then, these two numbers differ by K decimal digits, if and

only if

jn1jKjn2jj jZ d!10tKðnKKÞ; 1%d!10

For example, according to this definition, the two numbers

1.234567 and 1.234912 differ indeed by three decimal digits,

but the following two 1.000002 and 0.999996 differ by one

decimal digit, as one might intuitively expect.

Definition 2. Let all quantities be written in the canonical

exponential form, with n decimal digits in the mantissa.

Suppose that the correct value of an arbitrary quantity a is ac, if

all calculations were made with infinite precision. Then, one

may define that the quantity a has been computed with

precisely the last l decimal digits erroneous, if and only if, a

and ac differ l digits according to Definition 1.

As will be evident from the subsequent analysis, all the

formulas, that constitute a certain iterative algorithm, are not

equivalent from the point of view of the finite precision error

generation and propagation.

Notation. For any quantity a expressed in the canonical

exponential form, we shall write: (i) man(a) for the mantissa of

a, and (ii) E(a) for the exponent of a.

Proposition 1. Let all the involved quantities be computed with

finite precision of n decimal digits in the mantissa, and consider

any quantity computed by means of a formula of the type



G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960–969964
Multiplication xZ yz

Suppose that, due to the previous finite precision calcu-

lations, the quantity y has been computed with precisely the last

l decimal digits erroneous, while z has been computed with up

to l decimal digits erroneous. Then,

(i) if jman(y)$man(z)jR10, then x is computed with

precisely the last l or lK1 decimal digits erroneous.

(ii) if jman(y)$man(z)j!10, then x is computed with

precisely the last l or lC1 decimal digits erroneous.

Proposition 2. Let all the following quantities be computed

with finite precision of n decimal digits in the mantissa, and

consider any quantity computed through a formula of the type:

Division xZ
y

z

Suppose that, due to the previous finite precision calculations,

the quantity y has been computed with precisely the last l

decimal digits erroneous, while z has been computed with up to

l decimal digits erroneous. Then,

(iii) if jman(y)/man(z)jR1, then x is computed with

precisely the last l or lK1 decimal digits erroneous.

(iv) if jman(y)/man(z)j!1, then x is computed with

precisely the last l or lC1 decimal digits erroneous.

Proposition 3. Let all the involved quantities be computed with

finite precision of n decimal digits in the mantissa, and

consider any quantity calculated through a formula of the type

Subtraction xZ yKz

with

yzO0

where

xZ x1x2x3/xn!10d; yZ y1y2y3/yn!10t;

zZ z1z2z3/zn!10r

are such that

d!maxft;r g 5EðxÞ!maxfEðyÞ;EðzÞg:

Let

d Z jmaxft;r g Kdj

Moreover, suppose that, due to the previous finite precision

calculations, the higher order quantity say y has been

computed with precisely the last l decimal digits erroneous,

while z has been computed with a number of erroneous decimal

digits equal to, or smaller than l. Then x is computed with the

last (lCd) decimal digits erroneous.

Proposition 4. (The numerical error relaxation shift). Let all

quantities be computed with finite precision of n decimal digits

in the mantissa, and consider any quantity x computed through

a sum of two quantities, that is:
Addition xZ yCz

Suppose, moreover, that z has its last l decimal digits

erroneous and that the exponent of z is by v smaller than the

exponent of y, that is:

vZEðyÞKEðzÞO0:

Then z transfers to x only lKv erroneous decimal digits if

lKv O0 or it does not transfer finite precision error at all, if

lKv%0.
3.2.2. Finite precision error in ‘q-recursive’ algorithm

In order to analyze the numerical behaviour of Eqs.

(7)–(10), we proceed as follows [15]:

Step 1: We execute the algorithm with n digits precision for

the mantissa

Step 2: In parallel, we execute the algorithm with 2n digits

precision for the mantissa

Step 3: We cast any quantity z2n computed by 2n decimal

digits precision to a quantity �zn of n decimal digits

precision.

Step 4: We compare quantities �zn and zn, according to

Definition 1 and in this way, we obtain the exact

number of erroneous decimal digits with which each

quantity zn is computed.

RnnðrÞZ rn (14)

The maximum finite precision error that is generated by this

equation is up to eight erroneous decimal digits, due to the

implementation of raising a number to a certain power. Thus,

this equation generates a finite precision error owing to the

multiplication operation. Table 3 shows examples of a

significant finite precision error for some combinations of the

inputs to the algorithm that computes Zernike moments. The

erroneous decimal digits are marked with bold fonts in Table 3.

This type of finite precision error once generated in a step of

this algorithm, it usually propagates in the subsequent

iterations.

RnðnK2ÞðrÞZ nRnnðrÞKðnK1ÞRðnK2ÞðnK2ÞðrÞ (15)

Eq. (15) introduces large finite precision error, due to the

fact that the polynomials computed via Eq. (14) are quite

frequently zeroed because of the overflow (see Table 4). Eq.

(15) introduces another serious type of finite precision error, in

the cases where the two quantities that participate in the

subtraction operation, nRnm(r) and (nK1)R(nK2)(nK2)(r) both

(i) are of opposite sign, and (ii) have a number of digits in

common in the sense of Definition 1. This seems to occur quite

frequently when the inputs to the algorithm that computes the

Zernike moments are of the form described below.

In fact, if we write eq. (15), as

RnðnK2ÞðrÞZ nRnnðrÞKðnK1ÞRðnK2ÞðnK2ÞðrÞ

Z nrnKðnK1ÞrðnK2Þ Z rnðnKðnK1ÞrK2Þ (16)



Table 3

Input values Output value Finite precision error

n r Rn(nK2)

26 0.02 64 bit 6.71088640!10K45 Eight digits

32 bit 7.00649232!10K45

29 0.03 64 bit 6.86303774!10K45 Eight digits

32 bit 7.00649232!10K45

32 0.04 64 bit 1.84467441!10K45 Eight digits

32 bit 1.40129846!10K45

34 0.05 64 bit 5.82076609!10K45 Eight digits

32 bit 5.60519386!10K45

41 0.08 64 bit 1.06338240!10K45 Eight digits

32 bit 1.40129846!10K45

43 0.09 64 bit 1.07752637!10K45 Eight digits

32 bit 1.40129846!10K45

45 0.10 64 bit 1.00000000!10K45 Eight digits

32 bit 1.40129846!10K45

46 0.11 64 bit 8.01795321!10K45 Eight digits

32 bit 8.40779079!10K45
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then (i) and (ii), hold when:

RnðnK2ÞðrÞy0 (17)

Keeping in mind that Eq. (15), holds for nR2 we can

conclude that (i) and (ii) conditions are valid when the radius r

has the following values with respect to the Zernike moment of

order n:

ry

ffiffiffiffiffiffiffiffiffiffiffi
nK1

n

r
(18)

From the above, the following result could be stated, also

justified by Table 5.

Result 1. Consider all pixels having distance r from the

centre of the image, such that the radial polynomials of

order n, (nK2) are close to zero, namely RnðnK2ÞðrÞy0.

Then, due to the subtraction operation in Eq. (15), a

significant amount of finite precision error is immediately

generated, making the results of the q-recursive algorithm
Table 4

Input values

n r Rnn R(nK

34 0.04 64 bit 2.95147905!10K48 1.84

32 bit 0.00000000!10C00 1.40

41 0.07 64 bit 4.45676403!10K48 9.09

32 bit 0.00000000!10C00 1.40

43 0.08 64 bit 6.80564734!10K48 1.06

32 bit 0.00000000!10C00 1.40

45 0.09 64 bit 8.72796357!10K48 1.07

32 bit 0.00000000!10C00 1.40

47 0.10 64 bit 1.00000000!10K47 1.00

32 bit 0.00000000!10C00 1.40

49 0.11 64 bit 1.06718957!10K47 8.81

32 bit 0.00000000!10C00 1.40

51 0.12 64 bit 1.09205258!10K47 7.58

32 bit 0.00000000!10C00 1.40

77 0.25 64 bit 4.37905770!10K47 7.00

32 bit 0.00000000!10C00 1.40
totally unreliable soon. In particular, the Zernike moments

of order n and any repetition m, are fully inaccurate:

RnðmK4Þ ZH1RnmðrÞC H2 C
H3

r2

� �
RnðmK2Þ (19)

3.2.2.1. Quantity H3. The maximum finite precision error with

which this quantity is computed is equal to two erroneous

decimal digits, where this error is caused due to the division

operation. This error appears for many combinations of (n,m)

see Table 6, no matter what value the radius r, takes.

3.2.2.2. Quantity H2. The maximum finite precision error with

which this quantity is computed is equal to three erroneous

decimal digits. Responsible for this error is the quantity

H3ðnCmÞðnKmC2Þ

4ðmK1Þ
Output value Finite precision error

2)(nK2) Rn(nK2)

467441!10K45 K6.07739052!10K44 Nine digits

129846!10K45 K4.62428493!10K44

543680!10K46 K3.61990199!10K44 Nine digits

129846!10K45 K5.60519386!10K44

338240!10K45 K4.43694178!10K44 Nine digits

129846!10K45 K5.88545355!10K44

752637!10K45 K4.70184018!10K44 Nine digits

129846!10K45 K6.16571324!10K44

000000!10K45 K4.55300000!10K44 Nine digits

129846!10K45 K6.44597294!10K44

974853!10K46 K4.18118700!10K44 Nine digits

129846!10K45 K6.72623263!10K44

369846!10K46 K3.73615455!10K44 Nine digits

129846!10K45 K7.00649232!10K44

649232!10K46 K4.98774672!10K44 Nine digits

129846!10K45 K1.06498683!10K43



Table 5

Input values Output value Finite precision error

n r Rn(nK2)

2
ffiffiffi
1
2

q
64 bit 2.22044605!10K16 17 digits

32 bit K5.96046448!10K08

6
ffiffiffi
5
6

q
64 bit 4.44089210!10K16 18 digits

32 bit 2.38418579!10K07

13
ffiffiffiffi
12
13

q
64 bit 8.88178420!10K16 18 digits

32 bit 4.76837158!10K07

15
ffiffiffiffi
14
15

q
64 bit K1.77635684!10K15 17 digits

32 bit 9.53674316!10K07

18
ffiffiffiffi
17
18

q
64 bit K3.55271368!10K15 17 digits

32 bit K9.53674316!10K07

19
ffiffiffiffi
18
19

q
64 bit K1.77635684!10K15 17 digits

32 bit 9.53674316!10K07
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due to the division operation. This error appears for many

combinations of (n,m) see Table 7, independently of the value

of r.

3.2.2.3. Quantity H1. The maximum finite precision error with

which this quantity is computed is equal to six erroneous

decimal digits. Responsible for this error is quantity

mðmK1Þ

2
KmH2

due to the subtraction operation and according to the results of

Proposition 3.

The above quantities introduce a limited number of finite

precision errors, since they are constant and they are not

computed recursively. Thus, they affect the computation of Eq.

(9) slightly, without creating a serious instability to the

algorithm execution (Table 8).

3.2.2.4. Quantity (H2CH3/r
2). This quantity introduces a

significant finite precision error, for the same reason described
Table 6

Input values

n m

4 4 64 bit

32 bit

8 6 64 bit

32 bit

10 4 64 bit

32 bit

11 11 64 bit

32 bit

12 6 64 bit

32 bit

12 8 64 bit

32 bit

13 13 64 bit

32 bit

14 4 64 bit

32 bit
in connection with Eq. (15). As it can be seen from Table 9,

there is a set of (n,m,r) for which conditions of Proposition 3

hold. In this case quantity H2CH3/r2, takes an unreliable value.

Conditions of Proposition 3, are satisfied when
ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðmK1ÞðmK3Þ

ð3KmÞðnCmÞðnKmC2ÞC ðnCmK2ÞðnKmC4ÞðmK1Þ

r

(20)
Finally, the obtained Rn(mK2) polynomial, presents a finite

precision error of nine erroneous decimal digits (Tables 10 and

11). For the values of radius r that the experiments have been

performed (from rZ0 to 1 with step of 0.01), it seems that the

high finite precision error of the H2CH3/r2 quantity has been

relaxed due to the summation operation (Proposition 4).

However, the algorithm still offers totally unreliable results

when r satisfies (20), due to the large finite precision error

generated during the execution of the formula H2CH3/r2.
Output value Finite precision error

H3

K3.33333333!10K01 Two digits

K3.33333343!10K01

K6.66666667!10K01 Two digits

K6.66666687!10K01

K6.66666701!10K02 Two digits

K6.66666667!10K02

K3.60000000!10C00 Two digits

K3.59999990!10C00

K3.00000000!10K01 Two digits

K3.00000012!10K01

K8.33333333!10K01 Two digits

K8.33333313!10K01

K4.58333333!10C00 Two digits

K4.58333349!10C00

K3.57142857!10K02 Two digits

K3.57142873!10K02



Table 9

Input values Output value Finite precision error

n m r H2 H3/r2 H2CH3/r2

20 10 0.5 64 bit 2.28571429!10C00 K2.28571429!10C00 8.88178420!10K16 18 digits

32 bit 2.28571415!10C00 K2.28571439!10C00 K2.38418579!10K07

43 21 0.56 64 bit 2.70620347!10C00 K2.70610726!10C00 9.62171469!10K05 Seven digits

32 bit 2.70620346!10C00 K2.70610738!10C00 9.60826874!10K05

84 46 0.65 64 bit 3.33201058!10C00 K3.33192449!10C00 8.60962399!10K05 Eight digits

32 bit 3.33200836!10C00 K3.33192468!10C00 8.36849213!10K05

85 51 0.7 64 bit 3.77065200!10C00 K3.77062058!10C00 3.14218382!10K05 Seven digits

32 bit 3.77065277!10C00 K3.77062058!10C00 3.21865082!10K05

92 34 0.46 64 bit 2.43988270!10C00 K2.43917312!10C00 7.09577635!10K04 Seven digits

32 bit 2.43988419!10C00 K2.43917298!10C00 7.11202621!10K04

92 54 0.69 64 bit 3.68313866!10C00 K3.68403330!10C00 K8.94635390!10K04 Seven digits

32 bit 3.68313599!10C00 K3.68403339!10C00 K8.97407532!10K04

92 56 0.71 64 bit 3.88826899!10C00 K3.88866093!10C00 K3.91934333!10K04 Seven digits

32 bit 3.88826752!10C00 K3.88866115!10C00 K3.93629074!10K04

97 47 0.59 64 bit 2.96693203!10C00 K2.96714694!10C00 K2.14912916!10K04 Seven digits

32 bit 2.96693039!10C00 K2.96714711!10C00 K2.16722488!10K04

Table 8

Input values Output value Finite precision error

n m H1

37 37 64 bit K4.85339506!10K01 Six digits

32 bit K4.85229492!10K01

44 42 64 bit K6.49245064e!10K01 Six digits

32 bit K6.49139404!10K01

47 47 64 bit K4.88657845!10K01 Six digits

32 bit K4.88525391!10K01

48 48 64 bit K4.88909009!10K01 Six digits

32 bit K4.89013672!10K01

50 42 64 bit K8.10298103!10K01 Six digits

32 bit K8.10180664!10K01

53 39 64 bit K8.60818713!10K01 Six digits

32 bit K8.60717773!10K01

53 43 64 bit K8.33695180!10K01 Six digits

32 bit K8.33862305!10K01

54 40 64 bit K8.61637557!10K01 Six digits

32 bit K8.61511230!10K01

Table 7

Input values Output value Finite precision error

n m H2

24 14 64 bit 2.81318681!10C00 Three digits

32 bit 2.81318569!10C00

26 24 64 bit 8.05072464!10C00 Three digits

32 bit 8.05072594!10C00

30 24 64 bit 5.31237458!10C00 Three digits

32 bit 5.31237602!10C00

34 24 64 bit 4.16770186!10C00 Three digits

32 bit 4.16769981!10C00

34 28 64 bit 6.09876543!10C00 Three digits

32 bit 6.09876442!10C00

34 30 64 bit 7.81757508!10C00 Three digits

32 bit 7.81757736!10C00

35 15 64 bit 2.36011905!10C00 Three digits

32 bit 2.36011791!10C00

35 27 64 bit 5.12820513!10C00 Three digits

32 bit 5.12820625!10C00
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Table 10

Input values

n m r H1 Rnm H2CH3/r2 Rn(mK2)

22 8 0.92 64 bit K7.45129870!10K01 2.25499251!10K01 1.59930216!10C00 1.05059722!10K01

32 bit K7.45128632!10K01 2.25495577!10K01 1.59930229!10C00 1.05059162!10K01

24 4 0.01 64 bit K6.85714286!10K01 1.28505642!10K12 K1.99811429!10C03 K4.99471275!10K09

32 bit K6.85712814!10K01 1.26065575!10K12 K1.99811450!10C03 K4.89987384!10K09

24 2 0.01 64 bit K5.84415584!10K01 K4.99471275!10K09 K7.77558442!10C02 9.98000601!10K06

32 bit K5.84416389!10K01 K4.89987384!10K09 K7.77558472!10C02 9.79050765!10K06

24 0 0.01 64 bit K3.29059829!10K01 9.98000601!10K06 K1.26863248!10C02 K7.76003500!10K03

32 bit K3.29059780!10K01 9.79050765!10K06 K1.26863258!10C02 K7.61268940!10K03

28 24 0.02 64 bit K4.80109739!10K01 2.68435456!1048 K3.00790754!10C04 K1.81118771!10K43

32 bit K4.80102539!10K01 0.00000000!10C00 K3.00790781!10C04 K1.89175293!10K43

28 26 0.02 64 bit K6.36923077!10K01 K1.81118771!10K43 K1.76835938!10C04 5.44788517!10K39

32 bit K6.36917114!10K01 K1.89175293!10K43 K1.76835957!10C04 5.69021904!10K39

28 22 0.02 64 bit K7.53968254!10K01 K 9.63381886!10K35 K7.91174603!10C03 1.11209604!10K30

32 bit K7.53952026!10K01 K1.00623533!10K34 K7.91174707!10C03 1.16156474!10K30

28 20 0.02 64 bit K7.78032037!10K01 1.11209604!10K30 K5.53948284!10C03 K8.79862139!10K27

32 bit K7.78045654!10K01 1.16156474!10K30 K5.53948291!10C03 K9.19000614!1027

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960–969968
3.3. Discussion

The main purpose in this paper was the detailed study of the

generation and propagation of numerical errors, during the

recursive computation of Zernike moments, by using the ‘q-

recursive’ method. The main observation of this work is not the

occurrence of overflow errors, which other researchers may

have already notified, but the generation and propagation of

finite precision errors. Regarding overflow errors, our study

relates them not only to the moment order but to the image size

as well. It is actually concluded that the larger the image size is

the smaller the moment order presenting overflow error is. This

fact is mentioned in the resulting statements at the end of

Section 3.1. Regarding finite precision error, two conditions

were defined; Eqs. (18) and (20), according to which a finite

precision error may be generated and propagated, no matter

what the moment order is. Table 5 demonstrates the existence

of finite precision errors (due to condition (18)) even in low

orders (nZ2, 6, 13, 15, 18, 19), which are essential for both

reconstruction and classification purposes. Finite precision
Table 11

Input values

n m r

22 12 0.92 64 bit

32 bit

24 8 0.01 64 bit

32 bit

24 6 0.01 64 bit

32 bit

24 4 0.01 64 bit

32 bit

28 28 0.02 64 bit

32 bit

28 26 0.02 64 bit

32 bit

28 22 0.02 64 bit

32 bit

28 20 0.02 64 bit

32 bit
error due to condition (20) also occurs in medium to high

orders, however according to Proposition 4 this error, although

present in intermediate calculations, is relaxed by the

summation operation. The reason why these finite precision

errors are generated is the existence of ‘ill-posed’ subtractions

according to Proposition 3. While the finite precision errors

occurr even in small moment orders, the previous study

includes simulations with high moment orders. A question

about the usefulness of the higher order moments in image

processing and pattern classification, can be stated as, ‘up to

which moment order has one to compute in order to reconstruct

and recognize an image, with minimum errors?’. For

reconstruction purposes our experience shows that moment

orders up to 30 are useful when the image size is 256!256 and

above. The authors have presented such studies in reference

[6]. For pattern classification purposes, the number of required

moments is in general small and includes mostly low orders.

However, depending on the problem at hand, there might be

necessary to include some moments of higher order in order to

improve the discriminative power of the moment feature
Output value Finite precision error

Rn(mK4)

K3.98715399!10K06 Nine digits

K1.86264515!10K06

9.98000601!10K06 Eight digits

9.79050765!10K06

K7.76003500!10K03 Eight digits

K7.61268940!10K03

9.84459960!10K01 Eight digits

9.65767384!10K01

5.44788517!10K39 Eight digits

5.69021904!10K39

K9.63381886!10K35 Eight digits

K1.00623533!10K34

K8.79862139!10K27 Eight digits

K9.19000614!10K27

4.87398113!10K23 Eight digits

5.09078827!10K23
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vector. This was shown in [19], in which the appropriate

Zernike moment set was selected using a simple genetic

algorithm. In that paper, it was concluded that a more suitable

moment set can be derived, according to the problem being

processed, in terms of its recognition rate. This moment set is

not restricted to low order moments but it may also include

other higher moments as well. Finally, we have to stress here

that the approach presented in this paper does not stand in

simple observations regarding the appearance of finite

precision error in ‘q-recursive’ algorithm but it gives a

thorough analysis on the conditions governing the numerical

behaviour of the algorithm.

4. Conclusions

An exact analysis of the finite precision error generation and

propagation for the q-recursive algorithm that computes the

radial polynomials needed for the computation of the Zernike

moments is presented in this paper. Two kinds of numerical

error have pointed the overflow error and the finite precision

error. The error due to overflow is generated in Eq. (11) of the

algorithm and propagates to the subsequent iterations by means

of formulae (12) and (13). The overflow error is directly

connected to the order of the polynomial n and the order of the

pixel’s radius r. The second type of error, the finite precision

error, is caused by the nature of the fundamental operations

involved in the recurrent equations of the algorithm. It is

demonstrated that there are sets of (n,m,r) variables that make

the values of the radial polynomials totally unreliable. The

exact conditions quantities (n,m,r) must satisfy in order to

destroy the results of the q-recursive algorithm, are stated. The

study introduced in this paper constitutes a first attempt to

analyse the numerical instability of the fast recursive

algorithms employed for the computation of the popular

Zernike moments. The results of the paper stress the necessity

of developing more numerically stable, relevant recursive

algorithms. Moreover, exhaustive comparative studies of the

finite precision error generation and propagation in the various

recursive algorithms computing the Zernike moments must

take place. In this way, a proper trade off between

computational speed and numerical stability must be deter-

mined for these algorithms. An attempt to tackle the

aforementioned problems will be undertaken in future work.
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