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On the Automated Recognition of Seriously Distorted
Musical Recordings

Dimitrios Fragoulis, George Rousopoulos, Thanasis Panagopoulos, Constantin Alexiou, and Constantin Papaodysseus

Abstract—In this paper, a new methodology is presented for the data. Since the existing music transcription systems generate
automated recognition-identification of musical recordings that musical score data with low accuracy, they are not of widespread
have suffered from a high degree of playing speed and frequency practical use.

band distortion. The procedure of recognition is essentially based . . .

on the comparison between an unknown musical recording and 't S€ems that analysis of music into notes is unnecessary for
a set of model ones, according to some predefined specific char-classification of music. Thus, more effort should be spent at-
acteristics of the signals. In order to extract these characteristics tempting to build systems that operate directly on music. Anin-
from a musical recording, novel feature extraction algorithms are teresting speech/music discrimination system based on features
employed. This procedure is applied to the whole set of model . \yere thought to be useful discriminators was presented re-

musical recordings, thus creating a model characteristic database. ) . . .
Each time we want an unknown musical recording to be identified, €Nty [21]. This system does not recognize musical recordings

the same procedure is applied to it, and subsequently, the derived but instead classifies a signal as speech or music, assuming that

characteristics are compared with the database contents via an there are no regions of overlap.
introduced set of criteria. The proposed methodology led to t_he In any case, the realization of a system that automatically
development of a system whose performance was extensively

tested with various types of broadcasted musical recordings. recognlzes musical recordings remains one of the major issues

The system performed successful recognition for the 94% of the N the field of one-dimensional (1-D) digital signal processing.
tested recordings. It should be noted that the presented system is Such a system could find extended application to the automatic
parallelizable and can operate in real time. broadcast counting and would be a very useful tool for compa-
Index Terms—Automatic music recognition, distorted in fre- nies in the field of intellectual property rights or companies that
quency recordings, fuzzy logic and music, musical recording compile musical data for statistical purposes (e.g., charts).
z‘ggﬂa‘ed recognition, music pattern recognition, music pro-  The methodology introduced in this paper provides the ability
9 to develop such a system that accomplishes automatic recogni-
tion of an unknown musical recording, among a set of others
considered to be the model ones. The system works successfully
URRENT research in the field of music pattern rec:ognf—or _signals that haye s_uffered afrequency-speed dist_ortion up to
igh degree, which is the case for most of the musical record-

. INTRODUCTION

tion and processing, among others, deals with classia
pattern recognition methods used to correlate small-durati
parts of music [7], [8] with automatic music transcriptior}
[4]-[6]. Moreover, a considerable effort has been made {

gs received by radio. The term “frequency-speed distortion up
0 a high degree” or simply “up to a high frequency-speed dis-
8rtion” is used to describe the following.

apply the techniques of connectionism and parallel distributedd) There may be a non-audible noise present at the radio re-

processing (PDP) in a wide range of topics in music [10]-[12],

ceived signal.

[16]-[20]. The so-called “connectionist’ or neural network b) The CD and radio obtained musical recordings may have

computer models allow investigation of processes, such as
learning, generalization, and forms of representation, that are
difficult or impossible to study in earlier physiological models.
Hence, they can probably help us to learn more about the
processes and representations involved in music perception.

Music transcription systems usually work by deriving infor-
mation about the tempo, the scale, the sound length, and the
key of a musical signal (for definitions see the Glossary in Ap-
pendix C). However, songs are not stable signals in time; they
contain abrupt sounds, and they have many fluctuations in pitch,
which are factors that reduce the accuracy of sound segmenta-
tion, thus reducing the accuracy of the developed musical score
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been played at arbitrarily different speeds. Most of the
tested recordings have shown a playing speed difference
of up to 5% but have been observed differing the playing
speeds up to 15%. A change in playing speed essentially
causes a “stretch” to the spectral shape of the recording
(see Section V). Therefore, the frequency components
of the recording are shifted from their initial positions,
and as a result, the sound quality changes to a point.
Experiments have shown that the “just noticeable differ-
ence” (jnd) of two sinusoidal tones of different frequency
varies between 0.1%—0.2% [22], [23]. However, for com-
plex signals such as musical recordings that include a
variety of spectral components with different duration
and intensities, it seems quite difficult to define a “just
noticeable playing speed difference” threshold. In spite
of the objective difficulties, we have observed, without
claiming that this constitutes a founded psychoacoustic
experimental, that a playing speed difference smaller than

1053-587X/01$10.00 © 2001 IEEE
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Fig. 1. Depiction of the differences in the time domain between a part offdd- 2. Depiction of the differences in the frequency domain between a part of
model musical composition and a part of a radio sampled one that corresp@rodel musical composition and a part of a radio sampled one that correspond
to exactly the same piece of music (from “Born to be Wild” by Steppenwolf)_to exactly the same piece of music (from “Baker Street” by Gerry Rafferty).

approximately 2% does not cause a noticeable change in Il. PROBLEM DESCRIPTION

the sound quality of the musical recording. _ If one attempts to recognize a musical recording automati-
¢) Radio stations that transmit a considered musicghjly, one, among others, faces the following difficulties.
record|.ng may amplify frequency bands. _ a) Usually, a musical recording is a fast varying signal com-
The experiments have been performed on approximately 920  pyrising a variety of different signals such as the voice of
recordings obtained from 18 different FM radio stations and  the singer and the sounds produced by various musical in-
cover a very extended range of signal strengths. Five of them  stryments. Therefore, a musical recording is a mixture of
use a compressed form for recordings they broadcast (e.9., trans-  many frequencies: a fact that makes the identification of
mitting MPEG—Layer 3 compressed music). These experiments  single instruments in it and the note transcription an ex-
show that at least 96% of the obtained recordings satisfy the tremely difficult task.
aforementioned conditions. Notice that a radio-received signalb) In order for such a system to have a serious applicability,
having suffered even a small distortion of the type described in it must be able to recognize a musical recording among
a)—c) can manifest an obvious discrepancy from its CD coun-  many tenths of hundreds or thousands of others. Con-
terpart both in time and frequency domain: a fact that creates sidering that a 3-min-long musical recording in “.wav”

serious difficulties in the automatic recognition procedure (see  form occupies approximately 10 MB and that, in order to

Figs. 1 and 2). o . obtain CD quality sound, one has to sample the musical
The introduced methodology, as it will be shown in the  recording at a sampling frequency of 44 100 samples/s, it
following, offers the ability to distinguish musical parts that is obvious that one must manipulate a huge amount of in-

correspond to the same melodic pattern (sequence of notes that tormation.

constitute a melody), such as different performances of thec) The transmission and reception procedure can distort the
same musical composition. This characteristic of the method * time and frequency domain information of each musical
and system introduced here is related to the specific feature  recording.

extraction procedure applied to the input musical part. As ang) The fact that radio and TV station personnel (e.g., DJ)
example, we can consider the case of two recordings of the = frequently acts on a transmitted musical recording at will
same melody performed by two different singers, accompanied  gjther by amplifying selected frequency bands and/or by
by either the same or by different instruments. The proposed  changing the speed the source (CD, tape, etc.) is played

model, with proper adjustment of its parameter values, is able  geems to constitute perhaps the most important problem
to distinguish these two recordings despite the fact that they  gjnce it is not possible to model such a disturbance.

correspond to the same melodic pattern. Therefore, we can say
that speaker recognition and voice verification are two potential
applications of the introduced methodology. According to
the above discussion, if we consider recordings of a group ofConsider two signals corresponding to the same musical
speakers articulating a defined set of phrases, then it is expeatsebrding: one received by a radio or a TV set and, therefore,
that the model, after proper changes, might be able to recognieing suffered an arbitrary distortion due to the reasons
either the speaker articulating a specific phrase or the phraséerred to in the previous section, and the other obtained from
articulated by a specific speaker. a CD. First of all, the aforementioned distortion drastically

I1l. PRESENTATION OF THEPROPOSEDMETHODOLOGY
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changes the quantitative information obtained from a time
domain signal analysis. For example, if one considers quantities
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TABLE |
DIVISION OF THE SPECTRUM INTO57 BANDS

such as number of zero-crossings per framesvVosamples,
relative position of peaks, average slope or curvature per franINDEX
relative amplitude of peaks etc., for the model song obtaine

from CD and the very same musical recording received by o

radio or a TV set, then it is clear that huge differences occny

between values of the same quantities for the two signaz;

Clearly, the greater the distortion, the greater the discrepar3
between these values.

Similarly, in the frequency domain, serious discrepancies a

pear between many (if not drastically most) quantitative chas

acteristics-parameters of the Discrete Fourier Transform (DF 6

performed on the CD musical recording and the DFT of thy

signal received by a radio or a TV set. For example, the numkg

of peaks per frame oV samples, the actual DFT peaks ampli-

tude, the energy per various bands, the order of the higher pe.
etc., manifest serious discrepancies (see Fig. 2). 10

However, we have spotted some critical similarities betweell

the spectrum of the CD-obtained signal and the radio-obtain 12

signal of the very same musical recording, and we exploitey;

them in order to achieve automatic recognition of musicii;

recordings. After an extended number of experiments, we ha
reached the conclusion that the musical information existing

a time frame of a musical recording is intimately connected 116
the position of spectral peaks of this frame. Therefore, if th

spectral peak position information is kept for sufficiently man:

frames starting at various time instances of a musical recordir18

then the recording identification is achieved. However, sinci9

BAND (BAND BAND BAND BAND BAND
RANGE INDEX | RANGE INDEX | RANGE
(INHz) (IN Hz) (IN Hz)
0-50 20 330-355 40 1467 - 1579
51-80 21 356-382 41 1580 - 1702
81-90 22 383 -412 42 1703 - 1834
91- 100 23 413 - 444 43 1835 - 1976

4 100 - 107 24 445 - 478 44 1977 - 2129
108 - 116 25 479 - 516 45 2130 - 2293
117-125 26 517 - 556 46 2294 - 2471
126 - 134 27 557-599 47 2472 - 2663
135-145 28 600 - 645 48 2664 - 2869
146 - 156 29 646 - 695 49 2870 - 3090
157 - 168 30 696 - 749 50 3091 - 3326
169 - 181 31 750 - 807 51 3327 -3577
182 -195 32 808 - 869 52 3578 - 3835
196 - 210 33 870 - 937 53 3836 - 4103
211-227 34 938 - 1009 | 54 4104 - 4380
228 - 244 35 1010 - 1088 | 55 4381 - 4700
245 - 263 36 1089 - 1172 | 56 4701 -

11025

17 264 - 284 37 1173 - 1263
285- 306 38 1264 - 1360
307 -329 39 1361 - 1466

it is impossible to store such a large amount of informatiof
for just one musical recording, a reduction of the necessary
storage capacity is attempted by a division of the frequencyA1)
domain in bands. The width of the bands is chosen to be almost
exponentially augmented in order to imitate the frequency
selectivity of the human ear, i.e., the experimentally verified
shape of the auditory filter [14], [15].

IV. DIVIDING THE AUDIBILITY DOMAIN INTO BANDS

The whole audibility domain is divided into 57 bands of al-
most exponential width, as shown in Table I. It is possible that A2)
other divisions in bands also work well. In any case, the final cri-
terion for the correctness of a choice is the efficiency of recogni-
tion validated by the experiment. In addition, the proper division A3)
in bands is strongly correlated with the degree of distortion that
the whole set of unknown musical recordings has suffered. If it
can be ensured that the considered unknown musical recordings
have suffered a smaller distortion than the one described in the
previous section, then another choice of band division may be
optimal. The usefulness of dividing the audibility domain into
bands will be made clear in the subsequent sections.

V. BUILDING A SET OF “BAND REPRESENTATIVEVECTORS

FOR THE UNKNOWN MUSICAL RECORDING Ad)

Suppose that a part of an unknown musical recording is given
in order to be recognized automatically. Then, at first, we do the
following.

We take at random a part of the unknown musical
recording, of lengthBL samples, and we transform

it into a form suitable for processing by a computer,
preferably in “.wav” format. In the subsequent anal-
ysis, we will refer to it by the name “the radio signal
part,” although the unknown musical recording can be
obtained from CD, television, tape, or any other related
source for which the introduced automatic recognition
methodology works perfectly well too.

At the beginning of this signal, we pick a “first frame”

of N samples (say2'? = 8192), and we apply the
DFT transform on them.

We calculate the absolute value of this DFT trans-
form, and then, we apply a masking-like procedure
described in Appendix A, on each peak of it. This
procedure causes the elimination of some acoustically
less important peaks of the DFT. Next, the positions
of the remaining peaks are successively multiplied by
the stretch or shift factors’;, ¢ =0, 1, ---, S. In this
way, (S + 1) shifted copies of the peaks are derived
and stored temporarily igS + 1) arrays. On every
one of these arrays, the procedure describeA4h
andAb) is applied.

We assign each peak of the current array to the proper
band (see Table I). If more than one peak belong to
the same band, we choose, among them, the maximum
amplitude peak, and we consider it to be the amplitude
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of the specific band corresponding to the shift factd8—5 min in duration, sampled at a rate of 22 050 samples/s, con-
fi. Otherwise, if no peaks belong to a band, we assigists of approximatelg, 5 * 60 = 22050 = 4 630 500 samples,
a zero value to this band amplitude in connection with is clear that the creation of these vectors may require many
the shift factory;. hours of computations, even if a 500-MHz Pentium Il processor
A5) We find theL bands of greater amplitude, and we storis used. Clearly, for a longer recording, say a classical one of
their corresponding index numbers. In this way, w80-min duration, the creation of these vectors may require sev-
obtain a vector we callthe first band representative eral days if the classical FFT method is used. For this reason, we
vector corresponding to the shift factéy,” which cor- have applied an adaptive FFT computation algorithm, which is
responds to the first frame with values the aforemepresented in Appendix B, that achieves a considerable reduction
tioned index numbers. of the overall computation time.
The above procedure results in the creation of a group of

(S + 1) “first band representative vectors VII. CODING OF THE BAND REPRESENTATIVEVECTORS OF
B1) We choose a “second frame” 8f samples ]V exactly THE MODEL SET

the same as in stefi?) above] at a fixed distance of The band tat tors derived f h model
time samples from the first sample of the radio signal, € band representative vectors derived from ach mode! mu-

part, and we apply the DFT transform to them, sical recording reql_Jire a_grea_lt amount of storage capacity if_they

Next, we repeat stepA2)-A5) for this “second '€ stored dlrgctly in a file with the ASCII format or even with
frame” in order to obtain a group ¢f + 1) “second t_hg standard binary format. Therefore, we have developed an ef-
band representative vectots ficient binary-encoding scheme that drastically reduces the re-
quired storage amount without any loss of information, thus also

. decreasing the access time to the band representative vectors.
This scheme will be presented below.

. As mentioned in the previous subsection, each band repre-
sentative vector consists éfindex numbers, where each index

° characterizes a frequency band. The order of these band indices

in each vector is not of importance for the automatic recogni-
tion method we employ; therefore, we store them in descending
Bwm) We choose ani/th frame” of N samples at a fixed value. In addition, it is quite common that consecutive band rep-
distance of time samples from the first sample of theesentative vectors, i.e., vectors that correspond to windows that
(M — 1)th frame, and we apply the DFT transform tajiffer only in one sample, are exactly the same. Therefore, in
them. order to store a sequence of identical band representative vec-
Next, we repeat steps2)-A5) for this “Ath frame” in order tors, it is sufficient to store the corresponding vector once, to-
to obtain a group ofS + 1) “ Mth band representative vectors gether with the number of consecutive identical band represen-
In this way, we obtain\/ groups of band representative vectative vectors, which we will call “number of repetitions.” In
tors [each group consisting 6F + 1) vectors], corresponding the following, when we refer to a band representative vector, we
to the aboveV! chosen frames. consider that a corresponding number of repetitions is attached
Notice that the experiments we have performed show that tfegit.
number L of band representatives must satisfy the inequality |n order to obtain a more efficient coding, we exploit the fact
17 < L <25 that even when two consecutive band representative vectors are
different, the number of different entries in them is typically
VI. BUILDING A SET OF “BAND REPRESENTATIVEVECTORS  very small, usually one or two. Therefore, we have developed

FOR A MODEL MUSICAL RECORDING the following differential coding algorithm.

We apply an analogous procedure to each signal obtained))  The band representative vector corresponding to the
from a CD (we will call it "the CD signal”). In fact, we taka’ first sample of the model musical recording in hand is
samples starting at the first sample of the CD signal, we repeat stored as follows: We assign to each band representa-
stepsA2)-A5), and in this way, we create a vectoroélements. tive vector of the CD signal a 57-element binary array.
We do the same for every sample of the CD signal, thus finally Each element of this binary array represents one of
obtaining a set of vectors where each consists elements. We the 54 bands into which we have decided to divide the
will use for this set the namariodel set of band representative whole audibility domain. A value of “1” is assigned to
vectors” Notice that it is very usual that two or more consec- an array element when the corresponding band is one

utive time samples correspond to identical band representative of the L greater in amplitude bands of the window in
vectors. Therefore, we attach to each such vector the number of ~hand with a nonzero value, whereas a value of “0” is

time samples for which it remains identical, which we will call assigned otherwise. Notice that at masbits can be
“repetitions number of the vector.” setto “1.”

The creation of those vectors requires a considerable amount For example, ifl. = 18, then a possible band repre-
of computational complexity since it involves a fast Fourier sentative vector Is

transform (FFT) computation @¥ samples for each sample of
the CD signal in hand. Considering that a musical recording ¢66 51 48 45 40 34 31 28 27 23 20 19 15 11 96 2 1].
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We create a binary array of 58 binary digits, all el-
ements of which are zero, except those with a pos

TABLE 1l

ig) NUMBER OF BYTES USED FOR THESTORAGE OF THEINFORMATION ARRAY
AND THE NUMBER OF REPETITIONS ACCORDING TOITS Size. (b) CoDE

tion corresponding to a band index of the above Vector. ' cparacTer VALUE ACCORDING TO THENUMBER OF CHANGES AND

Therefore, we obtain the array

[0110001001010001000110010001
10010010000010000100100100001].

B) In order to store the information of subsequent bar
representative vectors, we consider the number of d
ferent entries between the vector in hand and the pr
vious vector.

When the number of different values is less than or equ
to 3, we simply store the frequency band index numbers tF
belong to the present vector but not in the previous one (narr
“incoming indices”) and the index numbers of the frequenc

NUMBER OF REPETITIONS

Code Information Array Repetitions
Character
1 byte 2,4,6 or 8 bytes 1,2 0r4
bytes

(@)

bands that were entries of the previous vector but are not pres
in the vector in hand (named “outgoing indices”). We let th
outgoing indices first, and the incoming indices next, form a
array called “the information array.” If the number of outgoin¢hanges
indices in not the same as the number of incoming indices, th

Code character value according to number of changes and number
of repetitions
Number of Repetitions
0<Number<256 255<Number<64768 64767<Number

Number | 1 4 7 10
of 2 ] L] 11

3 6 9 12

>3 1 2 3

the index “-1" is inserted in the proper place.

When this number of different values is greater than 3, v
store the whole vector with the compressed scheme describe%
in A). Notice that with this method, the storage of the model 1)
band representative vectors requires 35 times less space than
the original index-numbers array and approximately nine times
less space than the one used by a simple binary coding methoqg

In both cases, regardless of the number of different entries, 1)
an additional number must be stored to represent the number
of repetitions of each band representative vector. To survive a
further storage reduction, we use a variable number of bytes for
the storage of this number, according to its size, as shown in
Table II.

®)

If the number of common elements is less thais« L,

then we stop the comparison procedure in hand, and
we restart to compare vect®; with the next band
representative vector of the model &8f (;,11).

If the number of common elements is greater than or
equal thar0.53 * L, then, and only then, we proceed
to the comparison between the second band represen-
tative vectorV, that corresponds to the same shift
factor f; of the unknown recording and the vector
Uz, (n+[i+s:)) Of the model set of band representatives
corresponding to the time samglex f;], where[z]
stands for the integer part of the real number

VIIl. PATTERN MATCHING ALGORIGHM FOR THE BAND Then, we have the following.

REPRESENTATIVEVECTORS
As)

Consider two sets of band representative vectors that corre-
spond to exactly the same piece of music: one to the “radio/TV
received” musical recording and the other to the model one. All
entries of these vectors cannot, in practice, be identical due to
the existent distortion. Therefore, in order to achieve musicalB3)
recording recognition, it is absolutely necessary to employ a pat-
tern matching algorithm that allows for a successful matching
between two sets of vectors, even if they have a considerable
number of different elements.

Thus, a pattern matching algorithm has been developed,
where each band representative vector of the radio/TV received
recording part is considered as an independent state. Transition
to themth state is allowed if and only if all imposed restrictions
in the previousm — 1 states are satisfied. To set ideas, we
compare the first band representative vedqrcorresponding
to the shift factorf; of the unknown part with the first band
representative vectolU; , of a model musical recording
(where indexn expresses the starting time sample of the

If the number of common elements betwe¥n and
Uz, (ni[ixs:)) 1S I€SS that®.53 « L, then we do not con-
tinue the comparison, and we restart the comparison
of vectorV; with the nextU, , band representative
vector of the model séU; (,,41), justas inA;.

If the number of common elements betwe¥n and
Uz, (ny[i+s;)) IS greater than or equal 53 « L, then,

and only then, do we proceed to the comparison be-
tween the third band representative vedgrthat cor-
responds to the shift factgy of the unknown recording
and a vectolUs, 4[24+ ,]) Of the model set of band
representatives corresponding to the time sarfipie

I* fi].

window that has generated the representative vector in hand)Ans) If the number of common elements betwe€ér, and

and then, we have the following.

Un, (n+[(M—1)+1+5,]) 1S l€ss thard.53 x L, then we
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do not continue the comparison. We ignore all pre- e iy =%
vious comparisons, and we restart the comparison ¢ /—\
vectorV; with the next band representative vector of / compare Copare R |
the model sely (1), just as inA. Vi-Uip T N
Bn) If the number of common elements betwéén, and - 0,53t
U, (n4[(M—1)+1+7,]) IS greater than or equal €53 « o8 DL e0saL
L, then, and only then, do we proceed to the compar
ison between the mean values of common elements b Compare
tween all the previous pairs of band representative vec At cazz et e
tors, namely o
>=0,72"L
(V1, Ui ), (Va, Uz ysep) o
Final Criterion:
(Va1, Unt, ot -1)st012) N ot Freeney Coman

Comparison

Procedure Criterion

C) If this mean value is greater than or equalOt@2 =
L, then the matching criterion is satisfied. Otherwise,
if the mean value is smaller than72 « L, then the
matching criterion is not satisfied. We consider thdtio. 3. State diagram for the pattern matching algorithm for a single shift factor
no matching exists, and we restart the comparison b
vectorV; with the next band representative vector of
the model seUy (,41), justas inA;. want to confirm if these two parts correspond to the same mu-

Notice thatU; ,, can be identical tdJ; ny1), ¢ = 1,2, sical recording. In order to accomplish this, we do the following.
.-+, M, in which case, no comparison is performed at the spe-
cific stage, but instead, the value of the previous comparison is
used.

If all comparisons prove to be successful, then the current
value of the shift factor, say., is stored, and the system pro-
ceeds to the final criterion that will be described in the fol-
lowing subsection. The value ¢f constitutes an estimation of
the difference in playing speed between the unknown musical
recording and the current model musical recording.

Otherwise, if all the model band representative sets have been
compared with the band representative vectors of the unknown
musical recording corresponding to the shift facfowithout
success, then the comparisons restart in order to examine the
band representative vectors of the unknown recording corre- quency domain envelopef each signal part.

sponding to the next shift factgf... . 4) If WL is greater than 64000 samples, then we repeat
The whole procedure stops when all band representative sets step 2) of this procedure once more, and we gehad

of the unknown musical recording corresponding to all the frequency domain enveldbfor both halves of theiV’ L

factorsfi,tz t': 0, 1, t o S}Tsvzbteebn compared W't? (’?I” ’T‘Oder:_ h sample DFTs. In the subsequent analysis, we will refer to
representative vectors of the database unsuccessfully, in which 0 S 1o etre o iency domain envelopes

case, t_he system decides that the part of the unknown mu_sicalj) We compute the integral of these two frequency domain
recording does not correspond to any of the model musical envelopes, and we normalize them by dividing all their

recordings of the database. The state diagram shown in Fig. 3 values by the corresponding integral. Afterwards, we

represents the above algorithm. multiply the position of each point of the envelope that
corresponds to the unknown musical recording with the
shift factor f., which has been estimated in the first
matching criterion. In this way, we virtually equalize the
playing speed of the unknown musical recording with

An additional final criterion for the identification of a musical the one of the current model musical recording.
recording suffering from an up to high-frequency-speed distor- 6) Finally, we calculate the difference between the abso-
tion is the similarity of its frequency domain stretched envelope  lute values of the two normalized frequency domain en-
with the corresponding envelope of its counterpart model mu-  velopes. It has been observed that if the #d. sample
sical recording. To be specific, suppose that we pick a part of DFTs correspond to the same part of a musical recording,
such an unknown signal, e.g., received by radio or TV, of du-  then the difference between the absolute values of the
ration, say,l’r S. Suppose, moreover, that we have applied the their half frequency domain envelopes has a value smaller
first criterion to this signal part and that we have obtained a pos- than a specific corresponding threshold. For example, if
itive outcome for a part of a model musical recording. Thus, we WL = 2!7 samples, then the threshold value is 1.05.

satisfied

1) We apply thelV L sample DFT transform on the corre-
sponding parts of the two signals. PropBr values will
be given below.
2) We create first frequency domain envelopéthe halves
of the two DFTs by finding all maxima of the DFT for
both signal parts and by interpolating them linearly.
3) If WL is greater than 32 000 samples, then experiments
show that these two envelopes follow the two signals very
closely: a fact that is not satisfactory for the present ap-
plication. Therefore, we repeat step 2) of the above pro-
cedure in the sense that we find all maxima of the first
frequency domain envelope of both signal parts, and we
interpolate them linearly, thus obtaining aetond fre-

IX. FINAL STAGE PATTERN MATCHING
ALGORITHM—ENVELOPE MATCHING IN THE FREQUENCY
DOMAIN
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Concluding, we can say that the value of the difference be- Xl. EXPERIMENTAL RESULTS
tween the absolute values of the half frequency domain en- . . . .
lopes.of o signa parts (ne ol and on sufered any 7 1° 0251 0 etiodons et 1 s e
to high frequency-speed distortion) is another criterion for q& ained musicgl recor?:i/in S 9
termining whether or not these two parts correspond to the saﬂp . gs. . .

e have tested this system in connection with 458 CD mu-

musical recording. An example of the aforementioned similar- ) .
ities between the frequency domain envelopes of two sig ?al recordings (whose type and composers are referred to in
le 1ll) and 920 musical recordings received from a variety of

arts, corresponding to exactly the same piece of music, is given. _ :
i?\ Fig. 3 P 9 y P g radio stations, where most have suffered from an up to high-fre-
In addition, if the two signal parts correspond to the Sangeulency—shpeed dﬁaortlo'?(' ianal h lied the fol
interval of a musical recording, then the difference between the n ea‘f: ong orthe |L,m Pown S|gn:;1hs, we jwe fth ied the Tol-
absolute values of their half frequency domain envelopes i oyving “pseudosampling process, thousands ortimes.

measure of the degree of distortion of the unknown signal. we se_lect aBlL = 265 000 samp!e part of _this signal, cor-
responding to approximately 12 s time duration. The beginning

of this frame is randomly chosen by a random numbers gener-
ator in order to imitate an actual random sampling process. To
each suctB L sample signal part, we apply the aforementioned
On the basis of the above methodology, a system has b@sacedure and then the first matching criterion, and if this is sat-
developed that performs the following. isfied, we apply the final stage criterion of the FFT envelopes.
1) It picks a part of an unknown signal (e.g., radio or Tv For each unknown signal, we repeat this pseudosampling
signal) with lengthBZ = 265000 samples or, equiva- Process thousands of times until the following inequality is
lently, of a duration of approximately 12 s, at randonsatisfied:
Next, by applying to that part the procedure described in
the previous section, a set Sfgroups of 11 vectors is  (Number of samples of unknown compositjon
i i - - < 1000.
obtained, where each vector consists/of= 18 band (Number of random pseudosamplings
representatives. Each vector of the unstretched set, cor-
responding to the stretch factfs = 1, has been calcu- For example, in an unknown musical recording that is 3 min
lated at a sample of the time domain having a distancelofg, the pseudosampling and the related automatic recognition
22 000 samples from its subsequent vector or/and its pggocedure are performed more than 3000 times.
vious one. Although the system works perfectly well for From the 920 musical recordings received from a variety of
great many values &f and f;, where the only limitation radio stations, 813 of them have their model counterpart record-
is the necessary processing time, we have ch@sen?, ings included in the system. The remaining 107 unknown mu-

X. APPLICATION OF THEMETHODOLOGY—THE DEVELOPED
SYSTEM

and sical recordings were correctly rejected by the system for 100%
. of the thousands of pseudosamplings performed on them.
1+ <'L + 1) £0.075, if 4 odd _The developed system recognized 740 musical recordings
with a 100% success rate for all the thousands random pseu-
Ji= 1, if i =0 dosamplings performed in each recording.

The other 73 radio received musical recordings had suffered
from even more serious distortion than the one described in the
2) For each stretch factgf;, we check to see if there is aintroduction. However, the developed system still succeeds in

model set of band representative vectors having a distaf609nizing them with a rate varying from 25-98% of the per-
in the time domain 0f22000 = f;] samples that match formed. pseudosamplings with an average approximately 35%,
with the corresponding 11-band representative vectors@gcording to the degree and type of distortion that each of these
the unknown. If the musical recording that corresponds fBusical recordings suffered.

the unknown signal exists in our database, then some band herefore, the system manifests an overall successful recog-

representative vectors of this model musical recordiryftion percentage of 94% as follows:

satisfy this first matching criterion for a specific value of

the shift factorf;. In the case that there are more than (813 —73) %14 730, 35

one musical recordings that satisfy the above criterion, Py, = 13 ~ 0, 94.

the final stage criterion is applied to define the one that

corresponds to the unknown signal on a FFT window Thus, one can safely state that the introduced methodology
of length WL = 2'7 samples. If the least squares dif-and the related system offer automatic recognition of musical
ference between the absolute value of the specific FF&cordings with a total success rate of more than 94%. Notice
and of the model musical recording in hand is less thdhat this percentage is independent of the fact of whether or not
1.05, then the system decides that the particular unknotre musical recording has been dynamically compressed.
recording has been identified. When both criteria are sat-Extensive research for the improvement of recognition rate is
isfied, the system offers the exact matching samples éarrently being carried out, and the results will be presented in
both the model musical recording and the unknown onéorthcoming publications.

1— (i/2) % 0.075, if i even.
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TABLE Il
ToTAL NUMBER OF 458 MusICAL COMPOSITIONSINCLUDED IN THE DATABASE PER ARTIST/GROUP
NAME OF ARTIST OR NUMBER OF 40. | DOORS 6 84. | PALMER, ROBERT 4
GROUP OF ARTISTS COMPOSITIONS  41. | DREAM SYNDICATE 1 85. | PERIDIS ORFEAS (Greek 4
IN THE MODEL 42 | DURAN DURAN 2 artist)
DATA BASE 43. | EAGLES 3 86. | PEARL JAM 2
1. | ABBA 9 44. |ELO 3 87| PHIL COLLINS 5
2. [AIR 1 45. | ELTON JOHN 10 88 | PINK FLOYD 5
3._| ALAN PARSON’S PROJECT 3 46. | ELVIS PRESLEY 5 89. | POLICE 7
4. | ANIMALS 5 47. | ERIC CLAPTON 3 90. | PRINCE 3
5. | ARETHA FRANKLIN 2 48. | EROS RAMAZZOTI 3 91. | QUEEN 5
6. | ASIA 2 49. | ERROL BROWN 1 92 |REM 4
7. | BAD COMPANY 3 50. | EUROPE 2 93. | RAINBOW 4
8. | BARKLEY-JAMES- 2 51. | EURYTHMICS 1 94 | REO SPEEDWAGON 3
HARVEST 52. | FOREIGNER 6 95. | RIGHTEOUS BROTHERS 3
9. | BEASTIE BOYS 2 53. | FRANK SINATRA 2 96. | ROBERT PALMER 4
10. | BEATLES (THE) 19 54, | GABRIEL, PETER 3 97| ROLLING STONES (THE) i2
11. | BEE GEES 10 55. | GALANI DIMITRA (Greek 3 98. { ROY ORBINSON 6
12. | BEETHOVEN, LUDWIG 5 artist) 99, | SANTANA 3
VAN 56. | GARY MOORE 4 100] SCORPIONS 6
13. | BERLIN 1 57. | GARY NEWMAN 3 101] SHIRLEY BASSEY 3
14. | BLACK SABBATH 5 58. | GLORIA GAYNOR 2 102] SMASHING PUMPKINS 4
15. | BONEY M 4 59. | GRIEG, EDWARD 6 103] SONIC YOUTH 1
16. | BONNIE TYLER 4 60. | HATZIDAKIS, MANOS 4 104] STEFKA SABOTINOVA 1
17. | BOOMTOWN RATS 1 61. | HOOTERS, THE 1 105] STEPPENWOLF 2
18. | BRUCE SPRINGSTEEN 5 62. | HOT CHOCOLATE 1 106] STEVE MILLER BAND 4
19. | BRYAN ADAMS 4 63. | HOUSTON, WHITNEY 2 107] STYX 2
20. | BRYAN FERRY 7 64. | IGGY POP 2 108] SUPERTRAMP 4
21. | CELINE DION 2 65. | JARRE, JEAN MICHEL 3 109] TALKING HEADS 1
22. | CELENTANO, ADRIANO 3 66. | JUDAS PRIEST 4 110] TCHAIKOVSKY 3
23. | CHOPIN 3 67. | KATE BUSH 2 111} THEODORAKIS (MIKIS) 5
24. | CHRIS DE BURGH 5 68. | KSILINA SPATHIA 2 112] TINA TURNER 3
25. | CHRISTOPHER CROSS 3 69. | LED ZEPPELIN 5 113 TOM JONES 6
26. | CINDERELLA 2 70. | LIPPS INC. 1 114] TOTO 4
27. | CITY 2 71. | LOU REED 4 115] TRAMMPS (THE) 1
28 | CLASH 3 72. | LUIS ARMSTRONG 3 116] TWISTED SISTER 2
29. | COCKNEY REBEL 2 73. | MADONNA 4 117/ 02 4
30. | CREEDENCE CLEAR 5 74. [ METALLICA 5 118] URIAH HEEP 4
WATER REVIVAL 75. | MICHAEL JACKSON 5 119/ VANGELIS 5
31. | DALARAS GIORGOS (Greek 3 76. | MITROPANOS (Greek artist) 2 120] VILLAGE PEOPLE 1
musician) 77. | MOODY BLUES 1 121] VIVALDI 3
32. | DAVID BOWIE 4 78. | MOTORHEAD 2 122/ WASP. 2
33. | DEEP PURPLE 7 79. | MOZART, WOLFGANG 5 123] WEBBER, ANDREW LLOYD 5
34. | DEMIS ROUSSOS 6 AMADEUS
35. | DEPECHE MODE 3 80. | NAZARETH 2
36. | DIANA ROSS 4 81. | NIRVANA 3
37. | DIO, RONNIE JAMES 3 82. | OASIS 3
38. | DIRE STRAITS 8 83. | OFFSPRING 4
39. | DONNA SUMMER 4
XIl. TIME REQUIRED FORAUTOMATIC RECOGNITION processors, then the time required for the automatic recognition

Suppose that a part of a musical recording has been obtail%oa ra_\dlo S|gn<_’:1l when _th_e model database consistsvsf
from the radio and stored in a “.wav” format file. It is difficult S°"95 IS approximately divided by the number of proceskors
E@erefore, one can achieve real-time automatic recognition,

to give an exact estimate of the time required for the automa hen the datab i h ds of ical
recognition of the radio signal since this time depends on thg€n when ihe database contains many thousands of musica
ordings, where the only restriction is the hardware avail-

exact size of the database of musical characteristics, as Welf% i
on the peculiarities of the radio signal in hand. However, eI

tended experiments show that when the underlying hardware j
a Pentium IIl at 500 MHz, with 256 MB RAM and the oper- Xﬁll. T IME REQUIRED FORFEATURE EXTRACTION FROM CD

ating system is Red Hat LINUX, then a typical maximum time OBTAINED MUSICAL RECORDINGS

required for deciding if the radio signal in hand corresponds to The necessary processing time for extracting the set of mu-
a specific CD musical recording whose musical characteristisigal characteristics from a single model musical recording de-
are stored in the system database, or not, is a bit less than 7 pgnds highly on the exact size of the specific recording. Exper-
for a database consisting of 458 model musical recordings. iments show that when the aforementioned hardware and op-

The average time required for deciding if the radio signarating system are used, then for a model musical recording of
in hand corresponds to a specific CD musical recording of ti35 min in duration, the necessary time is approximately 2.5 h.
system data base or not is approximately 3.5 min for the saidewever, we must stress that this procedure takes place only
database consisting of 458 model musical recordings. once for each model musical recording so that the obtained file

Notice that the whole system has been developed in sumhits musical characteristics is inserted into the database. No-
a way that it is parallelizable. In this way, if one us&S tice that this procedure is also parallelizable.
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XIV. CONCLUSION whereas theV-sample DFT of the:[n], starting at sampléx +

In this paper, a methodology and a related system for t%and ending ate + V), is given by
automatic recognition of musical recordings is presented. The No1
system comprises a database of characteristics extracted from X,[K] = Z 2[n + a + Whn.
each model musical recording by means of novel feature ex- e
traction algorithms. Criteria for the comparison of an unknown
musical recording with the model ones are introduced. THAUS
system was tested with extended experiments, which have _ —k
demonstrated that it offers more than 94% recognition rate, X [K] _(_x[ii] jx[a]) *W
even for musical recordings that have suffered from up to - k(n+1) —k
high-frequency-speed distortion. It is parallelizable, and it + <z_:0 zln + o+ 1IW *W
can operate essentially in real time for many thousands of "=

K(N—1)
recordings, according to the underlying hardware. +asfa+ NIW )

In the last summation, we make the substitution of the dummy
variable
On each selected signal, after calculating the absolute values
of the DFT, spotting the peaks, and sorting them according to t=n+1
their amplitudes, we employ the spreading function of maskingh. o
[1]-[3], [9], [13] as follows. which implies that
We use the formula

APPENDIX A

X[k =—z[a] « W * +z[a] « WF
F(z) =15.814+7.5%(2+0474) = 17.5% /1 + (2 + 0.474)? N-1 ‘
+ Z zfi + oW | s Wk

=1

where

i~ )\’ +z,[a+ NWHYD o
z = 13xarctan(0.000 76(7 —ip)) +3.5*arctan N_1
7500 K . ki —k
X[kl =—z[a] « W " + Zaﬁ[z—i—a]W YW
i0 IS the masker frequency, ands the variable frequency (both i=0

with values in Hertz). We select the highest amplitude petk + z,[a + NJW*E -1,
the amplitude of a peak is smaller than the valug'¢f), then _ _

we remove this peak from the “list” of the sorted peaks. Weherefore, we finally obtain that
continue by applying the same procedure to the next remainin a i W(N 1
peak until all peaks are exhausted. ng[k] = —zfa] « W 4 X[k« W 4z, [o + NJWHN—Y

It is clear that the spreading function is limited between the . . .
frequencies, — W andi, + W, wheref, is the masker fre- namel_y, the sought-for recu_rswe-adaptlve_ FFT computation.
quency. Our extended experiments indicate that the vallié of Notice that the computational complexity of a standard FFT

must lie in the range of 27 to 67 Hz, depending on the qualilt (N|/2) * }Og? ]\Lcomp:?xl_mutlltlphcatltc])ns, Letth *leg%.N EET
of the radio/TV obtained signal. The choice of an appropria Mpie real numboer muftipiications, whereas the adaptive

W value depends on the degree of distortion of the radio/ﬁ?mp.matlon algorithm, presented he_re, re_qL&’Hsrea_l mult-
obtained signal. The smaller the valugit the greater the dis- plications. Therefore, the latter algorithm is many times faster

crimination capability, but, in addition, the greater the diﬁicult%aiégfefiigia{g ;_;; ?écscc::]dcl)n?* é(;stze.t\’ylsng:gr;rfggﬂa e as
in recognizing highly distorted signals. 9 pies. u - ! v

high a resolution and accuracy as possible, where the only re-
striction is the limited processing time. Therefore, we found that
the FFT window length of value¥ = 8+1024, N = 161024,

Let us suppose that we have computed the FFT of a siga@d N = 32 « 1024 offers very good results. It is clear that
x[n] of N samples, starting at sampieof the time domain and for these values ofV, the adaptive FFT algorithm presented
ending at sampléa + N — 1). Next, suppose that we want tohere requires a number of multiplications from 3.25 to 3.75
calculate theV-sample FFT of the same signgl] starting at  times smaller than the one of the standard FFT. Considering the
samplga+1) of the time domain and ending at sampiet- V). memory allocations as well as the additions involved, one can
This second FFT calculation can be performed adaptively, i.gafely state that the presented adaptive FFT method calculates
by taking into account the information of the first FFT, as it ishe set ofL-element vectors of the whole musical recording at

APPENDIX B

described below [24]-[27]. least four and a half times faster than the classical FFT method.
Notice, at first, that theV-sample DFT of ther[n], starting To set ideas, in order to obtain this set of vectors for a musical
at samplex and ending af« + N — 1), is given by recording that is 3.5 min long sampled at a rate of 22 050 sam-
N_1 ples/s, the time required is at least 7 h if the standard FFT al-

X[k = Z z[n + o WH", whereWw = ¢—32=/N) gorithm is used, while it is less than 90 min when the presented

adaptive FFT computation is applied.

n=0
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Key in Music A closed system of functionally related chords [17]
generated by certain tonal conventions associated with the
western concept of diatronic major and minor scales. The
broader term tonality is sometimes used as a synonym for key1g]

APPENDIX C

Scale A pattern of pitch relationships.

Tempo or RhythA concept that embraces all durational as-(1q
pects of music. The specific occurrence of notes in musical time

is determined by rhythm.

Monophonic Music Usually describes music for a single
voice or part, for example, playing song and unaccompanied
solo song. However, some tend to consider monophoni&ll
music to be a sequence of simple notes produced by a single
instrument, and we adopt this notation throughout the paper. [22]

Polyphonic Music Music in more than one part, music in

many parts, and the style in which all or several of the musical!
parts move to some extent independently. However, some tend

to consider polyphonic music to be an arbitrarily complicated?24]
melody produced by a variety of instruments and/or voices, an&S]

we adopt this notation throughout the paper.

Instrumental MusicMusic performed using one or more mu- [26]

sical instruments without the presence of voice.

Song with Lyrics A piece of music performed by a voice, [27]

with or without instrumental accompaniment.
Recognition of an Unknown Musical Recordiriggsentially

a matching procedure between an unknown recording and a

known one, based on common characteristics and leading to
identification of the unknown musical recording.

(1
(2]

(3]
(4]

(3]
(6]
(71

(8]
9]

(10]

(11]

[12]
[13]
(14]

[15]

REFERENCES

M. Bosi et al, “ISO/IEC MPEG-2 Advanced audio coding]! Audio
Eng. Soc.vol. 10, pp. 789-813, 1997.

K. Brandenburg and G. Stoll, “ISO-MPEG-1 Audio: A generic standari
for coding of high quality digital audio,J. Audio Eng. Sogvol. 42, no.
10, pp. 780-792, 1994.

J., Summer 1995.

R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J. Cun-
ningham, “Toward the digital music library: Tune retrieval from acoustic
input,” Proc. ACM Digital Libraries pp. 11-18, 1996.

R. J. McNab, L. A. Smith, D. Bainbridge, and I. H. Witten, “The New
Zealand digital library MELody inDEX,'D-Lib Mag., 1997.

M. Mongeau and D. Sankoff, “Comparison of musical sequences
Comput. Humanitiesvol. 24, pp. 161-175, 1990.

A. Pikrakis, S. Theodoridis, and D. Kamarotos, “Recognition of isolate
musical patterns in the context of Greek traditional musicPiiac. Int.
Conf. Electron. Circuits Syst. (ICECS)997.

——, “Recogpnition of isolated musical patterns using discrete obser
tion hidden Markov models,” ifProc. Eur. Signal Process. Coni.998.

J. H. Rothweiler, “Polyphase quadrature filters—A new subband coding

[16]

[20]

P. Davis, “A tutorial on MPEG/Audio compressiodEEE Multimedia conferences on these subjects.

907

P. M. Todd and D. G. Loylusic and Connectionism Cambridge, MA:
MIT Press, 1991.

M. C. Mozer and T. Soukup, “Connectionist music composition based
on melodic and stylistic constraints,” Advances in Neural Information
Processing Systems 3San Francisco, CA: Morgan Kaufmann, 1991,
pp. 789-796.

A. Weigend, “Connectionism for music and audition,”Aglvances in
Neural Information Processing Systems &an Francisco, CA: Morgan
Kaufmann, 1994, pp. 1163-1164.

] A. Robel, “Neural network modeling of speech and music signals,” in

Advances in Neural Information Processing Systems@ambridge,
MA: MIT Press, 1997, p. 779.

R. O. Duda, “Connectionist models for auditory scene analysigitin
vances in Neural Information Processing Systems $an Francisco,
CA: Morgan Kaufmann, 1994, pp. 1069-1076.

E. D. Scheirer and M. Slaney, “Construction and evaluation of a ro-
bust multifeature speech/music discriminator,Piroc. IEEE Int. Conf.
Acoust., Speech, Signal Processiktyinich, Germany, 1997.

B. C. J. Moore, “Frequency difference limens for short-duration tones,”
J. Acoust. Soc. Amerol. 54, pp. 610-619, 1973.

C. C. Wier, W. Jesteadt, and D. M. Green, “Frequency discrimination as
a function of frequency and sensation level,Acoust. Soc. Amerol.

61, pp. 178-184, 1977.

L. R. Rabiner and B. GoldTheory and Application of Digital Signal
Processing Englewood Cliffs, NJ: Prentice-Hall, 1975.

M. E. Frerking, Digital Signal Processing in Communication Sys-
tems Boston, MA: Kluwer, 1994.

M. R. Portnoff, “Implementation of the digital phase vocoder using the
fast Fourier transform fEEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-24, pp. 243-248, 1976.

J. B. Allen and L. R. Rabiner, “A unified approach to short-time Fourier
analysis and synthesisProc. IEEE vol. 65, pp. 1558-1564, 1977.

Dimitrios Fragoulis was born in Athens, Greece, in
1973. He received the Diploma and M.Sc. degrees
in electrical and computer engineering from National
Technical University of Athens in 1996. He is cur-
rently pursuing the Ph.D. degree in computer engi-
neering at the same university.

His research interests and recent work are in music
and speech processing and automatic recognition,
study of psychological and perceptual aspects of
sound, etc. He has four publications in international
journals and eight publications in international

George Rousopoulosvas born in Athens, Greece,

in 1971. He received the diploma in computer and
software engineering from the Technical University
of Patras, Patras, Greece, in 1994. He received the
Ph.D. degree in computer engineering from the Na-
tional Technical University of Athens in 2000.

His research interests and recent work are in music
and speech processing and automatic recognition,
image processing, pattern recognition, algorithm
robustness, algorithms for echo cancellation, etc. He
has six publications in international journals and ten

technique,” inProc. Int. IEEE Acoust., Speech, Signal Process. Confpublications in international conferences on these subjects.

vol. 27.2, Boston, MA, 1983, pp. 1280-1283.
C.J. Stevens and C. R. Latimer, “A comparison of connectionist models
of music recognition and human performanddjhds Mach, vol. 2, pp.
279-400, 1992.

——, “Recognition of short tonal compositions by connectionis
models and listeners: Effects of feature manipulation and training
Musikometrikavol. 5, pp. 197-224, 1993.

——, “Music recognition: An illustrative application of a connectionist
model,” Psychol. Musigvol. 25, pp. 161-185, 1997.

E. Zwicker and H. FastlPsychoacoust. Berlin, Germany: Springer-
Verlag, 1990.

S. Handel,Listening: An Introduction to the Perception of Auditory
Events Cambridge, MA: MIT Press, 1989.

B. C. J. Moore An Introduction to the Psychology of HearingNew
York: Academic, 1997.

Thanasis Panagopouloswas born in Athens,
Greece, in 1973. He received the diploma and M.Sc.
degrees in electrical and computer engineering from
National Technical University of Athens in 1996. He
is currently pursuing the Ph.D. degree in computer
engineering at the same university.

His research interests and recent work are in music
and speech processing and automatic recognition,
image processing, pattern recognition, algorithms
for echo cancellation, etc. He has three publications
in international journals and five publications in

international conferences on these subjects.



ences on these subjects.

Constantin Alexiou was born in Igoumenitsa,
Greece, in 1973. He received the diploma and M.Sc
degrees in electrical and computer engineering fror
National Technical University of Athens, Athens,
Greece, in 1996. He is currently pursuing the
Ph.D. degree in computer engineering at the sarr
university.

His research interests and recent work are in musi
and speech processing and automatic recognition, &
gorithm robustness, algorithms for echo cancellatio
biomedical engineering, etc. He has three publica-

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

Constantin Papaodysseuswas born in Athens,
Greece. He received the diploma in electrical and
computer engineering from National Technical
University of Athens (NTUA) and the M.Sc. degree
from Manchester University, Manchester, U.K. He
received the Ph.D. degree in computer engineering
from NTUA.

Since 1996, he has been an Associate Professor
with Department of Electrical and Computer Engi-
neering, NTUA. His research interests include music
and speech processing and automatic recognition,

tions in international journals and seven publications in international confémage processing, applied mathematics, algorithm robustness and quantization
error analysis, adaptive algorithms, biomedical engineering, etc. He has

more than 25 publications in international journals and many publications in
international conferences on these subjects.



