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ABSTRACT 

In this work, we consider the problem of 
pitch perception and we propose a fuzzy model 
that can account, in a qualitative way, for all the 
possible cases of complex tones. The model 
includes two distinct stages. The first stage is a 
frequency analyzer that determines the 
frequencies of some of the individual sinusoidal 
components of the complex tone. This information 
proceeds to the second stage of the model, which 
is a fuzzy processor. The processor receives the 
frequencies of the components and performs all 
the necessary computations in order to derive the 
pitch. The use of a fuzzy processor that represents 
and manipulates information, which is not precise, 
makes the model capable to predict the 
ambiguities of pitch that have been observed. 
 
1. INTRODUCTION 
 Pitch may be defined as that attribute of 
auditory sensation in terms of which sounds may 
be ordered in a musical scale. Like loudness and 
timbre, it is a subjective attribute that cannot be 
expressed in physical units. Essentially, pitch is 
related to the repetition rate of the waveform of a 
sound. In the case of a pure tone, it is primarily 
correlated with tone's frequency, despite the fact 
that intensity, duration and temporal envelope of 
the tone may have an influence on pitch. 
Assigning a pitch value to a complex tone is 
generally understood to mean determination of the 
frequency of a pure tone having the same 
subjective pitch as the complex tone. It is noticed 
that even sounds not formed of well-defined 
discrete sinusoids may evoke a pitch sensation. 
 In music, pitch is related with the features 
of melody and harmony. Since a simple tone 
evokes a pitch, then a sequence of tones with 
appropriate frequencies should evoke the percept 
of melody. However, it seems that a sequence of 
tones evokes a sense of melody only when tones 
lie below 4-5 kHz [1]. Also, experimental results 

on pitch identification have shown that the pitch of 
a complex tone can be ambiguous, especially if 
low order components are weak or missing, or if 
only a few components are present. 

 
Figure 1. A schematic model for a pitch perception 
system 

 The pitch of a complex tone could be 
derived from pitches of the individual components 
using a pattern recognition model [2]. Generally, 
such a model involves two stages, as illustrated in 
figure 1. The first stage is a frequency analyzer, 
which simulates the procedure of spectral analysis 
performed in the inner ear, so that different 
frequencies are separated. The second stage is a 
pattern recognizer, which determines the pitch of 
the complex tone from the frequencies of the 
resolved components. This is obtained by 
searching for a fundamental frequency whose 
"harmonics" match the frequencies of the resolved 
components of the stimulus as closely as possible. 

The pattern recognizer should be able to 
work properly in all possible types of complex 
tones. Consider as an example a sound consisting 
of the frequencies 200Hz, 400Hz, 600Hz, 
800Hz,etc. This sound has a low pitch, which is 
the same to the pitch of a 200Hz pure tone. 
However, it is possible to filter the sound in order 
to remove the 200Hz component and we will find 
that the pitch does not alter. The same result will 
be observed if we eliminate all except a small 
group of mid frequency harmonics, say 1800Hz, 
2000Hz, 2200Hz. This phenomenon is well known 
as the "missing fundamental". As an other 
example we could consider a sound that consists 
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of three sinusoidal components at 1840Hz, 2040Hz 
and 2240Hz. The perceived pitch of this sound is 
about that of a 204Hz pure tone. Actually, there is 
an ambiguity of the exact pitch value since it 
seems to lie around 180Hz, 204Hz and 227Hz. 

In order to have an effective pitch 
identification system the pattern recognizer should 
be able to manage with pitch ambiguities. To 
achieve this, a fuzzy processor is used which 
performs all the manipulations using fuzzy 
numbers. This feature of the processor provides 
the ability to adjust the calculation precision. Thus, 
if we represent the frequency values as fuzzy 
numbers, the system is able to derive vague values 
of pitch. 

 
2. FUZZY NUMBERS 
 Fuzzy numbers are a special form of fuzzy 
sets defined in the space of real numbers [3], [4]. 
They possess some additional properties relative 
with the shape of their membership functions. 
Definition: A fuzzy number F is a fuzzy set 
defined in R such that: 
(i)  F is a normal fuzzy set, i.e. there exists at least 

one element x of R which F(x)=1.  
(ii) F is convex.  
(iii) F is upper semicontinuous ⇔ All α-cuts of F 

are convex. 
(iv) F has a bounded support ⇔ All α-cuts are 

closed intervals of R. 

 
Figure 2. Examples of fuzzy numbers  

A fuzzy number may be considered as a suitable 
model of approximate notions, as for example, 
near zero, about 5, etc. Some shapes of fuzzy 
numbers are illustrated in figure 2. The 
membership function of the fuzzy number 
visualizes a grade membership of a given element 
of a concept (near, about, etc.). Unimodality of F 
assures us that exactly one region exists, in which 
the relevant elements have the highest grades of 
membership. Of course, the shape of a 
membership function reflects different situations in 
which a variety of shapes can be observed. In 
figure 2a, a triangle -like fuzzy number is 
presented, where three characteristic points are 
interpreted as upper and lower values of the 

range, and the element of x corresponding to the 
highest grade of membership is called a modal 
value of the fuzzy number. In figure 2b, a so-
called bell shaped fuzzy number is given, while in 
figure 2c an interval that is a particular case of 
fuzzy number, is presented.  
 We observe that the shapes of the 
membership functions are similar in that one modal 
and two extreme limits are evident. This enables 
us to use a parametric representation of the fuzzy 
numbers. For this purpose, L(left side) and R(right 
side) fuzzy numbers are introduced. By an L fuzzy 
number we mean a fuzzy number of this 
membership function: 
(i)  L(-x)=L(x) 
(ii) L(0)=1 
(iii) L is increasing in [0,+∞) 
The same definition holds for the R fuzzy number. 
An L-R fuzzy number possesses the following 
membership function: 
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where a, b>0 are parameters controlling fuzziness 
of the fuzzy number. For the case a=b=0 we get a 
genuine real number. Including the above 
parameters (m,a,b) the fuzzy number is denoted by 
A(m,a,b). 
 
3. THE FUZZY PROCESSOR 
 The fuzzy processor is composed of two 
blocks, as illustrated in figure 3. The first block 
takes as input the frequencies of the individual 
components of the sound. We notice that the 
phases and amplitudes of the components are 
ignored. Next, every component is resolved in 
order all the potential subcomponents to be 
derived. Essentially, computing all the submultiples 
of the frequency of all the components performs 
the resolution procedure. Subsequently, the 
fuzzyfication of all the subcomponents is 
performed, by assigning a fuzzy number at each 
subcomponent. The shape of the membership 
function of the fuzzy numbers is given below: 

( ) ( )( )F x e
b x x

=
− − 0
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The value of b determines how narrow the 
membership function will be. We notice that the 
width of the membership function is related to the 
description explicitness of the subcomponent 
frequency. The frequency discrimination ability 
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Figure 3. The fuzzy processor

of the human ear appears a logarithmic 
dependence on frequency. Thus we should select 
an appropriate value for b, according to the 
harmonic interval where each fuzzy number 
belongs. 

After assigning a membership function at 
each subcomponent, the union operation is applied 
on the groups of subcomponents that have been 
generated by the same component of the sound. 
Therefore, some non-unimodal fuzzy numbers 
derived, which correspond to the components of 
the input sound. Finally, the intersection operation 
is applied on the aforementioned fuzzy numbers. 
The result of this operation is a fuzzy number 
whose membership function appear some local 
peaks, and the greatest of them determines the 
pitch. If there exist more than one peaks having an 
almost common value, then all of them contribute 
to the formation of the pitch. 
The union and the intersection operations are 
defined as follows: 

{ }A A A A1 2 1 2∩ = min ,  

{ }A A A A1 2 1 2∪ = max ,  
 
4. SIMULATION RESULTS 

The developed fuzzy model has been used 
to derive the pitch in three special cases of 
complex tones, as discussed in following. As a 
first example, we considered a harmonic sound 
consisted of three components at 200Hz, 300Hz 
and 400Hz. Figure 4 shows the resolved 
subcomponents, while in figure 5 the membership 

 
Figure 4. The derived subcomponents for the first 
example  

functions of the corresponding fuzzy numbers are 
presented. The output of the model is shown in 
figure 6.  

 
Figure 5. The derived fuzzy numbers for the first 
example 

 

 
Figure 6. Output of the model for the first example 

In a second example, a non-harmonic sound with 
three components at 240Hz, 340Hz and 440Hz has 
been used. The results are presented in figures 7, 
8 and 9. It is apparent tha t the proposed model 
derives a pitch despite the fact that the 
subcomponents do not coincide (see fig. 7). As a 
third example a non-harmonic sound with 
components at 1840Hz, 2040Hz and 2240Hz has 
been treated. The values of sound components 
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chosen, have been used by researchers [5] to 
show experimentally that pitch cannot be 
determined univocally in some cases. The output 
of the model is illustrated in figure 10. It is 
apparent that the output appears in the form of 
three dominant peaks. We notice that, in all the 
examples, the subcomponents which do not lie in 
the interval [100Hz, 5000Hz] have been rejected. 
 

 
Figure 7. The derived subcomponents for the second 
example  

 

 
Figure 8. The derived fuzzy numbers for the second 
example  

 

 
Figure 9. Output of the model for the second example 

 
Figure 10. Output of the model for the third example  

 
5. CONCLUSION 
 A fuzzy model for pitch identification has 
been developed, that is able to derive the pitch of a 
complex tone using the information of individual 
components. The basic feature of the model is that 
it performs all the manipulations using fuzzy 
numbers. Considering frequency components as 
fuzzy numbers with adjus table membership 
function width, provides the ability to impose to the 
manipulation a precision which is relative to the 
logarithm of components frequency. Thus, the 
necessary distance between the central 
frequencies of two subcomponents in order the 
intersection of them to cause a local peak to the 
output of the system is much smaller when 
components correspond at low frequencies than 
when correspond at high. Generally, the greatest 
peak of the derived output corresponds to the pitch 
of the complex tone. In the case of more than one 
peak with close values, the pitch can't be 
determined univocally.  
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