Available online at www.sciencedirect.com

APPLIED
. . T . .
ScienceDirect o ATHEMATICS
Lo COMPUTATION
ELSEVIER Applied Mathematics and Computation 195 (2008) 326-345

www.elsevier.com/locate/amc

Numerical stability of fast computation algorithms
of Zernike moments

G.A. Papakostas **, Y.S. Boutalis ?, C.N. Papaodysseus °, D.K. Fragoulis °

& Democritus University of Thrace, Department of Electrical and Computer Engineering, 67100 Xanthi, Greece
® National Technical University of Athens, School of Electrical and Computer Engineering, 15773 Athens, Greece

Abstract

A detailed, comparative study of the numerical stability of the recursive algorithms, widely used to calculate the Zernike
moments of an image, is presented in this paper. While many papers, introducing fast algorithms for the computation of
Zernike moments have been presented in the literature, there is not any work studying the numerical behaviour of these
methods. These algorithms have been in the past compared to each other only according to their computational complex-
ity, without been given the appropriate attention, as far as their numerical stability is concerned, being the most significant
part of the algorithms’ reliability. The present contribution attempts to fill this gap in the literature, since it mainly dem-
onstrates that the usefulness of a recursive algorithm is defined not only by its low computational complexity, but most of
all by its numerical robustness.

This paper exhaustively compares some well known recursive algorithms for the computation of Zernike moments and
sets the appropriate conditions in which each algorithm may fall in an unstable state. The experiments show that any of
these algorithms can be unstable under some conditions and thus the need to develop more stable algorithms is of major
importance.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Zernike moments; Recursive algorithm; Finite precision error; Numerical stability

1. Introduction

Although a long time has passed, since the first introduction of orthogonal moments in image processing by
Teague [1], the scientific interest in the usage of moments in engineering life is still increased. This happens due
to their ability to uniquely describe a signal and thus they are used as discriminative features in image repre-
sentation and pattern recognition applications.

There are some research topics about orthogonal moments in which scientists focus their attention lately.
Many researchers all over the world try to develop fast algorithms [2] that accelerate the computation of
orthogonal moments and make their hardware implementation an easy task. Most of the fast algorithms

* Corresponding author.
E-mail addresses: gpapakos@ee.duth.gr (G.A. Papakostas), ybout@ee.duth.gr (Y.S. Boutalis), cpapaod@cs.ntua.gr (C.N. Papa-
odysseus), dfrag@mail.ntua.gr (D.K. Fragoulis).

0096-3003/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2007.04.110

mailto:gpapakos@ee.duth.gr
mailto:ybout@ee.duth.gr
mailto:cpapaod@cs.ntua.gr
mailto:dfrag@mail.ntua.gr

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 327

presented until now, are making use of recursive equations that permit the computation of a high order
moment kernels by using kernels of lower orders. This methodology has proved to be efficient, especially when
an entire set of moments is necessary to be calculated.

Moreover, since orthogonal moments have as kernel functions orthogonal polynomials, which construct
orthogonal basis, are very useful to uniquely represent patterns in pattern recognition tasks. For these appli-
cations some very promising attempts [3-5] to embody scale, rotation and translation invariances in the com-
putation of orthogonal moments have been performed.

Recently, the disadvantages of orthogonal moments having continuous orthogonal polynomials as kernel
functions have been studied and more numerically accurate orthogonal moments, with discrete polynomials
[6-8] are introduced as alternative to the continuous ones. It has been proved that the moments with discrete
polynomials are more suitable in image processing, since the domain of an image is discrete.

However, although a brief study about the accuracy of the orthogonal moments in respect to some approx-
imation errors, due to the transformation from the continuous space to the discrete [9] and the accuracy of the
moments into scale, translation and rotation transformations [10,11] have been done, there is not any work
which deals with the finite precision errors presented in the computation of orthogonal moments. The occur-
rence of finite precision errors is of major importance, especially in the fast recursive algorithms since a possible
error in a step of the algorithm may be accumulated iteration by iteration, by resulting to unreliable outcomes.

A first investigation of the mechanisms that produce and propagate finite precision errors in Zernike
moments computation, using the well known “g-recursive” algorithm, has been successfully performed and
presented by the authors in [12]. In that work a detailed numerical analysis of the way the finite precision
errors are being generated and the appropriate conditions under which these errors occurred were discussed.

The present paper comes to complete the previous work [12] by comparing some very popular recursive
algorithms widely used in Zernike moments computation, in terms of finite precision errors. This comparative
study from a different point of view, the algorithms’ numerical robustness, in conjunction with the comparison
already been done in [2]in respect to their computational complexity, constitutes a complete study of the com-
putational behaviour that each recursive algorithm presents.

By keeping in mind the above objectives the paper is organized by presenting the description of each recur-
sive algorithm in section one, by analyzing the algorithms’ performance, according to the finite precision
errors being generated and finally by discussing the performance of each algorithm by means of their numer-
ical stability.

2. Computing the Zernike moments

Zernike moments (ZMs) are the most widely used family of orthogonal moments due to their properties, of
being invariant to an arbitrary rotation of the object that they describe and that a perfect reconstruction of an
image from its moments is possible. They are used, after making them invariant to scale and translation, as
object descriptors in pattern recognition applications [13-19] and in image retrieval tasks [20,21] with consid-
erable results.

The introduction of ZMs in image analysis was made by Teague [1], using a set of complex polynomials,
which form a complete orthogonal set over the interior of the unit circle x> + y* = 1. These polynomials [13,14]
have the form

Vig(x,3) = Vg (1, 0) = Ry (1) exp(jg0), (1)

where p is a non-negative integer and ¢ positive and negative integers subject to the constraints p — |¢| even
and |q| < p, r is the length of vector from the origin (x,7) to the pixel (x,y) and 0 the angle between vector
r and x axis in counter-clockwise direction. R,,(r), are the Zernike radial polynomials [22]in (r, §) polar coor-
dinates defined as

. 2
.M—s!”;‘ﬂ—s)! @

Note that R, _,(r) = Ry, (r)

328 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

The polynomials of Eq. (1) are orthogonal and satisfy the orthogonality principle

T
/ V;;m(x7y) ’ qu(xay)dXdy = n—énpémqv

+1

*24y2<1

where 6,5 = 1 for « = f and 6,4 = 0 otherwise, is the Kronecker symbol.
The Zernike moment of order p with repetition ¢ for a continuous image function f(x, y), that vanishes out-
side the unit disk is

p+1

Ly, = -

/ / . f)V, (r, 0)rdrdo. (3)

For a digital image, the integrals are replaced by summations [13,14] to get

+1)
Zy, _P Z Zf(x,y)qu(n 0), 24y’ <l "
x y

T

Suppose that one knows all moments Z,, of f(x,y) up to a given order pmay. It is desired to reconstruct a
discrete function f(x,y) whose moments exactly match those of f(x,y) up to the given order p.x. Zernike
moments are the coefficients of the image expansion into orthogonal Zernike polynomials as can be seen in
the following reconstruction equation:

Prmax

flxy) = Z > ZuVp(r,0) (5)

with ¢ having similar constraints as in (1). Note that as pp.y approaches infinity £ (x, y) will approach f/(x, y).

The method that computes the Zernike moments and uses Eq. (2) to evaluate the Zernike polynomials, is
called Direct Method.

As can be seen from Eq. (2) there are a lot of factorial computations, operations that consume too much
computer time. For this reason, as it has already been discussed in the introduction, recursive algorithms for
the computation of the radial polynomials (2) have been developed [2].

The most well known recursive algorithms for Zernike moments computation, are described in the next
sections and their main features are discussed.

2.1. Kintner’s algorithm

Kintner was the first who studied the properties of the Zernike polynomials [23] and introduced a recurrent
relation [24]. In the following the recursive algorithm for Zernike polynomials computation, proposed by
Kintner, is described.

Algorithm
e p=gq Direct Method using Eq. (2)
e p—q =2 Direct Method using Eq. (2)
(Kar? 4 K3)Rp2)4(r) + KaR(paq(r)

e otherwise R, (r) = X , with (6a)
Klz(p‘FQ)(p;q)(p_z)’ K, =2p(p—1)(p—2),
K=~ p—1)—plp - p-2), Ky= PPFIZ20ma2) (6b)

As it can be seen in the above equations, Kintner’s algorithm cannot be applied in cases where p = ¢ and
p — q = 2, thus the Direct Method has to be used. This algorithm is faster than the Direct Method but it still
includes factorial calculations which take too computational time.

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 329
2.2. Modified Kintner’s algorithm

A modified version of Kintner’s recursive algorithm described in Section 2.1 has been introduced in [2]. This
algorithm eliminates the usage of the Direct Method in ill-posed cases where the recursive equation can not be
applied. For these cases other factorial free equations can be used, in order to accelerate the overall compu-
tation time.

Algorithm
e p=g R,(r)="r, (7a)
* p—q=2 Ryp)(r) =pR,(r) — (p = DR(p-2)p2 (), (7b)
e otherwise R, (r) = (Kar® + K3)Ryp 72}; (r) + KaRip-0 (1) , with (7¢c)
k= PO AP e,y 1)(p-2)
K=o 1) - plp-Dip-2), K= PLFI=C=a=D) (74)

This algorithm has been proved to be of significant efficiency in computing an entire set of Zernike poly-
nomials up to a specific order or a Zernike polynomial of an individual order [2].

2.3. Prata’s algorithm
Prata [25] proposed, a recursive algorithm that enables the higher order polynomials to be derived from the

lower order ones. This algorithm is slower than Kintner’s algorithm [2] and it is not possible to use it in cases
where ¢ = 0 and p = ¢, as shown below, where the Direct Method has to be used.

Algorithm
e ¢ =0 Direct Method using Eq. (2)
e p=gR,(r)=1, (8a)
e otherwise R, (r) = LiR(—1)4-1)(7) + LaR(p-2),(¥), with, (8b)

2 _
el (N S | (8¢)

L= , L .
p+q p+gq

Prata’s recursive algorithm is of the same complexity O(p?) for specific order p, as Kintner’s one, but its
overall performance is quite low [2].

2.4. “g-recursive”’ algorithm

Recently, a novel recursive algorithm with remarkable performance, called “g-recursive” algorithm, has
been introduced in [2].
Algorithm
e p=gR,(r) =1, (9a)
® p—q=2Ry, (r) :PRpp(”) —(p- 1)R([772)(/772)(r)7 (9b)

330 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

H
o otherwise R4y = H Ry (r + (Hz + r—;) Ry(4-2), With (9¢)
—1 Hi(p+q+2)(p—
H]:q(qz)_qHsz 3(p qg p—a)
Hi(p+q)p—q+2)
H, = -2
2 4 — 1) +(q-2), (9d)
. —4(g-2)(¢-3)

Tptqg-2)p—q+a)

A thorough study [2] of the computational performance of the recursive algorithms presented above has
shown that “g-recursive” algorithm significantly outperforms the other methods in all test cases. These results
establish this algorithm as the most efficient recursive algorithm for Zernike polynomials computation, in
terms of CPU execution time.

3. Numerical stability analysis

Although a detailed study of the computational speed of the previously presented recursive algorithms has
been presented in [2], there is not any work dealing with the analysis of their numerical behaviour. The numer-
ical stability of a recursive algorithm seems to be more important than its computation speed. For example,
the appearance of finite precision errors is of major importance, since a possible error in a step of the algo-
rithm may be accumulated iteration by iteration, by resulting to unreliable quantities. So, an efficient recursive
algorithm must quickly compute the desirable quantities by ensuring the algorithm’s stability. The results of a
fast but unstable algorithm can not be safely used, no matter how fast they have been derived.

A first investigation about the possible finite precision errors generation and propagation, in the “g-recur-
sive” algorithm, has been done by the authors in [12]. In this section a complementary analysis of the numer-
ical stability of the rest recursive algorithms is taking place. The algorithms are compared in respect to their
numerical behaviour and the cases where these algorithms fall in unstable situations are defined.

An efficient methodology, which explores the way the finite precision errors are generated and propagated,
during a recursive algorithm, has been introduced and used in very popular signal processing algorithms [26—
31]. This methodology employs a number of fundamental propositions demonstrating the way the four oper-
ations addition, multiplication, division and subtraction, influence the generation and transmission of the
quantization error. These propositions are described in the following.

3.1. General remarks

The propositions stated in this paper hold true independently of the radix of the arithmetic system. How-
ever, the numerical error generation and propagation will be studied in the decimal representation, because the
decimal arithmetic system is far more familiar and clear to users. In this arithmetic system, precision compar-
ison between two numbers will be made in accordance with the following:

Definition 1. Consider two numbers, n; and n,, written in the canonical exponential form, with the same
number, n, of decimal digits in the mantissa, i.e.
ny =dydads,. .., d, x 10", ny = 810203,...,0, x 10°,
with
T = p.
Then, these two numbers differ by K decimal digits, if and only if
||n1] = |na]] = d x 10775 1 < d < 10.
For example, according to this definition, the two numbers 1.234567 and 1.234912 differ indeed by 3 dec-

imal digits, but the following two 1.000002 and 0.999996 differ by 1 decimal digit, as one might intuitively
expect.

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 331

Definition 2. Let all quantities be written in the canonical exponential form, with n decimal digits in the man-
tissa. Suppose that the correct value of an arbitrary quantity « is «., if all calculations were made with infinite
precision. Then, one may define that the quantity o has been computed with precisely the last A decimal digits
erroneous, if and only if, « and o, differ 1 digits according to Definition 1.

As will be evident from the subsequent analysis, all the formulas, that constitute a certain iterative algo-
rithm, are not equivalent from the point of view of the finite precision error generation and propagation.

Notation. For any quantity a expressed in the canonical exponential form, we shall write: (i) man(a) for the
mantissa of «, and (ii) E(a) for the exponent of a

Proposition 1. Let all the involved quantities be computed with finite precision of n decimal digits in the mantissa,
and consider any quantity computed by means of a formula of the type

Multiplication x =y - z.

Suppose that, due to the previous finite precision calculations, the quantity y has been computed with precisely
the last A decimal digits erroneous, while z has been computed with up to A decimal digits erroneous. Then,

(1) if |man(y) - man(z)| = 10, then x is computed with precisely the last 1 or A — 1 decimal digits erroneous.
(ii) if |man(y) - man(z)| < 10, then x is computed with precisely the last 1. or 1 + 1 decimal digits erroneous.

Proposition 2. Let all the following quantities be computed with finite precision of n decimal digits in the mantissa,
and consider any quantity computed through a formula of the type:

L. y
Division x ==.
z

Suppose that, due to the previous finite precision calculations, the quantity y has been computed with precisely
the last A decimal digits erroneous, while z has been computed with up to /. decimal digits erroneous. Then,

(iii) if |man(y)man(z)| = 1, then x is computed with precisely the last A or A — 1 decimal digits erroneous.
@iv) if'| man(y)man(z)| <1, then x is computed with precisely the last A or A + 1 decimal digits erroneous.

Proposition 3. Let all the involved quantities be computed with finite precision of n decimal digits in the mantissa,
and consider any quantity calculated through a formula of the type

Subtraction x = y — z,

with
y-z>0,
where
X = X1,X0,X3, ., Xy X 107, V=V Ve ooy YV, X 107, z=1z12023...2, x 10°

are such that

0 < max{t,p} <= E(x) < max{E(y),E(z)}.
Let

d = |max{z, p} — J|.

Moreover, suppose that, due to the previous finite precision calculations, the higher order quantity say y has been
computed with precisely the last 1 decimal digits erroneous, while z has been computed with a number of erroneous
decimal digits equal to, or smaller than A. Then x is computed with the last (1 + d) decimal digits erroneous.

Proposition 4 (The numerical error relaxation shift). Let all quantities be computed with finite precision of n
decimal digits in the mantissa, and consider any quantity x computed through a sum of two quantities, that is,

332 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

Addition x =y + z.

Suppose, moreover, that z has its last 1 decimal digits erroneous and that the exponent of z is by v smaller than the
exponent of y, that is,

v=E(y)—E(z) > 0.

Then z transfers to x only 1. — v erroneous decimal digits if 2. — v > 0 or it does not transfer finite precision error
at all, if 2 —v < 0.

3.2. Finite precision errors of the recursive algorithms

In order to analyze the numerical behaviour of the recursive algorithms presented in Section 2, we proceed
according to the following steps [31], for each algorithm:

Step 1: We execute the algorithm with n digits precision for the mantissa

Step 2: In parallel, we execute the algorithm with 2n digits precision for the mantissa

Step 3: We cast any quantity z,, computed by 2n decimal digits precision to a quantity z, of n decimal digits
precision.

Step 4: We compare quantities z, and z,,, according to Definition 1 and in this way we obtain the exact num-
ber of erroncous decimal digits with which each quantity z, is computed.

By applying the above methodology and keeping in mind the definitions and propositions previously dis-
cussed, each recursive algorithm is studied and the corresponding results are presented next. In the forthcom-
ing tables the finite precision error, in erroneous digits, is being measured according to Definition 1 and is
depicted in bold face.

3.2.1. Kintner’s algorithm

Kintner’s algorithm, presents two kind of numerical errors. The first one is the overflow error due to range
limitations of data type used. For example, the float (seven digit precision) data type has a valid range
(1.18 x 107%°, 3.40 x 10*%), while the double (15 digit precision) data type has a valid range (2.23 x 1073%,
1.79 x 10°%%), in the case of IBM PC compatible computers. The second type of error is the finite precision
error (FPE),

Case l:p=qorp—q=2

In this case, the computation of the radial polynomial R,,(7), is performed using the direct method (2). The
direct method presents overflow errors due to the limitations on representing the factorials of a big numbers
(n!) and the radius in the powers of big numbers (). Table 1 illustrates this behaviour, of the direct method,
where the values 0.00000000 x 10% corresponds to an overflowed quantities.

Case2:p#qorp—q#2

In this case the radial polynomials R, (r) are computed by using Eq. (6a). By applying the algorithm
described in Section 3.2, it is concluded that the quantities K, K>, K3, K4, do not present any finite precision
error.

However, the term K,7? generates a finite precision error of 2 erroneous digits. This error is quite small and
it cannot lead the whole algorithm to destroy, as it is shown in Table 2.

The term K> 4 K3, seems to be a candidate source of generating finite precision error, since there are cases
where the erroneous digits are many, e.g. 7 digits. The mathematical operation that is responsible for the gen-
eration of this error is the subtraction between numbers with common digits, as Table 3 presents.

The finite precision error will be significantly increased by leading the algorithm to unreliable results, if the
following condition is satisfied:

/1 q?
Ko + K3 ~ ~o 1
-+ K 07 < r 2+2p(p—2) (0)

Table 1

Computation accuracy R, (r) quantity, for p=g orp —g=2

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

333

Input values

Output value

p q r Ryq
23 23 0.00 64bit 9.99999486 x 10~4
32bit 0.00000000 x 10%°
9 digits error
23 23 0.01 64bit 1.00000000 x 10746
32bit 0.00000000 x 10%°
9 digits error
24 24 0.01 64bit 1.00000000 x 10~48
32bit 0.00000000 x 10%°
9 digits error
25 25 0.01 64bit 1.00000000 x 10~%°
32bit 0.00000000 x 10%°
9 digits error
26 24 0.01 64bit —2.49974000 x 10~4
32bit 0.00000000 x 10%°
9 digits error
26 26 0.01 64bit 1.00000000 x 102
32bit 0.00000000 x 10%°
9 digits error
27 27 0.01 64bit 1.00000000 x 10~
32bit 0.00000000 x 10%°
9 digits error
Table 2
Computation accuracy of K, quantity
Input values Output value
P r K> Kzr2
4 0.01 64bit 4.80000000 x 107! 4.80000000 x 109
32bit 4.80000000 x 107! 479999976 x 10~
0 digits error 2 digits error
4 0.03 64bit 4.80000000 x 107! 4.32000000 x 10
32bit 4.80000000 x 107! 432000011 x 107
0 digits error 2 digits error
5 0.05 64bit 1.20000000 x 10°2 3.00000000 x 107!
32bit 1.20000000 x 10° 2.99999982 x 10!
0 digits error 2 digits error
6 0.05 64bit 2.40000000 x 10°* 6.00000000 x 107!
32bit 2.40000000 x 10° 5.99999964 x 10!
0 digits error 2 digits error
6 0.05 64bit 2.40000000 x 10°2 6.00000000 x 10!
32bit 2.40000000 x 10° 5.99999964 x 10!
0 digits error 2 digits error
7 0.09 64bit 4.20000000 x 10°2 3.40200000 x 10%°
32bit 4.20000000 x 10° 3.40200019 x 10%°
0 digits error 2 digits error
7 0.09 64bit 4.20000000 x 10° 3.40200000 x 10%°
32bit 4.20000000 x 10° 3.40200019 x 10%°

0 digits error

2 digits error

334 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

However, condition (10) can’t be satisfied for any values of p and ¢, since the resulted radius r takes values
greater than 1, which is outside the region of the unit disk and where the radial polynomials are undefined.

Thus, we can conclude that while K,72 4+ K5 generates finite precision error, this error can’t destroy the
algorithm.

The next term of (6a), (K»7* + K3)/K |, behaves similar to the K7 + K3 term. The error produced in the
previous state is carried out to the next quantity, as Table 4 shows.

In the case of (K + K3)/K; “R(,2)4(r) term, the produced finite precision error, is very critical, about 8
erroneous digits, since the computed quantities differ significantly.

This error is not produced by the multiplication but it is rather carried by the previous state, due to the
subtraction (K,r* + K3) or the overflow of R, »),(r) term, as presented in Table 5.
Table 6 illustrates the finite precision errors generated when the K4/K ;| quantity is being computed. As it
can be seen, this error is of small magnitude, 2 digits error.
As it can be seen in Table 7, the K4 /K, - R(,_4),(r) term, is computed with the same number of erroneous
digits as R(,_4),(r) and thus the multiplication operation in this case doesn’t constitute a finite precision error

source.

Finally, the radial polynomial of pth order and ¢th repetition, which is computed by using Eq. (6a), presents
high finite precision errors, in some cases this error is of 8 erroneous digits. From Table 8, one realizes that the

error increases when the subtraction of two values with common digits is performed.

This ill-posed subtraction affects the final result and an investigation of the appropriate conditions accord-

ing to which this operation may be an important source of errors, has to be performed.

The subtraction that is responsible for generating high finite precision errors and affects the stability of the

algorithm is performed between two values having common digits.

Table 3

Computation accuracy of K»r? + K3 quantity

Input values

Output value

P q r K2r2 K; K2r2 + K3
5 1 0.73 64bit 6.39480000 x 10°! —6.40000000 x 10°! —5.20000000 x 1072
32bit 6.39479980 x 10°! —6.40000000 x 10°! —5.20029068 x 10~
2 digits error 0 digits error 5 digits error
14 4 0.74 64bit 2.39191680 x 10% —2.39200000 x 10% —8.32000000 x 107
32bit 2.39191680 x 10 —2.39200000 x 10 —8.33253860 x 1072
0 digits error 0 digits error 7 digits error
15 1 0.71 64bit 2.75238600 x 10% —2.74400000 x 10% 8.38600000 x 10%°
32bit 2.75238623 x 10 —2.74400000 x 10 8.38613510 x 10%°
2 digits error 0 digits error 5 digits error
15 7 0.79 64bit 3.40758600 x 10% —3.41600000 x 10% —8.41400000 x 10%°
32bit 3.40758618 x 10° —3.41600000 x 10 —8.41383934 x 10%°
2 digits error 0 digits error 5 digits error
16 10 0.85 64bit 4.85520000 x 10% —4.86000000 x 10% —4.80000000 x 10%°
32bit 4.85520020 x 103 —4.86000000 x 10 —4.79982376 x 10%°
2 digits error 0 digits error 5 digits error
28 18 0.85 64bit 2.84029200 x 10* —2.84040000 x 10 —1.08000000 x 10%°
32bit 2.84029219 x 10* —2.84040000 x 10%* —1.07896900 x 10%°
2 digits error 0 digits error 6 digits error
30 26 0.95 64bit 4.39698000 x 10* —4.39640000 x 10 5.80000000 x 10%°
32bit 4.39697969 x 10* —4.39640000 x 104 579872227 x 10%°

2 digits error

0 digits error

6 digits error

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 335

Table 4
Computation accuracy of (Kor* + K3)/K, quantity

Input values Output value

P q r K>r* + K K, (Kor? + K3)/K,
11 3 0.74 64bit 4.24800000 x 10%° 5.04000000 x 10°2 8.42857143 x 1079
32bit 424794292 x 10%° 5.04000000 x 10 8.42845906 x 1073
4 digits error 0 digits error 5 digits error
14 4 0.74 64bit —8.32000000 x 1072 1.08000000 x 10% —7.70370370 x 107
32bit —8.33253860 x 1072 1.08000000 x 10%3 —7.71531340 x 10~
7 digits error 0 digits error 7 digits error
15 7 0.79 64bit —8.41400000 x 10°° 1.14400000 x 10 —7.35489510x 10~
32bit —8.41383934 x 10%° 1.14400000 x 10% —7.35475449 x 1079
5 digits error 0 digits error 5 digits error
15 7 0.79 64bit —8.41400000 x 10 1.14400000 x 10% —7.35489510 x 107
32bit —8.41383934 x 10 1.14400000 x 10% —7.35475449 x 107
5 digits error 0 digits error 5 digits error
16 10 0.85 64bit —4.80000000 x 10 1.09200000 x 10% —4.39560440 x 107
32bit —4.79982376 x 10%° 1.09200000 x 10% —4.39544301 x 107
5 digits error 0 digits error 5 digits error
28 18 0.85 64bit —1.08000000 x 10 5.98000000 x 103 —1.80602007 x 10~%*
32bit —1.07896900 x 10 5.98000000 x 103 —1.80429604 x 10~%*
6 digits error 0 digits error 6 digits error
30 26 0.95 64bit 5.80000000 x 10%° 3.13600000 x 10% 1.84948980 x 10~
32bit 579872227 x 10%° 3.13600000 x 10% 1.84908230 x 107
6 digits error 0 digits error 5 digits error
Table 5

Computation accuracy of (K»r* + K3)/K; - R(,_2),(r) quantity

Input values Output value

p q r (Kor” + K3)/K, Rip24(r) (Kor® + K3)/K * Rip2)y(r)

13 1 0.98 64bit 1.69707013 x 10%° 3.38944528 x 1079 575212635 x 1079
32bit 1.69707012 x 10%° 3.39005049 x 1079 575315347 x 1079

0 digits error 5 digits error 6 digits error
14 4 0.74 64bit —7.70370370 x 107% —1.20536977 x 10~ 9.28581158 x 107
32bit —7.71531340 x 107 —1.20536923 x 107! 9.29980160 x 107

7 digits error 2 digits error 7 digits error
18 0 0.99 64bit 1.81371111 x 10%° —1.42994931 x 107 —2.59351494 x 107
32bit 1.81371105 x 10 —1.42934895 x 10~ —2.59242603 x 107

1 digits error 5 digits error 6 digits error
24 8 0.92 64bit 1.23248636 x 10%° —3.98715398 x 107% —4.91411291 x 107%
32bit 1.23248649 x 10 —3.72576210 x 107 —4.59195144 x 107°¢

2 digits error 8 digits error 8 digits error
27 23 0.01 64bit —1.25201960 x 10°! —2.39975000 x 10™4° 3.00453404 x 104
32bit —1.25201960 x 10°! —2.80259693 x 10+ 3.50324616 x 10~4

0 digits error 8 digits error 8 digits error
29 5 0.98 64bit 1.76902861 x 10%° —2.72819333x 107% —4.82625207 x 107%
1.76902854 x 10%° —2.73729936 x 10~ —4.84236080 x 10~

32bit 1 digits error 6 digits error 7 digits error
29 23 0.01 64bit —8.72070636 x 10%° 2.99935004 x 10~* —2.61564509 x 10743
32bit —8.72070599 x 10%° 2.94272678 x 10~* —2.56437619 x 10~+

2 digits error

7 digits error

7 digits error

336

Table 6

Computation accuracy of Ky/K; quantity

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

Input values

Output value

P K, K, Ki/K,
5 64bit —2.00000000 x 10°! 3.60000000 x 10°! —5.55555556 x 107!
32bit —2.00000000 x 10°! 3.60000000 x 10°! —5.55555582 x 107!
0 digits error 0 digits error 2 digits error
6 64bit —4.80000000 x 10°! 7.20000000 x 10°! —6.66666667 x 107°!
32bit —4.80000000 x 10°! 7.20000000 x 10°! —6.66666687 x 107!
0 digits error 0 digits error 2 digits error
7 64bit —8.40000000 x 10°! 1.20000000 x 10° —7.00000000 x 107°!
32bit —8.40000000 x 10°! 1.20000000 x 10° —6.99999988 x 107!
0 digits error 0 digits error 2 digits error
8 64bit —1.28000000 x 10° 1.80000000 x 10° —7.11111111 x 107!
32bit —1.28000000 x 10°2 1.80000000 x 10° —7.11111128 x 107
0 digits error 0 digits error 2 digits error
8 64bit —8.00000000 x 10°! 1.44000000 x 10 —5.55555556 x 1071
32bit —8.00000000 x 10°! 1.44000000 x 10° —5.55555582x 107!
0 digits error 0 digits error 2 digits error
9 64bit —2.16000000 x 10°* 2.80000000 x 10° —7.71428571 x 107!
32bit —2.16000000 x 10°2 2.80000000 x 10° —7.71428585 x 107!
0 digits error 0 digits error 2 digits error
9 64bit —1.80000000 x 10° 2.52000000 x 10°? —7.14285714 x 10!
32bit —1.80000000 x 10°2 2.52000000 x 10° —7.14285731 x 107!
0 digits error 0 digits error 2 digits error
Table 7

Computation accuracy of Ku/K) - R(,—a),(r) quantity

Input values

Output value

p q r K4/K, Rip_ay4(1) KulKy * Rip_a)y(1)
20 12 0.98 64bit —7.81250000 x 10! 1.40621237 x 107 —1.09860341 x 10~
32bit —7.81250000 x 107°! 1.41222539 x 10~* —1.10330111 x 10~
0 digits error 6 digits error 6 digits error
22 6 0.79 64bit —8.93750000 x 107! —2.82887650 x 10~ 2.52830837 x 107
32bit —8.93750012 x 107! —2.83055298 x 107%* 2.52980681 x 10~
2 digits error 6 digits error 6 digits error
26 8 0.92 64bit —9.06318083 x 107! —3.98715398 x 10¢ 3.61362975 x 107%
32bit —9.06318069 x 107! —3.72576210 x 107% 3.37672554 x 107
2 digits error 8 digits error 8 digits error
26 18 0.92 64bit —7.75568182 x 107! —2.73373473 x 10~* 2.12019768 x 10~
32bit —7.75568187 x 107! —2.73571844 x 107% 2.12173618 x 107
1 digits error 6 digits error 6 digits error
26 22 0.01 64bit —5.19097222 x 107! 1.00000000 x 10~** —5.19097222 x 107%
32bit —5.19097209 x 107! 9.80908925 x 10~+ —5.60519386 x 10~%°
2 digits error 7 digits error 8 digits error
29 23 0.01 64bit —6.88509022 x 107! —2.39975000 x 10™4° 1.65224953 x 1074
32bit —6.88509047 x 107! —2.80259693 x 10743 1.40129846 x 10~4°
2 digits error 8 digits error 8 digits error
30 26 0.02 64bit —5.16581633 x 107! 6.71088640 x 10~* —3.46672065 x 1074
32bit —5.16581655 x 107! 7.00649232 x 104 —4.20389539 x 10~%°

2 digits error

8 digits error

8 digits error

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

337

These values are the (K»r? + K3)/K - R(y-2),(r) and K4/K - R(,-4),(r) terms. By analyzing the conditions

where these two values are made almost equal, for specific order and repetition, we have
For p =4, ¢ =0, by using (6) we have,

K3:—24, K4=—8 and R20:21”2—1,

(K2r? 4+ K3)Rag = —K4Rop <>

Kzl"z +K3 K4
Ry =—"——R —R
40 X 20 +K1 00,
where
Ky =16, K, =48,
The error is presented when
Kzi"z +K3 K4
————— Ry =——Ry =
X 20 K,
(487 —24) (27 - 1) =8<«= 6" — 6" + 1 ~ 0 =
3+V3
~\ ¢

Ry = 1.

By proceeding in the same way, the radius values for which the subtraction of two common numbers may
generate high finite precision errors, for several orders and repetitions, have been derived and presented in

Table 9.

From the above analysis is concluded that for every usage of the recursive Eq. (6a), there are combinations
between the moment order p, the repetition ¢ and the radial, for which a significant finite precision error is
being generated.

This error increases when a subtraction of common real numbers is presented, by resulting to totally unre-
liable radial polynomial values.

Table 8

Computation accuracy of R,,(r) quantity, for p # gand p —q # 2

Input values

Output value

p q r (Kor” + K3)/Ky * Rip2)y(r) KulKy * Rip_ag(r) Ryy(1)
16 12 0.98 64bit 4.16520924 x 107! —4.16380302 x 10! 1.40621237 x 107%
32bit 4.16521460 x 107! —4.16380405 x 107! 1.41064025 x 107%
3 digits error 3 digits error 6 digits error
18 6 0.79 64bit —7.59320343 x 1072 7.56491467 x 1072 —2.82887650 x 10~
32bit —7.59320781 x 1072 —8.99671465 x 107 —2.83046189 x 107%
3 digits error 4 digits error 6 digits error
22 8 0.92 64bit 2.79200177 x 10~ —2.79204164 x 107! —3.98715398 x 1079¢
32bit 2.79200405 x 107! —2.79204130 x 107! —3.74297929 x 107%
3 digits error 2 digits error 8 digits error
22 18 0.92 64bit 1.16210871 x 107! —1.16484244 x 107! —2.73373473 x 107
32bit 1.16210751 x 10~ —1.16484277 x 107! —2.73526326 x 107
3 digits error 2 digits error 6 digits error
24 4 0.65 64bit —8.64667230 x 1072 8.66212905 x 1072 1.54567488 x 10~
32bit —8.64667222 % 1072 8.66211578 x 1072 1.54434267 x 107%
1 digits error 4 digits error 6 digits error
27 23 0.01 64bit 3.00453404 x 1074 —5.18400000 x 10~4 2.99935004 x 10~
32bit 3.50324616 x 10+ 0.00000000 x 10%° 3.50324616 x 10+
8 digits error overflow 8 digits error
29 23 0.01 64bit —2.61564509 x 10~ 1.65224953 x 1074 —2.59912260 x 10~+3
32bit —2.56437619 x 10~4? 1.40129846 x 10~4° —2.55036321 x 10~43

7 digits error

8 digits error

7 digits error

338 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

An important observation that is derived from the above Table 9, is that as the moment order increases, the
number of the radial values for which the appropriate conditions are satisfied, is also dramatically increased.
This unstable behaviour constitutes a major drawback of this algorithm, since its numerical stability can be

easily altered, even for low moment orders.

3.2.2. Modified Kintner’s algorithm

The modified Kintner’s algorithm, as proposed in [2], differs from the original one in using more simple
equations instead of the direct method (2), in cases of p = ¢ (7a) and p — g = 2 (7b).

Case I: p=gq

The usage of (7a) instead of the direct method for p = ¢, avoids the overflows which occurred due to the
computation of the factorials of big numbers. However, overflow can be still presented when computing the

radius to the power of big numbers, as it can be seen in Table 10.

Case 2:p—q=2

In this case it is possible to generate significant finite precision errors, when real numbers with common
digits are being subtracted according to the recursive (7b). By applying the methodology of Section 3.2, the
finite precision error for specific radius, moment order and repetition are extracted and illustrated in Table 11.

The condition under which the subtraction would be performed between common real numbers is obtained

as,

Table 9

High finite precision errors in R,,(r) quantity, of Eq. (6a)

Input values

Output value

V4 q r (Kzl”z + K3)/K1 . R(pfz)q(}’) K4/K1 . R(],,4)q(}’) RI”I(r)
4 0 343 64bit 5.00000000 x 107! —5.00000000 x 107! —1.66533454 x 107 '°
6 32bit 5.00000060 x 10! —5.00000000 x 107! 8.52900399 x 108
2 digits error 0 digits error 17 digits error
4 0 33 64bit 5.00000000 x 10~ —5.00000000 x 10~ 0.00000000 x 10°°
32bit 4.99999970 x 10! —5.00000000 x 107! —1.79482313 x 107%
2 digits error 0 digits error 18 digits error
5 1 /e 64bit 5.10672812 x 10~ ~5.10672812 x 10~ 4.44089210x 10"
32bit 5.10672927 x 10~°! —5.10672808 x 107! 1.18265987 x 1077
3 digits error 1 digits error 18 digits error
5 1 LY 64bit 3.31034213 x 10~ —3.31034213 x 10~ 1.66533454 x 10"
32bit 3.31034243 x 107! —3.31034184 x 107! 5.12383522 x 1078
2 digits error 2 digits error 17 digits error
6 0 \@ 64bit 0.00000000 x 10%° 0.00000000 x 10%° 0.00000000 x 10%°
32bit 0.00000000 x 10%° 2.28190284 x 10~ 2.28190284 x 1078
0 digits error 1 digits error 18 digits error
6 0 SH/15 64bit 5.16397779 x 10~ —5.16397779 x 10~ 9.99200722 x 10~ '
32bit 5.16398013 x 107! —5.16397834x 10" 1.60331666 x 1077
3 digits error 2 digits error 18 digits error
6 0 5=V1s 64bit —5.16397779 x 107! 5.16397779 x 10~ —1.11022302 x 10~ '®
10
32bit —5.16397834 x 107! 5.16397774 x 107! —3.62354520 x 107%
2 digits error 1 digits error 17 digits error
6 2 10410 64bit 4.93585412 x 107! —4.93585412 x 10~ —1.22124533x 1071°
32bit 4.93585229 x 10! —4.93585408 x 10~ —1.81533622x 1077
3 digits error 1 digits error 17 digits error
6 2 10-y10 64bit 2.56414588 x 107! —2.56414588 x 107! 1.66533454 x 107
32bit 2.56414592 x 10! —2.56414592x 10" —2.00921910 x 10~

1 digits error

1 digits error

17 digits error

Table 10

Computation accuracy of R,,(r) quantity, for p =g¢

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

339

Input values

Output value

p r Rpp(r)
23 0.01 64bit 1.00000000 x 10746
32bit 0.00000000 x 10%°
9 digits error
24 0.01 64bit 1.00000000 x 10748
32bit 0.00000000 x 10%°
9 digits error
25 0.01 64bit 1.00000000 x 10~%°
32bit 0.00000000 x 10%°
9 digits error
26 0.01 64bit 1.00000000 x 10732
32bit 0.00000000 x 10%°
9 digits error
27 0.01 64bit 1.00000000 x 10~>*
32bit 0.00000000 x 10%°
9 digits error
27 0.02 64bit 1.34217728 x 10746
32bit 0.00000000 x 10%°
9 digits error
28 0.01 64bit 1.00000000 x 10~3¢
32bit 0.00000000 x 10%°
9 digits error
Table 11

High finite precision errors in R,,—»)(r) quantity, of Eq. (7b)

Input values

p

PR,(1)

(P—DRp—2)p—2)(1)

Output value

Ryp—2)

2

64bit
32bit

64bit
32bit

64bit
32bit

64bit
32bit

64bit
32bit

64bit
32bit

64bit
32bit

1.00000000 x 10%°
9.99999940 x 10!
1 digits error

1.63299316 x 10
1.63299346 x 10%°
2 digits error

2.25000000 x 10%°
2.24999976 x 10%°
2 digits error

2.86216701 x 10%°
2.86216688 x 10%°
2 digits error

3.47222222 x 10%°
3.47222257 x 10%°
2 digits error

4.08116615 x 10°°
4.08116627 x 10%°
2 digits error

4.68945312 x 10%°
4.68945408 x 10%°
2 digits error

1.00000000 x 10%°
1.00000000 x 10%°
0 digits error

1.63299316 x 10
1.63299322 x 10%°
1 digits error

2.25000000 x 10%°
2.25000000 x 10%°
0 digits error

2.86216701 x 10%°
2.86216688 x 10%°
2 digits error

3.47222222 x 10%°
3.47222233 x 10%°
2 digits error

408116615 x 10*°
408116627 x 10%°
2 digits error

4.68945312 x 10%°
4.68945408 x 10°°
2 digits error

0.00000000 x 10%°
—5.96046448 x 107%
18 digits error

0.00000000 x 10%°
1.78813934 x 1077
18 digits error

—4.44089210 x 10~ 1¢
—2.38418579 x 1077
18 digits error

—4.44089210 x 107'¢
—1.19209290 x 10~
18 digits error

0.00000000 x 10%
178813934 x 1077
18 digits error

—1.77635684 x 10~ !°
2.38418579 x 10~
17 digits error

0.00000000 x 10%°
1.19209290 x 10~
18 digits error

340 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

Ip—1 lg+1
PR(F) = (p = DRy 2)p2) (1) = pr¥ = (p— 1)r?) 20 = r =~ ‘”T, or re qT' (11)

The above analysis shows that while the modified Kitner’s method permits the calculation of the radial
polynomials by avoiding any factorial computations, there is an increased possibility the algorithm lost its
stability.

The modified Kintner’s algorithm can be unstable more often than the conventional one, since extra con-
ditions, when p — ¢ = 2, where ill-posed subtractions can exist for many combinations of p, g and r, as shown
in Table 11.

3.2.3. Prata’s algorithm

Prata’s algorithm can be considered a combination of Kintner’s and modified Kintner’s algorithms, since it
uses the Direct method (2) to compute the radial polynomials for ¢ = 0 as Kintner’s do and Eq. (7a) in the case
of p = ¢, as modified Kintner’s one. In the cases, where ¢ # 0 and p # ¢ , a recursive formula (8b) is used.

By analyzing the way the L, and L, (8c) quantities are being computed, it is concluded that these terms do
not generate significant finite precision errors, as presented in Tables 12 and 13.

However, the previous analysis on the Kintner’s like algorithms, where finite precision errors are possible to
be generated, due to ill-posed subtractions, focuses the attention to the study of the subtraction in Eq. (8b).

As Tables 14 and 15 show, while the terms being subtracted do not generate finite precision errors greater
than 3 digits, their subtraction can lead to high finite precision errors, under certain conditions (Table 16).

The finite precision error is extremely increased when for specific moment order p and repetition ¢, the
radial polynomial is computed for a pixel having radius r, for which the following holds:

Table 12
Computation accuracy of L; quantity
Input values Output value
p q r L,
3 1 0.03 64bit 4.50000000 x 102
32bit 4.49999981 x 10~

2 digits error

3 1 0.04 64bit 6.00000000 x 102
32bit 5.99999987 x 102
2 digits error

9 3 0.53 64bit 7.95000000 x 10!
32bit 7.94999897 x 10~
3 digits error

18 2 0.53 64bit 9.54000000 x 10!
32bit 9.53999877 x 10~
3 digits error

18 4 0.53 64bit 8.67272727 x 107!
32bit 8.67272615 x 107!

3 digits error
18 6 0.53 64bit 7.95000000 x 10!
32bit 7.94999897 x 10~°!

3 digits error
23 11 0.72 64bit 9.74117647 x 10°!
32bit 9.74117756 x 10~°!

3 digits error

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 341

Table 13
Computation accuracy of L, quantity
Input values Output value
p q L,
5 1 64bit —6.66666667 x 1071
32bit —6.66666687 x 107!
2 digits error
8 2 64bit —6.00000000 x 10~
32bit —6.00000024 x 107!

2 digits error

9 1 64bit —8.00000000 x 10~
32bit —8.00000012 x 107!
2 digits error

9 5 64bit —2.85714286 x 107!
32bit —2.85714298 x 10!
2 digits error

10 2 64bit —6.66666667 x 1071
32bit —6.66666687 x 107!
2 digits error

11 1 64bit —8.33333333x 107"
32bit —8.33333313x 107!

2 digits error
11 3 64bit —5.71428571 x 107!
32bit —5.71428597 x 107!

2 digits error

3 1 2
Ry = LiRy + LoRy, :§r~(2r2— 1)+ <—2)r—3r3—2r~0<:>r(3r2—2) ~0<=r~ \/;

4 1
Ry = LRy + LyRy = §r~ (3;’3 —-2r)+ (—g)r2 =44 3P 0= PP -3) 0= r~ \/%,

5 1 4
Rsy = LiRop + LoRyy = 77 (4r* — 3r7) + (Z)ﬁ =57 —4r ~ 0= (57 —4) ~ 0 = r~ \é

6 1 5
R64 = L1R53 +L2R44 = g}'“ (5}"5 — 47'3) + (—5)1’4 = 6}"6 — 5}"4 ~ ()<= }"4(6}"2 — 5) ~0<=r~ \/;

From the above, it is obvious that the radius for which the subtraction generates finite precision errors,
satisfies the following generic equation:

-1 1
r= p—, or r= a+ (12)
4 4
for a given moment order p and repetition g.
The above Table 16 presents some possible combinations of p, ¢ and r, which satisfy Eq. (12) and for which
the finite precision errors generated are significant and drop the algorithm to unstable situations.

3.2.4. “q-recursive” algorithm

This algorithm constitutes the most recently introduced [2], among the algorithms which are studied in this
work and it provides a fast way to compute the radial polynomials of order p and repetition ¢. It is proved that
this algorithm outperforms the other ones, by a significant factor [2].

342 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

Table 14
Computation accuracy of L; - R,_1)4—1) quantity
Input values Output value
b4 r L, Rip—1yq-1 Ly Rp-1y4-1)
7 0.30 64bit 5.25000000 x 107! —1.48420000 x 107 —7.79205000 x 1072
32bit 5.25000036 x 10~ —1.48420006 x 107! —7.79205114 x 10~
2 digits error 1 digits error 3 digits error
7 0.37 64bit 6.47500000 x 107! 1.31866228 x 107! 8.53833827 x 10~
32bit 6.47500038 x 10~ 1.31866232 x 107! 8.53833929 x 1072
2 digits error 1 digits error 3 digits error
7 0.93 64bit 1.30200000 x 10%° —6.67874483 x 1072 —8.69572576 x 1072
32bit 1.30200005 x 10 —6.67874515 x 1072 —8.69572684 x 1072
1 digits error 2 digits error 3 digits error
10 0.59 64bit 6.55555556 x 107! —1.21125156 x 107! —7.94042692 x 107
32bit 6.55555487 x 10~ —1.21125154 x 10! —7.94042572 x 102
2 digits error 1 digits error 3 digits error
12 0.20 64bit 2.40000000 x 10~°! 4.15846400 x 107%* 9.98031360 x 107%
32bit 2.40000010 x 10~ 4.15846414 x 107 9.98031464 x 107
1 digits error 2 digits error 3 digits error
13 0.14 64bit 2.60000000 x 107! 3.25954487 x 107! 8.47481667 x 1072
32bit 2.60000020 x 10~ 3.25954497 x 107! 8.47481787 x 1072
2 digits error 1 digits error 3 digits error
13 0.07 64bit 9.10000000 x 10 —9.67637837 x 107% —8.80550432 x 1077
32bit 9.10000056 x 10~ —9.67637880 x 107% —8.80550544 x 1077

2 digits error 2 digits error 3 digits error

Recently, this algorithm has been studied by the authors [12], for its numerical stability in terms of finite
precision errors generation and propagation.

More precisely, in [12] has been proved that Eq. (9b), generates significant amount of erroneous digits when
the following condition is satisfied

ro~y|[—— forp > 2. (13)
p

Additionally, the H, + H;/r* quantity of (9¢) is possible to generate considerable finite precision error,
when pixels having radius satisfying the following equation exist.

r~

B-9p+ap—q+2)+(p+q-2)p—q+4)(qg—1)

4. Discussion

The stability analysis of the fast algorithms used for computing the Zernike moments presented previously,
leads up to significant conclusions about the numerical behaviour and appropriateness of each algorithm.

The four algorithms studied in this work, Kintner’s, Modified Kintner’s, Prata’s and ¢-recursive algo-
rithms, produce overflow but more important finite precision errors, under certain conditions. The mathemat-
ical operation, which is responsible for the generation of finite precision errors in all cases, is the subtraction
performed between real numbers with common digits, as defined by Proposition 3.

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

Table 15
Computation accuracy of L, - R(,_2), quantity

343

Input values

p Q r L, Rip-2)y

Output value

Ly R(p—2)z]

3 1 0.01 64bit —5.00000000 x 10~ 1.00000000 x 10~ —5.00000000 x 107
32bit —5.00000000 x 107! 9.99999978 x 10~ —4.99999989 x 10~
0 digits error 1 digits error 2 digits error
3 1 0.09 64bit —5.00000000 x 107! 9.00000000 x 10~ —4.50000000 x 1072
32bit —5.00000000 x 107! 9.00000036 x 1072 —4.50000018 x 102
0 digits error 2 digits error 2 digits error
4 2 0.03 64bit —3.33333333x 107" 9.00000000 x 10~% —3.00000000 x 107%*
32bit —3.33333343 x 107! 8.99999985 x 10~% —3.00000014 x 10~
1 digits error 2 digits error 2 digits error
5 1 0.03 64bit —6.66666667 x 107! —5.99190000 x 1072 3.99460000 x 10~
32bit —6.66666687 x 107! —5.99189997 x 102 3.99460010 x 1072
2 digits error 1 digits error 2 digits error
9 5 0.64 64bit —2.85714286¢-001 —3.36381839¢-001 9.61090967¢-002
32bit —2.85714298¢-001 —3.36381853e-001 9.61091071e-002
2 digits error 2 digits error 3 digits error
11 3 0.64 64bit —5.71428571e-001 1.55900488¢-001 —8.90859932¢-002
32bit —5.71428597¢-001 1.55900493¢-001 —8.90860036¢-002
2 digits error 1 digits error 3 digits error
11 3 0.86 64bit —5.71428571e-001 —1.62654230e-001 9.29452744¢-002
32bit —5.71428597¢-001 —1.62654236¢-001 9.29452851e-002
2 digits error 1 digits error 3 digits error
Table 16

High finite precision errors in R, (r) quantity, of Eq. (8b)

Input values

Output value

P q r Ly Rp-1yg-1) Ly Ry-2y Ry

3 1 \/g 64bit 4.08248290 x 107! —4.08248290 x 107! —1.11022302 x 1071
’ 32bit 4.08248305 x 107! —4.08248305 x 107! 0.00000000 x 10~

2 digits error 2 digits error 18 digits error
4 2 \ﬁ 64bit 2.50000000 x 10! —2.50000000 x 10~ —3.05311332% 1071®
32bit 2.49999985 x 107! —2.50000000 x 10! —1.49011612x 1078

2 digits error 0 digits error 17 digits error
5 3 \ﬂ 64bit 1.78885438 x 10! —1.78885438 x 10~ —8.32667268 x 1077
32bit 1.78885430 x 107! —1.78885445 x 107! —1.49011612 x 1078

1 digits error 1 digits error 18 digits error
6 4 \/é 64bit 1.38888889 x 107! —1.38888889 % 10~ 8.32667268 x 10717
32bit 1.38888896 x 107! —1.38888881 x 107! 1.49011612 x 107%

1 digits error

1 digits error

18 digits error

Specifically Modified Kintner’s algorithm, is highly unstable as compared to the other methods, since it pre-

sents overflow errors (for p = ¢) and for any other combination of p, ¢, finite precision errors, that can destroy
the algorithm by resulting to unreliable quantities. While the modified Kintner’s algorithm has some interest-
ing properties, according to its computational complexity compared with the conventional one [2], it is numer-
ically more unstable. It is preferable to use the standard Kintner’s method than the modified one, since the

344 G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345

benefits in computation speed are of less importance than the stability and reliability the radial polynomials
being computed.

Prata’s and g-recursive methods are more stable than the Kintner’s type algorithms, by introducing less ill-
posed subtractions for fewer conditions. Particularly, Prata’s algorithm behaves unstably only for one
condition (12), while g-recursive for the conditions (13) and (14). If one is to select between these more stable
algorithms and by taking into account that g-recursive algorithm is very fast, its complexity is of an order
lower than the other ones [2], the g-recursive algorithm is a good choice.

While the overflow errors can be handled, by restricting to low moment orders up to 20, the finite precision
errors could be probably overcome by modifying the algorithm definitions and introducing algorithms that
tackle both the computational efficiency and the stability ensuring.

5. Conclusions

A detailed study of the numerical stability of some very popular recursive algorithms for the fast compu-
tation of Zernike moments has taken place in the previous sections. The appropriate conditions in which each
algorithm falls in unstable states, where the computed radial polynomials take unreliable values were defined.
The above investigation draws the useful conclusion that all the algorithms analysed, present the possibility to
alter their numerical stability, under certain conditions.

The analysis presented in this work constitutes a first attempt to compare these algorithms not according to
their computational complexity, as this task has been already done, but in respect to their numerical
behaviour.

Conclusively, one should take under consideration not only the mathematical properties of the algorithm,
but also the numerical implementation restrictions, in each development of any recursive algorithm.

References

[1] M. Teague, Image analysis via the general theory of moments, J. Opt. Soc. Am. 70 (8) (1980) 920-930.
[2] C.W. Chong, P. Raveendran, R. Mukundan, A comparative analysis of algorithms for fast computation of Zernike moments, Pattern
Recogn. 36 (2003) 731-742.
[3] C.W. Chong, P. Raveendran, R. Mukundan, Translation invariants of Zernike moments, Pattern Recogn. 36 (2003) 1765-1773.
[4] C.W. Chong, P. Raveendran, R. Mukundan, Translation and scale invariants of Legendre moments, Pattern Recogn. 37 (2004) 119-
129.
[5] C.W. Chong, P. Raveendran, R. Mukundan, The scale invariants of pseudo-Zernike moments, Pattern Anal. Appl. 6 (2003) 176-184.
[6] R. Mukundan, S.H. Ong, P.A. Lee, Image analysis by Tchebichef moments, IEEE Trans. Image Process. 10 (9) (2001) 1357-1364.
[7] R. Mukundan, S.H. Ong, P.A. Lee, Discrete vs. continuous orthogonal moments for image analysis, in: Proceedings of International
Conference on Imaging Science Systems and Technology, vol. 1, 2001, pp. 23-29.
[8] P.T. Yap, P. Raveendran, S.H. Ong, Image analysis by Krawtchouk moments, IEEE Trans. Image Process. 12 (11) (2003) 1367-1377.
[9] S.X. Liao, M. Pawlak, On the accuracy of Zernike moments for image analysis, IEEE PAMI 20 (12) (1998) 1358-1364.
[10] S. Rodtook, S.S. Makhanov, Numerical experiments on the accuracy of rotation moment invariants, Image Vis. Comput. 23 (2005)
577-586.
[11] N.K. Kamila, S. Mahapatra, S. Nanda, Invariance image analysis using modified Zernike moments, Pattern Recogn. Lett. 26 (2005)
747-753.
[12] G.A. Papakostas, Y.S. Boutalis, C.N. Papaodysseus, D.K. Fragoulis, Numerical error analysis in Zernike moments computation,
Image Vis. Comput. 24 (2006) 960-969.
[13] A. Khotanzad, J.-H. Lu, Classification of invariant image representations using a neural network, IEEE Trans. Acoust., Speech Sign.
Process. 38 (6) (1990) 1028-1038.
[14] A. Khotanzad, Y.H. Hong, Invariant image recognition by Zernike moments, IEEE Trans. Pattern Anal. Machine Intell. PAMI-12
(5) (1990) 489-497.
[15] G.A. Papakostas, D.A. Karras, B.G. Mertzios, Image coding using a wavelet based Zernike moments compression technique, in: 14th
International Conference on Digital Signal Processing (DSP2002), vol. II, 1-3 July 2002, Santorini-Hellas, Greece, pp. 517-520.
[16] G.A. Papakostas, Y.S. Boutalis, B.G. Mertzios, Evolutionary selection of Zernike moment sets in image processing, in: 10th
International Workshop on Systems, Signals and Image Processing (IWSSIP’03), 10-11 September 2003, Prague, Czech Republic.
[17] G.A. Papakostas, D.A. Karras, B.G. Mertzios, Y.S. Boutalis, An efficient feature extraction methodology for computer vision
applications using wavelet compressed Zernike moments, ICGST International Journal on Graphics, Vision and Image Processing,
Special Issue: Wavelets and Their Applications SI1 (2005) 5-15.
[18] M. Zhenjiang, Zernike moment-based image shape analysis and its application, Pattern Recogn. Lett. 21 (2) (2000) 169-177.

G.A. Papakostas et al. | Applied Mathematics and Computation 195 (2008) 326-345 345

[19] C. Kan, M.D. Srinath, Invariant character recognition with Zernike and orthogonal Fourie-Mellin moments, Pattern Recogn. 35 (1)
(2002) 143-154.

[20] T.W. Lin, Y.F. Chou, A comparative study of Zernike moments for image retrieval, in: Proceedings of 16th IPPR Conference on
Computer Vision, Graphics and Image Processing (CVGIP 2003), 2003, pp. 621-629.

[21] D.G. Sim, H.K. Kim, R.H. Park, Invariant texture retrieval using modified Zernike moments, Image Vision Comput. 22 (4) (2004)
331-342.

[22] F. Zernike, Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkonstrastmethode, Physica 1 (1934)
689-701.

[23] E.C. Kintner, On the mathematical properties of the Zernike polynomials, Opt. Acta 23 (8) (1976) 679-680.

[24] E.C. Kintner, A recurrence relation for calculating the Zernike polynomials, Opt. Acta 23 (6) (1976) 499-500.

[25] A. Prata, W.V.T. Rusch, Algorithm for computation of Zernike polynomials expansion coefficients, Appl. Opt. 28 (1989) 749-754.

[26] C.N. Papaodysseus, E.B. Koukoutsis, C.N. Triantafyllou, Error sources and error propagation in the Levinson—Durbin algorithm,
IEEE Trans. Signal Process. 41 (4) (1993).

[27] C.N. Papaodysseus, G. Carayannis, E.B. Koukoutsis, E. Kayafas, Comparing LS FIR filtering and l-step ahead linear prediction,
IEEE Trans. Signal Process. 41 (2) (1993).

[28] C. Papaodysseus, E. Koukoutsis, C. Vassilatos, Error propagation and methods of error correction in LS FIR, IEEE Trans. Signal
Process. 42 (5) (1994).

[29] C. Papaodysseus, E. Koukoutsis, G. Stavrakakis, C.C. Halkias, Exact analysis of the finite precision error generation and
propagation in the FAEST and the fast transversal algorithms: A general methodology for developing robust RLS schemes, Math.
Comput. Simulat. 44 (1997) 29-41.

[30] Y. Boutalis, C. Papaodyseus, E. Koukoutsis, A new multichannel recursive least squares algorithm for very robust and efficient
adaptive filtering, J. Algorithms 37 (2000) 283-308.

[31] C. Papaodysseus, C. Alexiou, Th. Panagopoulos, G. Rousopoulos, D. Kravaritis, A novel general methodology for studying and
remedying finite precision error with application in Kalman filtering, Stochastic Environ. Res. Risk Assess. 17 (2003) 1-19.

	Numerical stability of fast computation algorithms of Zernike moments
	Introduction
	Computing the Zernike moments
	Kintner ' s algorithm
	Modified Kintner ' s algorithm
	Prata ' s algorithm
	 " q-recursive " algorithm

	Numerical stability analysis
	General remarks
	Finite precision errors of the recursive algorithms
	Kintner ' s algorithm
	Modified Kintner ' s algorithm
	Prata ' s algorithm
	 " q-recursive " algorithm

	Discussion
	Conclusions
	References

