ELSEVIER

Available online at www.sciencedirect.com

Image and Vision Computing 24 (2006) 960-969

vision
COMPUTING

www.elsevier.com/locate/imavis

Numerical error analysis in Zernike moments computation

G.A. Papakostas “*, Y.S. Boutalis *, C.N. Papaodysseus °, D.K. Fragoulis "

* Department of Electrical and Computer Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
® School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece

Received 4 October 2005; received in revised form 31 January 2006; accepted 16 February 2006

Abstract

An exact analysis of the numerical errors being generated during the computation of the Zernike moments, by using the well-known
‘g-recursive’ method, is attempted in this paper. Overflow is one kind of error, which may occur when one needs to calculate the Zernike
moments up to a high order. Moreover, by applying a novel methodology it is shown that there are specific formulas, which generate and
propagate ‘finite precision error’. This finite precision error is accumulated during execution of the algorithm, and it finally ‘destroys’ the
algorithm, in the sense that eventually makes its results totally unreliable.

The knowledge of the exact computation errors and the way that they are generated and propagated is a fundamental step for developing more
robust error-free recursive algorithms, for the computation of Zernike moments.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Zernike moments; Recursive computation; Finite precision error; Numerical stability; Image vision; Feature extraction

1. Introduction

Image moments have been used in image processing
applications through the years, since their first introduction
by Hu [1]. Their main contribution in the engineering science is
their usage as object descriptors, for image coding and pattern
classification tasks. Geometrical, central and normalized
moments were for many decades the only family of applied
moments. The main disadvantage of these descriptors was their
disability to fully describe an object in a way that, by using the
moments set, the reconstruction of the object could be possible.
In other words, they were not orthogonal.

Orthogonal moments come to fill this gap. Their ability to
describe an image fully, with minimum information redun-
dancy, due to their orthogonality property, as well as their
robustness in noisy environments, has established them as the
most efficient among the moment descriptors.

The most widely used family of orthogonal moments is the
Zernike moments, firstly introduced in image processing by
Teague [2]. Zernike moments are a set of orthogonal moments

* Corresponding author. Tel.: +30 2541079559.
E-mail addresses: gpapakos@ee.duth.gr (G.A. Papakostas), ybout@ee.
duth.gr (Y.S. Boutalis), cpapaod @cs.ntua.g (C.N. Papaodysseus), dfrag@mail.
ntua.gr (D.K. Fragoulis).

0262-8856/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.imavis.2006.02.015

that have complex kernel functions based on Zernike
polynomials. They have been successfully used, as a tool in
image processing and pattern recognition [3-6], because of
their ability to decompose an image into its high and low
resolution components. Increasing the order of computed
Zernike polynomials theoretically to infinity, full image
representation can be achieved.

However, there are some computational errors for which
one has to be aware, while trying to calculate the Zernike
moments. Since these moments are defined as double
continuous integral over the domain of normalized coordinates,
as it will be presented in Section 2, errors from the discrete
approximation of the continuous integrals and of the
transformation of the image coordinate system into the domain
of the orthogonal polynomials [7], will be involved during the
computation. These disadvantages of the continuous orthog-
onal moments, led to the recently introduced discrete
orthogonal moments [7], which are defined directly to the
discrete domain.

Additionally, it is proved that there is an inherent limitation
in the precision of computing the Zernike moments due to the
geometric nature of a circular domain [8]. This error appears
owing to the fact that the area used for the moment
computation is not equal to that of the unit disk, since some
pixels (those which their centers fall outside the unit disk) are
not entirely inside the circle and on the other hand, some parts
of the circle are not covered by pixels.

http://www.elsevier.com/locate/imavis
mailto:gpapakos@ee.duth.gr
mailto:ybout@ee.duth.gr
mailto:ybout@ee.duth.gr
mailto:cpapaod@cs.ntua.g
mailto:dfrag@mail.ntua.gr
mailto:dfrag@mail.ntua.gr

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969 961

The above errors that tend to corrupt the accuracy of the
computed Zernike moments are referred to the case of
computing the moments by using the Zernike polynomials
through their definition formula. According to this formula, as
it will be discussed in Section 2, there are a lot of computations
(factorials) that should be carried out. For this reason, many
researchers have introduced methods for fast computation of
Zernike polynomials, by computing them recursively [9].

During the last years, a significant research of the error
generation and propagation in some signal processing iterative
algorithms, with interesting conclusions has been done
[10-15]. These approaches have led to the conclusion that
there are formulas, which may involve a number of
fundamental operations, additions, multiplications, divisions,
and subtractions that in an arbitrary iteration of the algorithm,
generate finite precision error and some other formulas,
propagate this error along the algorithm execution.

Recently, a discussion about the appearance of numerical
errors in computing moments by using recurrence equations
has been made by Mukundan [16]. However, no research
results have been reported on the numerical behaviour of the
recursive equations recently used for fast computation of the
Zernike moments.

In the present paper, an analysis of the finite precision error,
during Zernike moments computation, is attempted along the
lines introduced in [9]. More specifically, the authors decided
to study the numerical behaviour of the well-known
g-recursive method [9] as it considered to be the most efficient
among the recursive methods used for the Zernike moments
computation.

2. Zernike moments

As it has already been mentioned, Zernike moments are the
most widely used family of orthogonal moments due to their
extra property of being invariant to an arbitrary rotation of the
object that they describe. They are used, after making them
invariant to scale and translation, as object descriptors in
pattern recognition applications [3-5,17-19] and in image
retrieval tasks [20,21] with considerable results. Recently, due
to their popularity, many methods for accelerating their
computation time have been proposed [9,22-26] in order to
make them more useful, especially in real time applications,
where time is a critical factor.

In the following, the direct computation of Zernike
moments that uses the definition of the radial Zernike
polynomials is presented, and the computational difficulties
for this procedure are discussed.

2.1. Direct computation

The introduction of Zernike moments in image analysis was
made by Teague [2], using a set of complex polynomials,
which form a complete orthogonal set over the interior of the
unit circle x*>+y*= 1. These polynomials [3,4] have the form

Vi (6:y) = Vi (p,0) = Ry (p)exp(jmb) (1

where n is a non-negative integer and m positive and negative
integers subject to the constraints n— |m| even and |m| <n, p is
the length of vector from the origin (X,y) to the pixel(x,y) and
the angle between vector p and x axis in counter-clockwise
direction. R,,,(p), are the Zernike radial polynomials [27] in
(p,0) polar coordinates defined as:

(n—={ml)/2 (l’l _ S)' 1ds

Run(p) = ; (_1)X'S!(%Iml_s)y(”_7|m|—s)!p @

Note that R, —,(0) = Run(p).
The polynomials of Eq. (2) are orthogonal and satisfy the
orthogonality principle

« ™
JJ Vom (Xa)’) : qu(X,y)dx dy = m 5np5mq 3)

x+y?*<1

where d,4=1 for « =@ and 6,5=0 otherwise, is the Kronecker
symbol.

The Zernike moment of order n with repetition m for a
continuous image function f{x,y), that vanishes outside the unit
disk is
Zin="20 || s Vinto.0xay o)

™
X2 +y’<1

For a digital image, the integrals are replaced by
summations [3,4] to get

n

+1
Zuw ==—— 2> fC)Vi(pf), & +y'<1 %)
x oy

Suppose that one knows all moments Z,,,, of f{x,y) up to a
given order n,,,,. It is desired to reconstruct a discrete function
f (x,y) whose moments exactly match those of f{x,y) up to the
given order n,x. Zernike moments are the coefficients of the
image expansion into orthogonal Zernike polynomials. By
orthogonality of the Zernike basis

Niax

Fe) =" ZuVanlp.0) 6)
n=0 m

with m having similar constraints as in (1). Note that as 7,
approaches infinity f (x,y) will approach f(x,y).

The method of computing the Zernike moments by making
use of (2), is called direct method, due to the fact that it
computes the Zernike radial polynomials by using their
definition formula.

2.2. Recursive computation

As it can be seen from Eq. (2), there are a lot of
computations (factorials) that should be carried out, if the
direct method chosen for the calculation of the Zernike
moments. For this reason, many researchers have introduced
fast computation methods [9,22-26] that eliminate the need of
such time consumptive calculations. Among these, the well-
known g-recursive method [9] is considered to be the most

962 G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969

efficient and is used in this paper. The method permits the
evaluation of radial polynomials by using the following
recursive equations

R, (r)=7r" forn=m @)

Rn(n—Z)(r) = ann(r) - (I’l - I)R(n—Z)(n—Z)(r)
(®)

forn—m =2

H .
Rn(m‘4) = Hanm(f") + (H2 + r23> Rn(mfz) otherwise (9)

where the coefficients H;, H, and H; are given by:

H, = m(mz— 1) —mH, + Hy(n+m ;— 2)(n—m)
Hy(n + m)(n—m + 2)
L = 3 =D + (m—2) (10)
H, —4(m—2)(m—3)

Tt m—2)n—m+4)

When calculations of quantities through recurrence relations
are involved in the main body of any algorithm, the danger of a
numerical error, which may appear in a step of the algorithm, to
be carried out to next steps, threads the stability and the
accuracy of the whole procedure.

In the present paper, a detailed study of the way the
computations of the g-recursive method are performed is
attempted.

3. Numerical error analysis

It has already been discussed in Section 1 that there are
some computational issues [7,8], regarding the accuracy with
which the Zernike moments are computed. However, no
research results have been reported on the numerical behaviour
of the recursive equations, recently used for fast computation
of the Zernike moments.

In this section, an exhaustive analysis of the numerical
stability of the g-recursive method is introduced. There are two
kinds of errors generated in the execution of this algorithm, the
overflow error, due to computers’ limitation about the
maximum magnitude that a number can reach and the finite
precision error due to the finite precision representation that a
number can have.

3.1. Overflow error

Overflow is the situation in which a quantity takes a higher
value, from the range of its data type. For example, the float
(seven digit precision) data type has a valid range (1.18 X 1043,
3.40 X 10%), while the double (15 digit precision) data type has
a valid range (2.23 X 1073% 1.79x 10°%®), in the case of IBM
PC compatible computers.

The appearance of an overflow condition is an undesirable
event, for the accuracy of the algorithm, since it corrupts the

final results. The study of the overflow error in the execution of
the g-recursive algorithm follows.

R, (r)=1" (11)

This equation is the main source of an overflow error, since
it includes raising to a power. Table 1 illustrates some
combinations of the input parameters to the above equation,
which generate an overflow. In order to clarify the presence of
the overflow, two representations of the computed results, with
32 and 64 bit have been used.

Rn(n—Z)(V) = nR,,(r) —(n— l)R(n—Z)(n—Z)(r) (12)

The only case in which this equation generates an overflow
is when the R,,,, and R(,,—2)»—2) quantities have been computed
by Eq. (11) with an overflow, too. Thus, Eq. (12) is responsible
for the overflow propagation that might have been generated by
Eq. (11). Table 2 depicts the way the overflow error generated
by Eq. (11) influences Eq. (12).

H
Ryn—ay = HiR,, (r) + | H, +—23 Ryn—2) (13)
T

Eq. (13) manifests behaviour similar to Eq. (12), in the sense
that it propagates the overflow error generated in Eq. (11).

To conclude, the previous analysis shows that during the
evaluation of the Zernike moments via the g-recursive
algorithm, in certain cases some radial polynomials may be
zeroed due to overflow. Therefore, according to Eq. (5), the
presence of zeroed polynomials causes the disappearance of
some quantities in the summation, and finally the inaccurate
computation of the corresponding Zernike moment.

It is clear from the previous analysis that polynomial
overflow depends on two factors, the magnitude of the
polynomial degree n and the radius r of the corresponding
pixel for which the polynomial is computed. Moreover, one
can deduce the following results, in a straightforward
manner:

Table 1

Input values Output value

n r R,,
23 0.01 64 bit 1.00000000< 10~
32 bit 0.00000000 1079
24 0.01 64 bit 1.00000000 10~ 48
32 bit 0.00000000 1019
25 0.01 64 bit 1.00000000< 10~
32 bit 0.00000000 1019
26 0.01 64 bit 1.00000000X 1032
32 bit 0.00000000< 1019
27 0.01 64 bit 1.00000000< 10~3*
32 bit 0.00000000 10+
27 0.02 64 bit 1.34217728 X 10~ 4
32 bit 0.00000000 109
28 0.01 64 bit 1.00000000 < 10~3¢
32 bit 0.00000000 109
28 0.02 64 bit 2.68435456X 10748
32 bit 0.00000000 109

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969 963
Table 2
Input values Output value
n r Ry, Ri—2m—2) Ryn—2)
25 0.01 64 bit 1.00000000 < 10~%° 1.00000000X 104 —2.39975000 X 104
32 bit 0.00000000 1019 0.00000000x 10+ 0.00000000 % 10+%
26 0.01 64 bit 1.00000000X 10~ 32 1.00000000< 10~ —2.49974000 X 104"
32 bit 0.00000000 < 1019 0.00000000 < 101 0.00000000 % 10+
27 0.01 64 bit 1.00000000< 10~>* 1.00000000< 10~ —2.59973000 X 10~%°
32 bit 0.00000000 % 10+ 0.00000000 % 10+ 0.00000000 % 10+
28 0.01 64 bit 1.00000000 < 10~%¢ 1.00000000 < 10~>2 —2.69972000 % 10~
32 bit 0.00000000 < 109 0.00000000 109 0.00000000 % 10+
29 0.01 64 bit 1.00000000< 10~8 1.00000000< 1034 —2.79971000 X 1033
32 bit 0.00000000 1019 0.00000000 109 0.00000000 % 10+
29 0.02 64 bit 536870912 107° 1.34217728 X 1046 —3.75653946 X 10~ %
32 bit 0.00000000 109 0.00000000 109 0.00000000 % 10+
30 0.01 64 bit 1.00000000 < 10~ 1.00000000 < 106 —2.89970000 X 1033
32 bit 0.00000000x 109 0.00000000x 109 0.00000000 < 10+
30 0.02 64 bit 1.07374182x 107! 2.68435456 10748 —7.78140700 X 10—+
32 bit 0.00000000 109 0.00000000 % 109 0.00000000 % 10+

1. The closer r is to 1, the higher the value of the
polynomial degree n, for which the overflow appears.

2. The closer r is to 0, the lower the value of the polynomial
degree n, for which the overflow occurs.

Therefore,

3. The computation of the Zernike moments for large
images, presents more overflowed polynomials than that
of small ones, since the same normalized coordinate
system [—1,1], is attached to further pixels and thus more
pixels have low radius r.

3.2. Finite precision error

Although, the computational power of the modern
computers is impressively increasing, the number represen-
tation always introduces flaws and errors in the computations.

These problems have to be taken under consideration,
during the development of any algorithm, and especially the
recursive ones. In fact, in the iterative algorithms a numerical
error generated in one iteration may be accumulated or even
amplified in subsequent recursion.

An efficient methodology, which explores the way the finite
precision errors are generated and propagated, during a
recursive algorithm, has been introduced and used in very
popular signal processing algorithms [10-15]. This method-
ology employs a number of fundamental propositions
demonstrating the way the four operations addition, multipli-
cation, division and subtraction, influence the generation and
transmission of the quantization error. These propositions are
described in the following.

3.2.1. General remarks

The propositions stated in this paper hold true independently
of the radix of the arithmetic system. However, the numerical
error generation and propagation will be studied in the decimal
representation, because the decimal arithmetic system is far

more familiar and clear to users. In this arithmetic system,
precision comparison between two numbers will be made in
accordance with the following:

Definition 1. Consider two numbers, n; and n,, written in the
canonical exponential form, with the same number, n, of
decimal digits in the mantissa, i.e.

ny =d1d2d3"'dn><10T, ny 2616253"'6”X10p
with
TZp

Then, these two numbers differ by K decimal digits, if and
only if

[ln | —=Inpl| =d X 107" 1<da<10

For example, according to this definition, the two numbers
1.234567 and 1.234912 differ indeed by three decimal digits,
but the following two 1.000002 and 0.999996 differ by one
decimal digit, as one might intuitively expect.

Definition 2. Let all quantities be written in the canonical
exponential form, with n decimal digits in the mantissa.
Suppose that the correct value of an arbitrary quantity « is o, if
all calculations were made with infinite precision. Then, one
may define that the quantity o has been computed with
precisely the last A decimal digits erroneous, if and only if, «
and «, differ A digits according to Definition 1.

As will be evident from the subsequent analysis, all the
formulas, that constitute a certain iterative algorithm, are not
equivalent from the point of view of the finite precision error
generation and propagation.

Notation. For any quantity a expressed in the canonical
exponential form, we shall write: (i) man(a) for the mantissa of
a, and (ii) E(a) for the exponent of a.

Proposition 1. Let all the involved quantities be computed with
finite precision of n decimal digits in the mantissa, and consider
any quantity computed by means of a formula of the type

964 G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969

Multiplication x = yz

Suppose that, due to the previous finite precision calcu-
lations, the quantity y has been computed with precisely the last
A decimal digits erroneous, while 7 has been computed with up
to A decimal digits erroneous. Then,

(1) if |man(y)-man(z)|>10, then x is computed with
precisely the last A or A— 1 decimal digits erroneous.

(ii) if |man(y)-man(z)| <10, then x is computed with
precisely the last A or A+ 1 decimal digits erroneous.

Proposition 2. Letr all the following quantities be computed
with finite precision of n decimal digits in the mantissa, and
consider any quantity computed through a formula of the type:

L y
Division x ==
b4

Suppose that, due to the previous finite precision calculations,
the quantity y has been computed with precisely the last A
decimal digits erroneous, while z has been computed with up to
A decimal digits erroneous. Then,

(iii) if |man(y)/man(z)|>1, then x is computed with
precisely the last A or A—1 decimal digits erroneous.

(iv) if |man(y)/man(z)| <1, then x is computed with
precisely the last A or A+ 1 decimal digits erroneous.

Proposition 3. Let all the involved quantities be computed with
finite precision of n decimal digits in the mantissa, and
consider any quantity calculated through a formula of the type

Subtraction x =y—z

with

yz>0

where

X = xp0x3 01, X 10°, y = yyyoy3 -y, X107,
7=1212223 " 7y X 10°

are such that

6 <max{r,p } < E(x) <max{E(y),E(z)}.

Let

d = |max{r,p } —4|

Moreover, suppose that, due to the previous finite precision
calculations, the higher order quantity say y has been
computed with precisely the last A decimal digits erroneous,
while z has been computed with a number of erroneous decimal
digits equal to, or smaller than A. Then x is computed with the
last (A+d) decimal digits erroneous.

Proposition 4. (The numerical error relaxation shift). Let all
quantities be computed with finite precision of n decimal digits
in the mantissa, and consider any quantity x computed through
a sum of two quantities, that is:

Addition x=y+z

Suppose, moreover, that 7 has its last A decimal digits
erroneous and that the exponent of z is by v smaller than the
exponent of y, that is:

v = E(y) —E(z) > 0.

Then z transfers to x only A—v erroneous decimal digits if
A—v >0 or it does not transfer finite precision error at all, if
A—v<0.

3.2.2. Finite precision error in ‘g-recursive’ algorithm
In order to analyze the numerical behaviour of Egs.
(7)—(10), we proceed as follows [15]:

Step 1: We execute the algorithm with n digits precision for
the mantissa

Step 2: In parallel, we execute the algorithm with 2n digits
precision for the mantissa

Step 3: We cast any quantity z,, computed by 2n decimal
digits precision to a quantity z, of n decimal digits
precision.

Step 4: We compare quantities zZ, and z,, according to
Definition 1 and in this way, we obtain the exact
number of erroneous decimal digits with which each
quantity z,, is computed.

R, (r) =1" (14)

The maximum finite precision error that is generated by this
equation is up to eight erroneous decimal digits, due to the
implementation of raising a number to a certain power. Thus,
this equation generates a finite precision error owing to the
multiplication operation. Table 3 shows examples of a
significant finite precision error for some combinations of the
inputs to the algorithm that computes Zernike moments. The
erroneous decimal digits are marked with bold fonts in Table 3.

This type of finite precision error once generated in a step of
this algorithm, it usually propagates in the subsequent
iterations.

Rn(n72)(r) = ann(r) —(n— 1)R(rrZ)(th)(r') (15)

Eq. (15) introduces large finite precision error, due to the
fact that the polynomials computed via Eq. (14) are quite
frequently zeroed because of the overflow (see Table 4). Eq.
(15) introduces another serious type of finite precision error, in
the cases where the two quantities that participate in the
subtraction operation, nR,,,(r) and (n— 1)R(,—2y;,—2)(r) both
(i) are of opposite sign, and (ii) have a number of digits in
common in the sense of Definition 1. This seems to occur quite
frequently when the inputs to the algorithm that computes the
Zernike moments are of the form described below.

In fact, if we write eq. (15), as

Rn(n72)(r) = ann(r) - (}’l - 1)R(rrZ)(th)(r')

=" —n—Dr"? ="n—(mn—1Dr) (16)

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969 965

Table 3

Input values

Output value Finite precision error

n r Ryi—2)

26 0.02 64 bit 6.71088640X 10~ Eight digits
32 bit 7.00649232X 10~

29 0.03 64 bit 6.86303774X 10~ % Eight digits
32 bit 7.00649232 X 10~

32 0.04 64 bit 1.84467441x 10~ % Eight digits
32 bit 1.40129846 X 10~

34 0.05 64 bit 5.82076609X 10+ Eight digits
32 bit 5.60519386 < 10+

41 0.08 64 bit 1.06338240X 10~ % Eight digits
32 bit 1.40129846 X 10~

43 0.09 64 bit 1.07752637X 10~ % Eight digits
32 bit 1.40129846 X 10~

45 0.10 64 bit 1.00000000X 10—+ Eight digits
32 bit 1.40129846 X 10~

46 0.11 64 bit 8.01795321 X 10~ % Eight digits
32 bit 8.40779079 X 10—+

then (i) and (ii), hold when:
Rn(n—Z)(r) =0 (17)

Keeping in mind that Eq. (15), holds for n>2 we can
conclude that (i) and (ii) conditions are valid when the radius r
has the following values with respect to the Zernike moment of
order n:

n—1

\
It

(18)
n

From the above, the following result could be stated, also
justified by Table 5.

Result 1. Consider all pixels having distance r from the
centre of the image, such that the radial polynomials of
order n, (n—2) are close to zero, namely R, o (r)=0.
Then, due to the subtraction operation in Eq. (15), a
significant amount of finite precision error is immediately
generated, making the results of the g-recursive algorithm

totally unreliable soon. In particular, the Zernike moments
of order n and any repetition m, are fully inaccurate:

H
Rn(mﬁ4) = H]an(}’) + <H2 + r23> Rn(m72) (19)

3.2.2.1. Quantity H;. The maximum finite precision error with
which this quantity is computed is equal to two erroneous
decimal digits, where this error is caused due to the division
operation. This error appears for many combinations of (n,m)
see Table 6, no matter what value the radius r, takes.

3.2.2.2. Quantity H,. The maximum finite precision error with
which this quantity is computed is equal to three erroneous
decimal digits. Responsible for this error is the quantity

Hy(n +m)(n—m + 2)
dm—1)

Output value Finite precision error

R(n —2)(n—2)

Rn(n—2)

Table 4
Input values
n r R,,
34 0.04 64 bit 2.95147905X 1048
32 bit 0.00000000< 10+
41 0.07 64 bit 4.45676403 X 1048
32 bit 0.00000000< 10+
43 0.08 64 bit 6.80564734x 104
32 bit 0.00000000< 101
45 0.09 64 bit 8.72796357X 108
32 bit 0.00000000< 10
47 0.10 64 bit 1.00000000X 10 ™4
32 bit 0.00000000 < 101
49 0.11 64 bit 1.06718957X 10+
32 bit 0.00000000< 109
51 0.12 64 bit 1.09205258 X 10~
32 bit 0.00000000< 101
77 0.25 64 bit 437905770 10~%
32 bit 0.00000000 < 101

1.84467441 X 10~
1.40129846 X 10~%
9.09543680 X 1046
1.40129846 X 10~%
1.06338240% 10~ %
1.40129846 X 10~%
1.07752637 X 10~
1.40129846 X 10™%
1.00000000X 10+
1.40129846 X 10~
8.81974853 X 10746
1.40129846 X 10™%
7.58369846 X 104
1.40129846 X 10™%
7.00649232 X 10746
1.40129846 X 10~

—6.07739052X 10 ~**
—4.62428493 1074
—3.61990199 X 10 ~**
—5.60519386 X104
—4.43694178 X 10~ 4
—5.88545355X 1074
—4.70184018 X 10~ **
—6.16571324 X107 *
—4.55300000X 10 ~**
—6.44597294 1074
—4.18118700X 10~ *
—6.72623263 X107 %
—3.73615455X 10 **
—7.00649232 X104
—4.98774672X 1074
—1.06498683 X 10+

Nine digits
Nine digits
Nine digits
Nine digits
Nine digits
Nine digits
Nine digits

Nine digits

966 G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969

Table 5

Input values

Output value Finite precision error

n

2 64 bit

32 bit
64 bit

32 bit
64 bit

32 bit
64 bit

32 bit
64 bit

»
=I5

32 bit

19 18 64 bit

32 bit

Rn(}l—Z)
2.22044605 X 10~ '¢ 17 digits
—5.96046448 X 10 %
444089210 1071 18 digits
23841857910~ "7
8.88178420%x 107 '° 18 digits
476837158107
—1.77635684X 1013 17 digits
9.53674316 X 10"’
—3.55271368 X 10~ % 17 digits
—9.53674316 X107
—1.77635684x 10~ ° 17 digits

9.53674316X 10~

due to the division operation. This error appears for many
combinations of (n,m) see Table 7, independently of the value
of r.

3.2.2.3. Quantity H;. The maximum finite precision error with
which this quantity is computed is equal to six erroneous
decimal digits. Responsible for this error is quantity

m(m—l)_

H
2 i

due to the subtraction operation and according to the results of
Proposition 3.

The above quantities introduce a limited number of finite
precision errors, since they are constant and they are not
computed recursively. Thus, they affect the computation of Eq.
(9) slightly, without creating a serious instability to the
algorithm execution (Table 8).

3.2.2.4. Quantity (H,+H +/r°). This quantity introduces a
significant finite precision error, for the same reason described

Table 6

in connection with Eq. (15). As it can be seen from Table 9,
there is a set of (n,m,r) for which conditions of Proposition 3
hold. In this case quantity H,+ Hs/r?, takes an unreliable value.
Conditions of Proposition 3, are satisfied when

- \/ A(m—1)(m—23)
"= B—mn+mmn—m+2)+m+m—2)(n—m+4)(m—1)
(20

Finally, the obtained R,,(,,—»y polynomial, presents a finite
precision error of nine erroneous decimal digits (Tables 10 and
11). For the values of radius r that the experiments have been
performed (from =0 to 1 with step of 0.01), it seems that the
high finite precision error of the H>+ Hs/r* quantity has been
relaxed due to the summation operation (Proposition 4).

However, the algorithm still offers totally unreliable results
when r satisfies (20), due to the large finite precision error
generated during the execution of the formula H, + H/r”.

Input values

Output value Finite precision error

n m H;

4 4 64 bit —3.33333333%x 107" Two digits
32 bit —3.33333343%x 10!

8 6 64 bit —6.66666667 X 10~ Two digits
32 bit —6.66666687 X 107!

10 4 64 bit —6.66666701 X 10~ Two digits
32 bit —6.66666667 X 10~

11 11 64 bit —3.60000000X 10+ Two digits
32 bit —3.59999990 % 10

12 6 64 bit —3.00000000% 10~ Two digits
32 bit —3.00000012x 107!

12 8 64 bit —8.33333333%x 10! Two digits
32 bit —8.33333313%x 10"

13 13 64 bit —4.58333333X 101 Two digits
32 bit —4.58333349x 107

14 4 64 bit —3.57142857%x 10~ % Two digits
32 bit —3.57142873%x 10

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969 967

Table 7
Input values Output value Finite precision error
n m H,
24 14 64 bit 2.81318681x 107 Three digits
32 bit 2.81318569x 10
26 24 64 bit 8.05072464x 10+ Three digits
32 bit 8.05072594 x 10
30 24 64 bit 531237458 X107 Three digits
32 bit 531237602 10
34 24 64 bit 41677018610 Three digits
32 bit 4.16769981x 10+
34 28 64 bit 6.09876543x 107 Three digits
32 bit 6.09876442x 10
34 30 64 bit 7.81757508 X 10 Three digits
32 bit 7.81757736 X 107
35 15 64 bit 236011905 10 Three digits
32 bit 23601179110
35 27 64 bit 5.12820513x 10+ Three digits
32 bit 5.12820625x 10
Table 8
Input values Output value Finite precision error
n m H,
37 37 64 bit —4.85339506 X 10! Six digits
32 bit —4.85229492x 10~
44 42 64 bit —6.49245064e X 10~ Six digits
32 bit —6.49139404 X 10!
47 47 64 bit —4.88657845%x 10! Six digits
32 bit —4.88525391 10~
48 48 64 bit —4.88909009 % 10! Six digits
32 bit —4.89013672x 10~
50 42 64 bit —8.10298103x 10! Six digits
32 bit —8.10180664 X 10!
53 39 64 bit —8.60818713x 10! Six digits
32 bit —8.60717773 %10~
53 43 64 bit —8.33695180x 10! Six digits
32 bit —8.33862305x 10!
54 40 64 bit —8.61637557%x 10! Six digits
32 bit —8.61511230%x 10~
Table 9
Input values Output value Finite precision error
n m r H, Hy/r* H,+Hy/r”
20 10 0.5 64 bit 22857142910+ —2.28571429x 107 8.88178420%x 107 '° 18 digits
32 bit 2.28571415%x 10 —2.28571439x 10+ —2.38418579x 10~
43 21 0.56 64 bit 2.70620347 X 10T —2.70610726 X107 9.62171469 X 10~ % Seven digits
32 bit 270620346 X 10 —2.70610738 X 10+ 9.60826874x 10~ %
84 46 0.65 64 bit 3.33201058 X 107 —3.33192449x 107 8.60962399 X 10~ % Eight digits
32 bit 3.33200836 X 107 —3.33192468 X 10+ 8.36849213 X 10~ %
85 51 0.7 64 bit 3.77065200 X 10T —3.77062058 X 107 3.14218382x 10~ % Seven digits
32 bit 377065277 X 10 —3.77062058 X 10+ 3.21865082 X 10~ %
92 34 0.46 64 bit 2.43988270x 10+ —2.43917312x10%% 7.09577635X 10~ Seven digits
32 bit 24398841910 —2.43917298 X 10+ 7.11202621 X 10~ *
92 54 0.69 64 bit 3.68313866x 101 —3.68403330x 10" —8.94635390x 10~ % Seven digits
32 bit 3.68313599x 10 —3.68403339 X101 —8.97407532X 10~ %
92 56 0.71 64 bit 3.88826899x 10+ —3.88866093 107 —3.91934333x 10~ % Seven digits
32 bit 3.88826752x 10 —3.88866115X 101 —3.93629074 X 10~%
97 47 0.59 64 bit 296693203 X 10 —2.96714694 X 10+ —2.14912916X10~% Seven digits

32 bit 2.96693039x 101 —2.96714711x107% —2.16722488x 10~ %

968

Table 10

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969

Input values

n m r H, Rum H,+H,/r? Ron—2)
22 8 0.92 64 bit —7.45129870 10! 2.25499251 X 107! 1.59930216x 10+ 1.05059722 % 10~
32 bit —7.45128632x 10~ 2.25495577X 10~ 1.59930229x 10 1.05059162 X 10~
24 4 0.01 64 bit —6.85714286 X 10~ 1.28505642 % 10~ 2 —1.99811429x 107 % —4.99471275X 10~ %
32 bit —6.85712814x 10~ 1.26065575X 10~ 12 —1.99811450%x 10T —4.89987384 107"
24 2 0.01 64 bit —5.84415584 107! —4.99471275% 10~ —7.77558442x 10 9.98000601 X 10~%
32 bit —5.84416389 10~ —4.89987384x 10~ —7.77558472x 10" 9.79050765 X 10~ %
24 0 0.01 64 bit —3.29059829 X 10~ 9.98000601 X 10~% —1.26863248x 107 —7.76003500 % 10~
32 bit —3.29059780 < 10~ 9.79050765 X 10~% —1.26863258x 10 —7.61268940x 10~
28 24 0.02 64 bit —4.80109739 X 10~ 2.68435456 % 10* —3.00790754x 107% —1.81118771x10™%
32 bit —4.80102539 10~ 0.00000000 < 10+ —3.00790781x10™"% —1.89175293 10+
28 26 0.02 64 bit —6.36923077 X 10~ —1.81118771x10™% —1.76835938x 10"% 544788517107
32 bit —6.36917114x 10~ —1.89175293x10™% —1.76835957x 107 % 5.69021904 107
28 22 0.02 64 bit —7.53968254 X 10~ — 9.63381886Xx 10~ —7.91174603x 10™ % 1.11209604 % 10~
32 bit —7.53952026 X 10~ —1.00623533 1073 —7.91174707x 10T % 1.16156474 X 10~
28 20 0.02 64 bit —7.78032037 X 10~ 1.11209604 X 103 —5.53948284x 107 —8.79862139x 10™%7
32 bit —7.78045654 X 10~ 1.16156474 X103 —5.53948291x 10T % —9.19000614 X 10%7

3.3. Discussion

The main purpose in this paper was the detailed study of the
generation and propagation of numerical errors, during the
recursive computation of Zernike moments, by using the ‘g-
recursive’ method. The main observation of this work is not the
occurrence of overflow errors, which other researchers may
have already notified, but the generation and propagation of
finite precision errors. Regarding overflow errors, our study
relates them not only to the moment order but to the image size
as well. It is actually concluded that the larger the image size is
the smaller the moment order presenting overflow error is. This
fact is mentioned in the resulting statements at the end of
Section 3.1. Regarding finite precision error, two conditions
were defined; Eqs. (18) and (20), according to which a finite
precision error may be generated and propagated, no matter
what the moment order is. Table 5 demonstrates the existence
of finite precision errors (due to condition (18)) even in low
orders (n=2, 6, 13, 15, 18, 19), which are essential for both
reconstruction and classification purposes. Finite precision

Table 11

error due to condition (20) also occurs in medium to high
orders, however according to Proposition 4 this error, although
present in intermediate calculations, is relaxed by the
summation operation. The reason why these finite precision
errors are generated is the existence of ‘ill-posed’ subtractions
according to Proposition 3. While the finite precision errors
occurr even in small moment orders, the previous study
includes simulations with high moment orders. A question
about the usefulness of the higher order moments in image
processing and pattern classification, can be stated as, ‘up to
which moment order has one to compute in order to reconstruct
and recognize an image, with minimum errors?’. For
reconstruction purposes our experience shows that moment
orders up to 30 are useful when the image size is 256 X256 and
above. The authors have presented such studies in reference
[6]. For pattern classification purposes, the number of required
moments is in general small and includes mostly low orders.
However, depending on the problem at hand, there might be
necessary to include some moments of higher order in order to
improve the discriminative power of the moment feature

Input values

Output value Finite precision error

n m r Ryon—a)

22 12 0.92 64 bit —3.98715399x 10~ % Nine digits
32 bit —1.86264515Xx 10 %

24 8 0.01 64 bit 9.98000601x 10~ % Eight digits
32 bit 9.79050765 X 10~%

24 6 0.01 64 bit —7.76003500x 10~ Eight digits
32 bit —7.61268940x 10~ %

24 4 0.01 64 bit 9.84459960 X 10! Eight digits
32 bit 9.65767384x 10~ !

28 28 0.02 64 bit 54478851710~ % Eight digits
32 bit 5.69021904 X 10~%

28 26 0.02 64 bit —9.63381886X 10~ + Eight digits
32 bit —1.00623533x103*

28 22 0.02 64 bit —8.79862139x 10~ %’ Eight digits
32 bit —9.19000614 X 1027

28 20 0.02 64 bit 4.87398113x 10~ % Eight digits
32 bit 5.09078827 X 10~

G.A. Papakostas et al. / Image and Vision Computing 24 (2006) 960-969 969

vector. This was shown in [19], in which the appropriate
Zernike moment set was selected using a simple genetic
algorithm. In that paper, it was concluded that a more suitable
moment set can be derived, according to the problem being
processed, in terms of its recognition rate. This moment set is
not restricted to low order moments but it may also include
other higher moments as well. Finally, we have to stress here
that the approach presented in this paper does not stand in
simple observations regarding the appearance of finite
precision error in ‘g-recursive’ algorithm but it gives a
thorough analysis on the conditions governing the numerical
behaviour of the algorithm.

4. Conclusions

An exact analysis of the finite precision error generation and
propagation for the g-recursive algorithm that computes the
radial polynomials needed for the computation of the Zernike
moments is presented in this paper. Two kinds of numerical
error have pointed the overflow error and the finite precision
error. The error due to overflow is generated in Eq. (11) of the
algorithm and propagates to the subsequent iterations by means
of formulae (12) and (13). The overflow error is directly
connected to the order of the polynomial n and the order of the
pixel’s radius r. The second type of error, the finite precision
error, is caused by the nature of the fundamental operations
involved in the recurrent equations of the algorithm. It is
demonstrated that there are sets of (n,m,r) variables that make
the values of the radial polynomials totally unreliable. The
exact conditions quantities (n,m,r) must satisfy in order to
destroy the results of the g-recursive algorithm, are stated. The
study introduced in this paper constitutes a first attempt to
analyse the numerical instability of the fast recursive
algorithms employed for the computation of the popular
Zernike moments. The results of the paper stress the necessity
of developing more numerically stable, relevant recursive
algorithms. Moreover, exhaustive comparative studies of the
finite precision error generation and propagation in the various
recursive algorithms computing the Zernike moments must
take place. In this way, a proper trade off between
computational speed and numerical stability must be deter-
mined for these algorithms. An attempt to tackle the
aforementioned problems will be undertaken in future work.

References

[1] M.K. Hu, Visual pattern recognition by moment invariants, IRE Trans.
Inform. Theory IT-8 (1962) 179-187.

[2] M. Teague, Image analysis via the general theory of moments, J. Opt. Soc.
Am. 70 (8) (1980) 920-930.

[3] A.Khotanzad, J.-H. Lu, Classification of invariant image representations
using a neural network, IEEE Trans. Acoust. Speech Signal Processing 38
(6) (1990) 1028-1038.

[4] A. Khotanzad, Y.H. Hong, Invariant image recognition by zernike
moments, IEEE Trans. Pattern Anal. Machine Intell. PAMI-12 (5) (1990)
489-497.

[5] G.A. Papakostas, D.A. Karras, B.G. Mertzios, Image coding using a
wavelet based Zernike moments compression technique, 14th Inter-
national Conference on Digital Signal Processing (DSP2002), vol. II,
Santorini-Hellas (Greece), 1-3 July, 2002, pp. 517-520.

[6] G.A. Papakostas, D.A. Karras, B.G. Mertzios, Y.S. Boutalis, An efficient
feature extraction methodology for computer vision applications using
wavelet compressed zernike moments, ICGST International Journal on
Graphics, Vision and Image Processing, Special Issue: Wavelets and
Their Applications SII (2005) 5-15.

[71 R. Mukundan, S.H. Ong, P.A. Lee, Discrete vs. continuous orthogonal
moments for image analysis, in: Proceedings of the International
Conference on Imaging Science Systems and Technology, vol. 1, 2001,
pp. 23-29.

[8] S.X. Liao, M. Pawlak, On the accuracy of zernike moments for image
analysis, IEEE Trans. Pattern Anal. Machine Intell. 20 (12) (1998) 1358-
1364.

[9] C.W. Chong, P. Raveendran, R. Mukundan, A comparative analysis of
algorithms for fast computation of zernike moments, Pattern Recognition
36 (2003) 731-742.

[10] C.N. Papaodysseus, E.B. Koukoutsis, C.N. Triantafyllou, Error sources
and error propagation in the levinson-durbin algorithm, IEEE Trans.
Signal Process. 41 (4) (1993).

[11] C.N. Papaodysseus, G. Carayannis, E.B. Koukoutsis, E. Kayafas,

Comparing LS FIR filtering and 1-Step ahead linear prediction, IEEE

Trans. Signal Process. 41 (2) (1993).

C. Papaodysseus, E. Koukoutsis, C. Vassilatos, Error propagation and

methods of error correction in LS FIR, IEEE Trans. Signal Process. 42 (5)

(1994).

[13] C. Papaodysseus, E. Koukoutsis, G. Stavrakakis, C.C. Halkias, Exact
analysis of the finite precision error generation and propagation in the
FAEST and the fast transversal algorithms: a general methodology for
developing robust RLS schemes, Math. Comput. Simul. 44 (1997) 29-41.

[14] Y. Boutalis, C. Papaodyseus, E. Koukoutsis, A new multichannel

recursive least squares algorithm for very robust and efficient adaptive

filtering, J. Algorithms 37 (2000) 283-308.

C. Papaodysseus, C. Alexiou, T.H. Panagopoulos, G. Rousopoulos,

D. Kravaritis, A novel general methodology for studying and remedying

finite precision error with application in kalman filtering, Stoch. Environ.

Res. Ris. Assess. 17 (2003) 1-19.

[16] R. Mukundan, Some computational aspects of discrete orthonormal
moments, IEEE Trans. Image Process. 13 (8) (2004) 1055-1059.

[17] M. Zhenjiang, Zernike moment-based image shape analysis and its
application, Pattern Recognit. Lett. 21 (2000) 169-177.

[18] C. Kan, M.D. Srinath, Invariant character recognition with zernike and

orthogonal fourie-mellin moments, Pattern Recognit. 35 (2002) 143-154.

G.A. Papakostas, Y.S. Boutalis, B.G. Mertzios, Evolutionary selection of

Zernike moment sets in image processing, 10th International Workshop

on Systems, Signals and Image Processing IWSSIP’03), Prague—Czech

Republic, 10-11 September, 2003.

[20] T.W.Lin, Y.F. Chou, A comparative study of Zernike moments for image
retrieval, Proceedings of 16th IPPR Conference on Computer Vision,
Graphics Image Process. (CVGIP 2003), 2003, pp. 621-629.

[21] D.G. Sim, H.K. Kim, R.H. Park, Invariant texture retrieval using modified
zernike moments, Image Vis. Comput. 22 (2004) 331-342.

[22] R. Mukundan, A contour integration method for the computation of
Zernike moments of a binary image, Proceedings of National Conference
on Research and Development in Computer Science and its Applications,
Penang—Malaysia, 27-29 November, 1997, pp. 188-192.

[23] J. Gu, H.Z. Shu, C. Toumoulin, L.M. Luo, A novel algorithm for fast
computation of zernike moments, Pattern Recognit. 35 (2002)
2905-2911.

[24] C.W. Chong, P. Raveendran, F. Takeda, New computational methods for
full and subset zernike moments, Inform. Sci. 159 (2004) 203-220.

[25] R. Mukundan, K.R. Ramakrishnan, Fast computation of legendre and
zernike moments, Pattern Recognit. 28 (9) (1995) 1433-1442.

[26] S.O. Belkasim, M. Ahmadi, M. Shridhar, Efficient algorithm for fast
computation of zernike moments, J. Franklin Inst. 333(B) (4) (1996)
577-581.

[27] F. Zernike, Beugungstheorie des schneidenverfahrens und seiner
verbesserten form, der phasenkonstrastmethode, Physica 1 (1934)
689-701.

[12

[15

[19

	Numerical error analysis in Zernike moments computation
	Introduction
	Zernike moments
	Direct computation
	Recursive computation

	Numerical error analysis
	Overflow error
	Finite precision error
	Discussion

	Conclusions
	References

