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On the Automated Recognition of Seriously Distorted
Musical Recordings

Dimitrios Fragoulis, George Rousopoulos, Thanasis Panagopoulos, Constantin Alexiou, and Constantin Papaodysseus

Abstract—In this paper, a new methodology is presented for the
automated recognition-identification of musical recordings that
have suffered from a high degree of playing speed and frequency
band distortion. The procedure of recognition is essentially based
on the comparison between an unknown musical recording and
a set of model ones, according to some predefined specific char-
acteristics of the signals. In order to extract these characteristics
from a musical recording, novel feature extraction algorithms are
employed. This procedure is applied to the whole set of model
musical recordings, thus creating a model characteristic database.
Each time we want an unknown musical recording to be identified,
the same procedure is applied to it, and subsequently, the derived
characteristics are compared with the database contents via an
introduced set of criteria. The proposed methodology led to the
development of a system whose performance was extensively
tested with various types of broadcasted musical recordings.
The system performed successful recognition for the 94% of the
tested recordings. It should be noted that the presented system is
parallelizable and can operate in real time.

Index Terms—Automatic music recognition, distorted in fre-
quency recordings, fuzzy logic and music, musical recording
automated recognition, music pattern recognition, music pro-
cessing.

I. INTRODUCTION

CURRENT research in the field of music pattern recogni-
tion and processing, among others, deals with classical

pattern recognition methods used to correlate small-duration
parts of music [7], [8] with automatic music transcription
[4]–[6]. Moreover, a considerable effort has been made to
apply the techniques of connectionism and parallel distributed
processing (PDP) in a wide range of topics in music [10]–[12],
[16]–[20]. The so-called “connectionist” or neural network
computer models allow investigation of processes, such as
learning, generalization, and forms of representation, that are
difficult or impossible to study in earlier physiological models.
Hence, they can probably help us to learn more about the
processes and representations involved in music perception.

Music transcription systems usually work by deriving infor-
mation about the tempo, the scale, the sound length, and the
key of a musical signal (for definitions see the Glossary in Ap-
pendix C). However, songs are not stable signals in time; they
contain abrupt sounds, and they have many fluctuations in pitch,
which are factors that reduce the accuracy of sound segmenta-
tion, thus reducing the accuracy of the developed musical score
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data. Since the existing music transcription systems generate
musical score data with low accuracy, they are not of widespread
practical use.

It seems that analysis of music into notes is unnecessary for
classification of music. Thus, more effort should be spent at-
tempting to build systems that operate directly on music. An in-
teresting speech/music discrimination system based on features
that were thought to be useful discriminators was presented re-
cently [21]. This system does not recognize musical recordings
but instead classifies a signal as speech or music, assuming that
there are no regions of overlap.

In any case, the realization of a system that automatically
recognizes musical recordings remains one of the major issues
in the field of one-dimensional (1-D) digital signal processing.
Such a system could find extended application to the automatic
broadcast counting and would be a very useful tool for compa-
nies in the field of intellectual property rights or companies that
compile musical data for statistical purposes (e.g., charts).

The methodology introduced in this paper provides the ability
to develop such a system that accomplishes automatic recogni-
tion of an unknown musical recording, among a set of others
considered to be the model ones. The system works successfully
for signals that have suffered a frequency-speed distortion up to
a high degree, which is the case for most of the musical record-
ings received by radio. The term “frequency-speed distortion up
to a high degree” or simply “up to a high frequency-speed dis-
tortion” is used to describe the following.

a) There may be a non-audible noise present at the radio re-
ceived signal.

b) The CD and radio obtained musical recordings may have
been played at arbitrarily different speeds. Most of the
tested recordings have shown a playing speed difference
of up to 5% but have been observed differing the playing
speeds up to 15%. A change in playing speed essentially
causes a “stretch” to the spectral shape of the recording
(see Section V). Therefore, the frequency components
of the recording are shifted from their initial positions,
and as a result, the sound quality changes to a point.
Experiments have shown that the “just noticeable differ-
ence” (jnd) of two sinusoidal tones of different frequency
varies between 0.1%–0.2% [22], [23]. However, for com-
plex signals such as musical recordings that include a
variety of spectral components with different duration
and intensities, it seems quite difficult to define a “just
noticeable playing speed difference” threshold. In spite
of the objective difficulties, we have observed, without
claiming that this constitutes a founded psychoacoustic
experimental, that a playing speed difference smaller than
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Fig. 1. Depiction of the differences in the time domain between a part of a
model musical composition and a part of a radio sampled one that correspond
to exactly the same piece of music (from “Born to be Wild” by Steppenwolf).

approximately 2% does not cause a noticeable change in
the sound quality of the musical recording.

c) Radio stations that transmit a considered musical
recording may amplify frequency bands.

The experiments have been performed on approximately 920
recordings obtained from 18 different FM radio stations and
cover a very extended range of signal strengths. Five of them
use a compressed form for recordings they broadcast (e.g., trans-
mitting MPEG–Layer 3 compressed music). These experiments
show that at least 96% of the obtained recordings satisfy the
aforementioned conditions. Notice that a radio-received signal
having suffered even a small distortion of the type described in
a)–c) can manifest an obvious discrepancy from its CD coun-
terpart both in time and frequency domain: a fact that creates
serious difficulties in the automatic recognition procedure (see
Figs. 1 and 2).

The introduced methodology, as it will be shown in the
following, offers the ability to distinguish musical parts that
correspond to the same melodic pattern (sequence of notes that
constitute a melody), such as different performances of the
same musical composition. This characteristic of the method
and system introduced here is related to the specific feature
extraction procedure applied to the input musical part. As an
example, we can consider the case of two recordings of the
same melody performed by two different singers, accompanied
by either the same or by different instruments. The proposed
model, with proper adjustment of its parameter values, is able
to distinguish these two recordings despite the fact that they
correspond to the same melodic pattern. Therefore, we can say
that speaker recognition and voice verification are two potential
applications of the introduced methodology. According to
the above discussion, if we consider recordings of a group of
speakers articulating a defined set of phrases, then it is expected
that the model, after proper changes, might be able to recognize
either the speaker articulating a specific phrase or the phrase
articulated by a specific speaker.

Fig. 2. Depiction of the differences in the frequency domain between a part of
a model musical composition and a part of a radio sampled one that correspond
to exactly the same piece of music (from “Baker Street” by Gerry Rafferty).

II. PROBLEM DESCRIPTION

If one attempts to recognize a musical recording automati-
cally, one, among others, faces the following difficulties.

a) Usually, a musical recording is a fast varying signal com-
prising a variety of different signals such as the voice of
the singer and the sounds produced by various musical in-
struments. Therefore, a musical recording is a mixture of
many frequencies: a fact that makes the identification of
single instruments in it and the note transcription an ex-
tremely difficult task.

b) In order for such a system to have a serious applicability,
it must be able to recognize a musical recording among
many tenths of hundreds or thousands of others. Con-
sidering that a 3-min-long musical recording in “.wav”
form occupies approximately 10 MB and that, in order to
obtain CD quality sound, one has to sample the musical
recording at a sampling frequency of 44 100 samples/s, it
is obvious that one must manipulate a huge amount of in-
formation.

c) The transmission and reception procedure can distort the
time and frequency domain information of each musical
recording.

d) The fact that radio and TV station personnel (e.g., DJ)
frequently acts on a transmitted musical recording at will
either by amplifying selected frequency bands and/or by
changing the speed the source (CD, tape, etc.) is played
seems to constitute perhaps the most important problem
since it is not possible to model such a disturbance.

III. PRESENTATION OF THEPROPOSEDMETHODOLOGY

Consider two signals corresponding to the same musical
recording: one received by a radio or a TV set and, therefore,
having suffered an arbitrary distortion due to the reasons
referred to in the previous section, and the other obtained from
a CD. First of all, the aforementioned distortion drastically
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changes the quantitative information obtained from a time
domain signal analysis. For example, if one considers quantities
such as number of zero-crossings per frames ofsamples,
relative position of peaks, average slope or curvature per frame,
relative amplitude of peaks etc., for the model song obtained
from CD and the very same musical recording received by a
radio or a TV set, then it is clear that huge differences occur
between values of the same quantities for the two signals.
Clearly, the greater the distortion, the greater the discrepancy
between these values.

Similarly, in the frequency domain, serious discrepancies ap-
pear between many (if not drastically most) quantitative char-
acteristics-parameters of the Discrete Fourier Transform (DFT)
performed on the CD musical recording and the DFT of the
signal received by a radio or a TV set. For example, the number
of peaks per frame of samples, the actual DFT peaks ampli-
tude, the energy per various bands, the order of the higher peaks
etc., manifest serious discrepancies (see Fig. 2).

However, we have spotted some critical similarities between
the spectrum of the CD-obtained signal and the radio-obtained
signal of the very same musical recording, and we exploited
them in order to achieve automatic recognition of musical
recordings. After an extended number of experiments, we have
reached the conclusion that the musical information existing in
a time frame of a musical recording is intimately connected to
the position of spectral peaks of this frame. Therefore, if the
spectral peak position information is kept for sufficiently many
frames starting at various time instances of a musical recording,
then the recording identification is achieved. However, since
it is impossible to store such a large amount of information
for just one musical recording, a reduction of the necessary
storage capacity is attempted by a division of the frequency
domain in bands. The width of the bands is chosen to be almost
exponentially augmented in order to imitate the frequency
selectivity of the human ear, i.e., the experimentally verified
shape of the auditory filter [14], [15].

IV. DIVIDING THE AUDIBILITY DOMAIN INTO BANDS

The whole audibility domain is divided into 57 bands of al-
most exponential width, as shown in Table I. It is possible that
other divisions in bands also work well. In any case, the final cri-
terion for the correctness of a choice is the efficiency of recogni-
tion validated by the experiment. In addition, the proper division
in bands is strongly correlated with the degree of distortion that
the whole set of unknown musical recordings has suffered. If it
can be ensured that the considered unknown musical recordings
have suffered a smaller distortion than the one described in the
previous section, then another choice of band division may be
optimal. The usefulness of dividing the audibility domain into
bands will be made clear in the subsequent sections.

V. BUILDING A SET OF “BAND REPRESENTATIVEVECTORS”
FOR THEUNKNOWN MUSICAL RECORDING

Suppose that a part of an unknown musical recording is given
in order to be recognized automatically. Then, at first, we do the
following.

TABLE I
DIVISION OF THE SPECTRUM INTO57 BANDS

A1) We take at random a part of the unknown musical
recording, of length samples, and we transform
it into a form suitable for processing by a computer,
preferably in “.wav” format. In the subsequent anal-
ysis, we will refer to it by the name “the radio signal
part,” although the unknown musical recording can be
obtained from CD, television, tape, or any other related
source for which the introduced automatic recognition
methodology works perfectly well too.

A2) At the beginning of this signal, we pick a “first frame”
of samples (say, ), and we apply the
DFT transform on them.

A3) We calculate the absolute value of this DFT trans-
form, and then, we apply a masking-like procedure
described in Appendix A, on each peak of it. This
procedure causes the elimination of some acoustically
less important peaks of the DFT. Next, the positions
of the remaining peaks are successively multiplied by
the stretch or shift factors: , . In this
way, shifted copies of the peaks are derived
and stored temporarily in arrays. On every
one of these arrays, the procedure described inA4)
andA5) is applied.

A4) We assign each peak of the current array to the proper
band (see Table I). If more than one peak belong to
the same band, we choose, among them, the maximum
amplitude peak, and we consider it to be the amplitude
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of the specific band corresponding to the shift factor
. Otherwise, if no peaks belong to a band, we assign

a zero value to this band amplitude in connection with
the shift factor .

A5) We find the bands of greater amplitude, and we store
their corresponding index numbers. In this way, we
obtain a vector we call “the first band representative
vector corresponding to the shift factor,” which cor-
responds to the first frame with values the aforemen-
tioned index numbers.

The above procedure results in the creation of a group of
“ first band representative vectors.”

B1) We choose a “second frame” of samples [ exactly
the same as in stepA2) above] at a fixed distance of
time samples from the first sample of the radio signal
part, and we apply the DFT transform to them.

Next, we repeat stepsA2)–A5) for this “second
frame” in order to obtain a group of “second
band representative vectors.”

) We choose an “ th frame” of samples at a fixed
distance of time samples from the first sample of the

th frame, and we apply the DFT transform to
them.

Next, we repeat stepsA2)–A5) for this “ th frame” in order
to obtain a group of “ th band representative vectors.”

In this way, we obtain groups of band representative vec-
tors [each group consisting of vectors], corresponding
to the above chosen frames.

Notice that the experiments we have performed show that the
number of band representatives must satisfy the inequality

.

VI. BUILDING A SET OF “BAND REPRESENTATIVEVECTORS”
FOR A MODEL MUSICAL RECORDING

We apply an analogous procedure to each signal obtained
from a CD (we will call it ”the CD signal”). In fact, we take
samples starting at the first sample of the CD signal, we repeat
stepsA2)–A5), and in this way, we create a vector ofelements.
We do the same for every sample of the CD signal, thus finally
obtaining a set of vectors where each consists ofelements. We
will use for this set the name “model set of band representative
vectors.” Notice that it is very usual that two or more consec-
utive time samples correspond to identical band representative
vectors. Therefore, we attach to each such vector the number of
time samples for which it remains identical, which we will call
“repetitions number of the vector.”

The creation of those vectors requires a considerable amount
of computational complexity since it involves a fast Fourier
transform (FFT) computation of samples for each sample of
the CD signal in hand. Considering that a musical recording of

3–5 min in duration, sampled at a rate of 22 050 samples/s, con-
sists of approximately samples,
it is clear that the creation of these vectors may require many
hours of computations, even if a 500-MHz Pentium III processor
is used. Clearly, for a longer recording, say a classical one of
30-min duration, the creation of these vectors may require sev-
eral days if the classical FFT method is used. For this reason, we
have applied an adaptive FFT computation algorithm, which is
presented in Appendix B, that achieves a considerable reduction
of the overall computation time.

VII. CODING OF THEBAND REPRESENTATIVEVECTORS OF

THE MODEL SET

The band representative vectors derived from each model mu-
sical recording require a great amount of storage capacity if they
are stored directly in a file with the ASCII format or even with
the standard binary format. Therefore, we have developed an ef-
ficient binary-encoding scheme that drastically reduces the re-
quired storage amount without any loss of information, thus also
decreasing the access time to the band representative vectors.
This scheme will be presented below.

As mentioned in the previous subsection, each band repre-
sentative vector consists ofindex numbers, where each index
characterizes a frequency band. The order of these band indices
in each vector is not of importance for the automatic recogni-
tion method we employ; therefore, we store them in descending
value. In addition, it is quite common that consecutive band rep-
resentative vectors, i.e., vectors that correspond to windows that
differ only in one sample, are exactly the same. Therefore, in
order to store a sequence of identical band representative vec-
tors, it is sufficient to store the corresponding vector once, to-
gether with the number of consecutive identical band represen-
tative vectors, which we will call “number of repetitions.” In
the following, when we refer to a band representative vector, we
consider that a corresponding number of repetitions is attached
to it.

In order to obtain a more efficient coding, we exploit the fact
that even when two consecutive band representative vectors are
different, the number of different entries in them is typically
very small, usually one or two. Therefore, we have developed
the following differential coding algorithm.

A) The band representative vector corresponding to the
first sample of the model musical recording in hand is
stored as follows: We assign to each band representa-
tive vector of the CD signal a 57-element binary array.
Each element of this binary array represents one of
the 54 bands into which we have decided to divide the
whole audibility domain. A value of “1” is assigned to
an array element when the corresponding band is one
of the greater in amplitude bands of the window in
hand with a nonzero value, whereas a value of “0” is
assigned otherwise. Notice that at mostbits can be
set to “1.”

For example, if , then a possible band repre-
sentative vector is
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We create a binary array of 58 binary digits, all el-
ements of which are zero, except those with a posi-
tion corresponding to a band index of the above vector.
Therefore, we obtain the array

B) In order to store the information of subsequent band
representative vectors, we consider the number of dif-
ferent entries between the vector in hand and the pre-
vious vector.

When the number of different values is less than or equal
to 3, we simply store the frequency band index numbers that
belong to the present vector but not in the previous one (named
“incoming indices”) and the index numbers of the frequency
bands that were entries of the previous vector but are not present
in the vector in hand (named “outgoing indices”). We let the
outgoing indices first, and the incoming indices next, form an
array called “the information array.” If the number of outgoing
indices in not the same as the number of incoming indices, then
the index “ 1” is inserted in the proper place.

When this number of different values is greater than 3, we
store the whole vector with the compressed scheme described
in A). Notice that with this method, the storage of the model
band representative vectors requires 35 times less space than
the original index-numbers array and approximately nine times
less space than the one used by a simple binary coding method.

In both cases, regardless of the number of different entries,
an additional number must be stored to represent the number
of repetitions of each band representative vector. To survive a
further storage reduction, we use a variable number of bytes for
the storage of this number, according to its size, as shown in
Table II.

VIII. PATTERN MATCHING ALGORIGHM FOR THEBAND

REPRESENTATIVEVECTORS

Consider two sets of band representative vectors that corre-
spond to exactly the same piece of music: one to the “radio/TV
received” musical recording and the other to the model one. All
entries of these vectors cannot, in practice, be identical due to
the existent distortion. Therefore, in order to achieve musical
recording recognition, it is absolutely necessary to employ a pat-
tern matching algorithm that allows for a successful matching
between two sets of vectors, even if they have a considerable
number of different elements.

Thus, a pattern matching algorithm has been developed,
where each band representative vector of the radio/TV received
recording part is considered as an independent state. Transition
to the th state is allowed if and only if all imposed restrictions
in the previous states are satisfied. To set ideas, we
compare the first band representative vectorcorresponding
to the shift factor of the unknown part with the first band
representative vector of a model musical recording
(where index expresses the starting time sample of the
window that has generated the representative vector in hand),
and then, we have the following.

TABLE II
(a) NUMBER OF BYTES USED FOR THESTORAGE OF THEINFORMATION ARRAY

AND THE NUMBER OF REPETITIONS, ACCORDING TOITS SIZE. (b) CODE

CHARACTER VALUE ACCORDING TO THENUMBER OF CHANGES AND

NUMBER OF REPETITIONS

) If the number of common elements is less than ,
then we stop the comparison procedure in hand, and
we restart to compare vector with the next band
representative vector of the model set .

) If the number of common elements is greater than or
equal than , then, and only then, we proceed
to the comparison between the second band represen-
tative vector that corresponds to the same shift
factor of the unknown recording and the vector

of the model set of band representatives
corresponding to the time sample , where
stands for the integer part of the real number.

Then, we have the following.

) If the number of common elements between and
is less than , then we do not con-

tinue the comparison, and we restart the comparison
of vector with the next band representative
vector of the model set , just as in .

) If the number of common elements between and
is greater than or equal to , then,

and only then, do we proceed to the comparison be-
tween the third band representative vectorthat cor-
responds to the shift factor of the unknown recording
and a vector of the model set of band
representatives corresponding to the time sample

.

) If the number of common elements between and
is less than , then we
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do not continue the comparison. We ignore all pre-
vious comparisons, and we restart the comparison of
vector with the next band representative vector of
the model set , just as in .

) If the number of common elements between and
is greater than or equal to

, then, and only then, do we proceed to the compar-
ison between the mean values of common elements be-
tween all the previous pairs of band representative vec-
tors, namely

) If this mean value is greater than or equal to
, then the matching criterion is satisfied. Otherwise,

if the mean value is smaller than , then the
matching criterion is not satisfied. We consider that
no matching exists, and we restart the comparison of
vector with the next band representative vector of
the model set , just as in .

Notice that can be identical to ,
, in which case, no comparison is performed at the spe-

cific stage, but instead, the value of the previous comparison is
used.

If all comparisons prove to be successful, then the current
value of the shift factor, say , is stored, and the system pro-
ceeds to the final criterion that will be described in the fol-
lowing subsection. The value of constitutes an estimation of
the difference in playing speed between the unknown musical
recording and the current model musical recording.

Otherwise, if all the model band representative sets have been
compared with the band representative vectors of the unknown
musical recording corresponding to the shift factorwithout
success, then the comparisons restart in order to examine the
band representative vectors of the unknown recording corre-
sponding to the next shift factor .

The whole procedure stops when all band representative sets
of the unknown musical recording corresponding to all the
factors , have been compared with all model
representative vectors of the database unsuccessfully, in which
case, the system decides that the part of the unknown musical
recording does not correspond to any of the model musical
recordings of the database. The state diagram shown in Fig. 3
represents the above algorithm.

IX. FINAL STAGE PATTERN MATCHING

ALGORITHM—ENVELOPE MATCHING IN THE FREQUENCY

DOMAIN

An additional final criterion for the identification of a musical
recording suffering from an up to high-frequency-speed distor-
tion is the similarity of its frequency domain stretched envelope
with the corresponding envelope of its counterpart model mu-
sical recording. To be specific, suppose that we pick a part of
such an unknown signal, e.g., received by radio or TV, of du-
ration, say, s. Suppose, moreover, that we have applied the
first criterion to this signal part and that we have obtained a pos-
itive outcome for a part of a model musical recording. Thus, we

Fig. 3. State diagram for the pattern matching algorithm for a single shift factor
f .

want to confirm if these two parts correspond to the same mu-
sical recording. In order to accomplish this, we do the following.

1) We apply the sample DFT transform on the corre-
sponding parts of the two signals. Proper values will
be given below.

2) We createa first frequency domain envelopeof the halves
of the two DFTs by finding all maxima of the DFT for
both signal parts and by interpolating them linearly.

3) If is greater than 32 000 samples, then experiments
show that these two envelopes follow the two signals very
closely: a fact that is not satisfactory for the present ap-
plication. Therefore, we repeat step 2) of the above pro-
cedure in the sense that we find all maxima of the first
frequency domain envelope of both signal parts, and we
interpolate them linearly, thus obtaining a “second fre-
quency domain envelope” of each signal part.

4) If is greater than 64 000 samples, then we repeat
step 2) of this procedure once more, and we get a “third
frequency domain envelope” for both halves of the
sample DFTs. In the subsequent analysis, we will refer to
them by the name “frequency domain envelopes.”

5) We compute the integral of these two frequency domain
envelopes, and we normalize them by dividing all their
values by the corresponding integral. Afterwards, we
multiply the position of each point of the envelope that
corresponds to the unknown musical recording with the
shift factor , which has been estimated in the first
matching criterion. In this way, we virtually equalize the
playing speed of the unknown musical recording with
the one of the current model musical recording.

6) Finally, we calculate the difference between the abso-
lute values of the two normalized frequency domain en-
velopes. It has been observed that if the two sample
DFTs correspond to the same part of a musical recording,
then the difference between the absolute values of the
their half frequency domain envelopes has a value smaller
than a specific corresponding threshold. For example, if

samples, then the threshold value is 1.05.
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Concluding, we can say that the value of the difference be-
tween the absolute values of the half frequency domain en-
velopes of two signal parts (one model and one suffered an up
to high frequency-speed distortion) is another criterion for de-
termining whether or not these two parts correspond to the same
musical recording. An example of the aforementioned similar-
ities between the frequency domain envelopes of two signal
parts, corresponding to exactly the same piece of music, is given
in Fig. 3.

In addition, if the two signal parts correspond to the same
interval of a musical recording, then the difference between the
absolute values of their half frequency domain envelopes is a
measure of the degree of distortion of the unknown signal.

X. APPLICATION OF THEMETHODOLOGY—THE DEVELOPED

SYSTEM

On the basis of the above methodology, a system has been
developed that performs the following.

1) It picks a part of an unknown signal (e.g., radio or TV
signal) with length samples or, equiva-
lently, of a duration of approximately 12 s, at random.
Next, by applying to that part the procedure described in
the previous section, a set of groups of 11 vectors is
obtained, where each vector consists of band
representatives. Each vector of the unstretched set, cor-
responding to the stretch factor , has been calcu-
lated at a sample of the time domain having a distance of
22 000 samples from its subsequent vector or/and its pre-
vious one. Although the system works perfectly well for
great many values of and , where the only limitation
is the necessary processing time, we have chosen ,
and

if odd

if

if even.

2) For each stretch factor , we check to see if there is a
model set of band representative vectors having a distance
in the time domain of samples that match
with the corresponding 11-band representative vectors of
the unknown. If the musical recording that corresponds to
the unknown signal exists in our database, then some band
representative vectors of this model musical recording
satisfy this first matching criterion for a specific value of
the shift factor . In the case that there are more than
one musical recordings that satisfy the above criterion,
the final stage criterion is applied to define the one that
corresponds to the unknown signal on a FFT window
of length samples. If the least squares dif-
ference between the absolute value of the specific FFT
and of the model musical recording in hand is less than
1.05, then the system decides that the particular unknown
recording has been identified. When both criteria are sat-
isfied, the system offers the exact matching samples in
both the model musical recording and the unknown one.

XI. EXPERIMENTAL RESULTS

On the basis of the methodology introduced in this paper,
we have developed a system for automatic recognition of radio
obtained musical recordings.

We have tested this system in connection with 458 CD mu-
sical recordings (whose type and composers are referred to in
Table III) and 920 musical recordings received from a variety of
radio stations, where most have suffered from an up to high-fre-
quency-speed distortion.

In each one of the unknown signals, we have applied the fol-
lowing “pseudosampling” process, thousands of times.

We select a sample part of this signal, cor-
responding to approximately 12 s time duration. The beginning
of this frame is randomly chosen by a random numbers gener-
ator in order to imitate an actual random sampling process. To
each such sample signal part, we apply the aforementioned
procedure and then the first matching criterion, and if this is sat-
isfied, we apply the final stage criterion of the FFT envelopes.

For each unknown signal, we repeat this pseudosampling
process thousands of times until the following inequality is
satisfied:

Number of samples of unknown composition
Number of random pseudosamplings

For example, in an unknown musical recording that is 3 min
long, the pseudosampling and the related automatic recognition
procedure are performed more than 3000 times.

From the 920 musical recordings received from a variety of
radio stations, 813 of them have their model counterpart record-
ings included in the system. The remaining 107 unknown mu-
sical recordings were correctly rejected by the system for 100%
of the thousands of pseudosamplings performed on them.

The developed system recognized 740 musical recordings
with a 100% success rate for all the thousands random pseu-
dosamplings performed in each recording.

The other 73 radio received musical recordings had suffered
from even more serious distortion than the one described in the
introduction. However, the developed system still succeeds in
recognizing them with a rate varying from 25–98% of the per-
formed pseudosamplings with an average approximately 35%,
according to the degree and type of distortion that each of these
musical recordings suffered.

Therefore, the system manifests an overall successful recog-
nition percentage of 94% as follows:

Thus, one can safely state that the introduced methodology
and the related system offer automatic recognition of musical
recordings with a total success rate of more than 94%. Notice
that this percentage is independent of the fact of whether or not
the musical recording has been dynamically compressed.

Extensive research for the improvement of recognition rate is
currently being carried out, and the results will be presented in
forthcoming publications.
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TABLE III
TOTAL NUMBER OF 458 MUSICAL COMPOSITIONSINCLUDED IN THE DATABASE PER ARTIST/GROUP

XII. T IME REQUIRED FORAUTOMATIC RECOGNITION

Suppose that a part of a musical recording has been obtained
from the radio and stored in a “.wav” format file. It is difficult
to give an exact estimate of the time required for the automatic
recognition of the radio signal since this time depends on the
exact size of the database of musical characteristics, as well as
on the peculiarities of the radio signal in hand. However, ex-
tended experiments show that when the underlying hardware is
a Pentium III at 500 MHz, with 256 MB RAM and the oper-
ating system is Red Hat LINUX, then a typical maximum time
required for deciding if the radio signal in hand corresponds to
a specific CD musical recording whose musical characteristics
are stored in the system database, or not, is a bit less than 7 min
for a database consisting of 458 model musical recordings.

The average time required for deciding if the radio signal
in hand corresponds to a specific CD musical recording of the
system data base or not is approximately 3.5 min for the same
database consisting of 458 model musical recordings.

Notice that the whole system has been developed in such
a way that it is parallelizable. In this way, if one uses

processors, then the time required for the automatic recognition
of a radio signal when the model database consists of
songs is approximately divided by the number of processors.
Therefore, one can achieve real-time automatic recognition,
even when the database contains many thousands of musical
recordings, where the only restriction is the hardware avail-
ability.

XIII. T IME REQUIRED FORFEATURE EXTRACTION FROM CD
OBTAINED MUSICAL RECORDINGS

The necessary processing time for extracting the set of mu-
sical characteristics from a single model musical recording de-
pends highly on the exact size of the specific recording. Exper-
iments show that when the aforementioned hardware and op-
erating system are used, then for a model musical recording of
3.5 min in duration, the necessary time is approximately 2.5 h.
However, we must stress that this procedure takes place only
once for each model musical recording so that the obtained file
of its musical characteristics is inserted into the database. No-
tice that this procedure is also parallelizable.



906 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

XIV. CONCLUSION

In this paper, a methodology and a related system for the
automatic recognition of musical recordings is presented. The
system comprises a database of characteristics extracted from
each model musical recording by means of novel feature ex-
traction algorithms. Criteria for the comparison of an unknown
musical recording with the model ones are introduced. The
system was tested with extended experiments, which have
demonstrated that it offers more than 94% recognition rate,
even for musical recordings that have suffered from up to
high-frequency-speed distortion. It is parallelizable, and it
can operate essentially in real time for many thousands of
recordings, according to the underlying hardware.

APPENDIX A

On each selected signal, after calculating the absolute values
of the DFT, spotting the peaks, and sorting them according to
their amplitudes, we employ the spreading function of masking
[1]–[3], [9], [13] as follows.

We use the formula

where

is the masker frequency, andis the variable frequency (both
with values in Hertz). We select the highest amplitude peak. If
the amplitude of a peak is smaller than the value of , then
we remove this peak from the “list” of the sorted peaks. We
continue by applying the same procedure to the next remaining
peak until all peaks are exhausted.

It is clear that the spreading function is limited between the
frequencies and , where is the masker fre-
quency. Our extended experiments indicate that the value of
must lie in the range of 27 to 67 Hz, depending on the quality
of the radio/TV obtained signal. The choice of an appropriate

value depends on the degree of distortion of the radio/TV
obtained signal. The smaller the value of, the greater the dis-
crimination capability, but, in addition, the greater the difficulty
in recognizing highly distorted signals.

APPENDIX B

Let us suppose that we have computed the FFT of a signal
of samples, starting at sampleof the time domain and

ending at sample . Next, suppose that we want to
calculate the -sample FFT of the same signal starting at
sample of the time domain and ending at sample .
This second FFT calculation can be performed adaptively, i.e.,
by taking into account the information of the first FFT, as it is
described below [24]–[27].

Notice, at first, that the -sample DFT of the , starting
at sample and ending at , is given by

where

whereas the -sample DFT of the , starting at sample
and ending at , is given by

Thus

In the last summation, we make the substitution of the dummy
variable

which implies that

Therefore, we finally obtain that

namely, the sought-for recursive-adaptive FFT computation.
Notice that the computational complexity of a standard FFT

is complex multiplications, i.e.,
simple real number multiplications, whereas the adaptive FFT
computation algorithm, presented here, requiresreal multi-
plications. Therefore, the latter algorithm is many times faster
than the standard FFT, according to the window length, for

greater than 16 samples. In our case, it is desirable to have as
high a resolution and accuracy as possible, where the only re-
striction is the limited processing time. Therefore, we found that
the FFT window length of values , ,
and offers very good results. It is clear that
for these values of , the adaptive FFT algorithm presented
here requires a number of multiplications from 3.25 to 3.75
times smaller than the one of the standard FFT. Considering the
memory allocations as well as the additions involved, one can
safely state that the presented adaptive FFT method calculates
the set of -element vectors of the whole musical recording at
least four and a half times faster than the classical FFT method.
To set ideas, in order to obtain this set of vectors for a musical
recording that is 3.5 min long sampled at a rate of 22 050 sam-
ples/s, the time required is at least 7 h if the standard FFT al-
gorithm is used, while it is less than 90 min when the presented
adaptive FFT computation is applied.



FRAGOULISet al.: AUTOMATED RECOGNITION OF SERIOUSLY DISTORTED MUSICAL RECORDINGS 907

APPENDIX C

Key in Music: A closed system of functionally related chords
generated by certain tonal conventions associated with the
western concept of diatronic major and minor scales. The
broader term tonality is sometimes used as a synonym for key.

Scale: A pattern of pitch relationships.
Tempo or Rhythm: A concept that embraces all durational as-

pects of music. The specific occurrence of notes in musical time
is determined by rhythm.

Monophonic Music: Usually describes music for a single
voice or part, for example, playing song and unaccompanied
solo song. However, some tend to consider monophonic
music to be a sequence of simple notes produced by a single
instrument, and we adopt this notation throughout the paper.

Polyphonic Music: Music in more than one part, music in
many parts, and the style in which all or several of the musical
parts move to some extent independently. However, some tend
to consider polyphonic music to be an arbitrarily complicated
melody produced by a variety of instruments and/or voices, and
we adopt this notation throughout the paper.

Instrumental Music: Music performed using one or more mu-
sical instruments without the presence of voice.

Song with Lyrics: A piece of music performed by a voice,
with or without instrumental accompaniment.

Recognition of an Unknown Musical Recording: Essentially
a matching procedure between an unknown recording and a
known one, based on common characteristics and leading to the
identification of the unknown musical recording.
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