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Me emipUAAgN navrog dIKaIWPAToG

AnayopeUeTal n avTiypagn, anobnkeuan os apxeio NAnpogopiwv, diavour, avanapaywyn, HeETappaon
N MeTadoon TNG napoloag epyaaciac, €€ oOAOKANPOU 1 TUAMATOC AUTAG, YIa €UMOpIkO OKOMoO, Uno
onoiadnnoTe Hop®pn Kal HE OmnolodnnoTe HECO EMIKOIVAVIAC, NAEKTPOVIKO N HNXAVIKO, XWPIG TNV
nponyoUWevn £yypapn adeia TNG ouyypaPewc. EmmpéneTal n avanapaywyr), anobrkeuaon kai diavourn)
yla okond pn KepdooKoNIKO, EKNAIDEUTIKNG I EPEUVNTIKAC pUONG, und Tnv nNpolnobean va avapepeTal
n nnyn npoéAeuong kai va diaTnpeital To Napov pnvupa. Epwtnuata nou agopolv aTn Xpnon Tng
€pyaociag yia kepdoaKonikd okond Npenel va aneubuvovTal Npog T ouyypapea.

H €ykpion Tng d1I0akTopIkAG diaTpIBrc and Tnv AvwTaTtn ZxoAn MoMimikwv Mnxavikwv Tou EBvikou
MeTooBiou MoAuTteyveiou dev unodnAwvel anodoxr Twv andowewv TnG ouyypapewnc (N. 5343/1932,
ApBpo 202).
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Abstract

The research presented in this thesis aims at investigating the response of cable nets subjected to
dynamic loads, focusing on the dynamic phenomena that characterise nonlinear structures. Firstly a
simple cable net is studied, consisting of two crossing cables and the equation of motion is derived.
Neglecting small terms of its equation of motion, a simplified single-degree-of-freedom (SDOF) cable
net is assumed, which is proved to be similar to a Duffing oscillator with a cubic nonlinear term of the
displacement. The analytical solution of its steady-state response, found in the literature, is adopted
for this simple cable net and the occurrence of fundamental and secondary resonances, such as
superharmonic and subharmonic resonances, is verified for this system. The response diagrams are
plotted for different resonant conditions showing bending of the response curve, hardening behaviour
and dependence on the initial conditions. This response is confirmed by solving numerically the
equation of motion as well as using finite element software and performing time-history analyses,
considering also the geometric nonlinearity of the cable net. With this investigation, an important first
step towards understanding the dynamic response of cable nets is achieved. Although double
curvature renders cable nets stiffer than simple cables and a weakly nonlinear behaviour would be
expected, nonlinear dynamic phenomena, established for simple cables, are also detected for these
systems.

Proceeding to multi-degree-of-freedom (MDOF) systems, a saddle-form cable net with circular plan
view is assumed, similar to the roof of the Peace and Friendship Stadium in Faliro, Greece. The cable
net boundary is considered either as rigid, with cable ends modelled as pinned, or as flexible,
modelling the deformable edge ring. The first symmetric and antisymmetric vibration modes and the
corresponding natural frequencies are calculated. A parametric analysis shows that changing the sag-
to-span ratio of the net and the mechanical characteristics of the cables, regarding their axial stiffness
and their pretension, the sequence of the first modes changes. A non-dimensional parameter A%,
similar to the one used for simple cables to describe this phenomenon, is also introduced for cable
nets in this study. It is confirmed that this parameter determines the sequence of their vibration
modes, as in simple cables. For specific values of this parameter two or more vibration modes have
equal frequencies although they have different shapes, leading to internal resonances. Thus, knowing
the important role of this parameter, it is possible to choose appropriately the mechanical and
geometric characteristics of the cable net in order to avoid internal resonances. Semi-empirical
formulae are also proposed to estimate the frequencies of the first vibration modes of the system with
satisfactory accuracy compared to modal analysis results. Modelling the ring is proved to influence
significantly the symmetric vibration mode of the net, due to the ring’'s in-plane mode, which induces



a symmetric oscillation to the net. On the other hand, the antisymmetric modes of the net remain
unaltered irrespectively of whether the cable supports are considered as fixed or as flexible.

Having the analytical solution of the simple cable net, the concept of an equivalent SDOF system for
estimating the dynamic response of a MDOF system is then explored. The transformation of the
characteristics from the large system to the smaller one is obtained by similarity relations adopted
from a preliminary method used at the first steps of this research, which is extended here for this
purpose. Response diagrams are plotted for both SDOF and MDOF systems, based on the analytical
solutions and conducting time-history analyses, respectively. The two responses are compared for
several geometries and cable initial stresses in order to define the field of application of this method,
showing a good agreement. The main advantage of this method is that it can be used to define with
small error and minimum computational time the loading amplitude and frequency for which nonlinear
phenomena develop. It is also noted that, in order to have a superharmonic or a subharmonic
resonance, large amplitudes of the load are required. Especially for subharmonic resonances, large
initial conditions are also necessary. The combination of these two conditions leads to cable tensile
failure during the transient response at the beginning of the analysis. Thus, it is unlikely for cable nets
to experience subharmonic resonance.

Next, the influence of the spatial load distribution on the response of a cable net subjected to
harmonic loads is investigated. Three different spatial load distributions are assumed: a symmetric
one, and two antisymmetric ones with respect to one or both horizontal axes. Response diagrams are
plotted for loading frequencies either close to the natural frequency, leading to fundamental
resonances, or smaller than the eigenfrequency, accounting for superharmonic resonances. The
bending of the response curve, which indicates a hardening nonlinear behaviour, is more intense
when the net is loaded antisymmetrically rather than symmetrically. As a result, the initial conditions
influence the steady-state response for a large range of the loading frequency. The behaviour of the
net, when it is uniformly loaded, is altered significantly if the deformability of the boundary ring is also
taken into account in the simulation. On the other hand, the presence of the ring does not alter the
response of the net for antisymmetric loading, as also noted for the antisymmetric modes.

In order to analyse the behaviour of such structures to actual dynamic loads such as wind actions, the
wind pressure distribution on this kind of surfaces is defined based on the recommendations of
Eurocode 1. The saddle-form roof is divided into zones and pressure coefficients are provided for each
zone according to the wind direction. The proposed wind pressure distribution is also compared with
experimental results in order to verify the accuracy of the assumptions made. It is proved that the
approach adopted in this thesis results in slightly larger pressure coefficients in some cases, but the
spatial distribution of the wind pressure is satisfactory. Finally, a measured wind record and an
artificial one are considered and nonlinear time-history analyses are performed to detect nonlinear
resonant phenomena for the wind action, as well. The dynamic behaviour of the cable nets is
compared with the static one, which is calculated according to the quasi-static procedure
recommended by Eurocode 1. Large oscillation amplitudes are also observed in the response spectra
for frequencies equal to the eigenfrequencies, although the main frequencies of the wind are much
smaller than the eigenfrequencies of the cable nets, while for frequencies close to the natural
frequencies, the amplitude of the wind load is small. This leads to the conclusion that the small
frequencies with large amplitudes of the wind load cause superharmonic resonances to the net, while
a weak excitation with frequency near the eigenfrequency enforces the system to experience a
fundamental resonance, although damping is considered. As a result, large differences between static
and dynamic responses are observed for all cable nets, while, as the parameter A? increases, the
oscillation amplitude becomes smaller. The quasi-static methods cannot predict these nonlinear
dynamic phenomena and thus they cannot be considered as accurate for the analysis and design of
such structures.
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NepiAnyn

>KonoG TNG £pyaaciac auTnc eivai n digepelivnaon TnE anokpiong SIKTUwY kaAwdiwv unod duvapika gopTia,
£0TIalovTac TNV Npogoxn oTa OUVAMIKA (aivOUeva nou XapakTnpifouv Ta Pn ypauuIka ouoThuara.
ApXIKOC HOPPWVETAl N €Ei0wan kivnong evog anAou OIKTUOU kaAwdiwv nou anoteAeitar and dUo
KaBETwe dlaoTaupoupeva kaAwdia pe ioo kal avTiBeTo apxikd BEAoc. AvantlooovTac o osipa Taylor
Kal aueA@VTAC HIKpOUC Opouc, N eEiowon Kivnong npokUNTel napdyold PE auTrl TOU TAAGVTWTH
Duffing. H avaAuTikiy AUon Tng poviung anokpiong Tng &iowang Duffing diaTiBeTal otn BiBAloypaia
Kal UIoBeTeiTal O aQuTnv Tnv €pyacia yia Tnv NEPINTWON TOU avWTEPW OIKTUOU KAAWdIwV.
EniBeBaiwvovTal KUpiol Kal JEUTEPEUOVTEC OUVTOVIOUOI, OMWC €£ival O UMNEPAPUOVIKOG Kal O
UMOapHOVIKOC OUVTOVIOHOG. H ox€on TG HOVIMNG Napapop@wonc KE Tn ouxvoTnTd TNG TAAAVTWwOoNG
aneikovieTal ypagika yia OIAQOpPEG GUVONKEG auvToviopoU, napouadialovTac KaunUAwaon Tou
dlaypaupaTog TNG anokpionG kai €EApTnon TnG anokpiong anod TIG apXIKEC OUVONKeC. AUTO
eniBeBaiwveTal emAlovTac apiBunTIKa TNV €&iowan Kivnong Kabwe Kal XpnoIKonolmvTac To AOYIOUIKO
ADINA, P To ornoio npaypaTonoloUvTal PJn YPAauMIKEG duvapikée avaAlaoeic. Me Tn diepeuvnon auTtou
Tou anAoU OIKTUOU, eMITUYXAveTal éva NoAU onuavTiko BRAKa nNpoc TNV Katavonaon Twv duvapikwv
(PAIVOUEVWV MoU BIEMOUV TN CUMMEPIPOPA TWV JIKTUWY KAAWDIwV.

2Tn ouvexeld, Bewpeital Eva noAuBaduio dikTuo kaAwdiwv oxruaTog unepBoAikoU napaBoAoeidolc e
KUKAIKA kaTown, napdpolo pe Tn oTéyn Tou ZTadiou Eiprivng kai ®ihiag ato ®aAnpo. Ta akpa Twv
KaAwdiwv BewpeiTal OTI ayKupwvovTal €iTe Ot AKAOVNTEC OTNPIEEIC €iTE O &vav NApagopP®aCIUo
NEPIMETPIKO OAKTUANIO, MOAU nio duokaunto and To dikTuo kaAwdiwv. YnoAoyilovtal Ol MPOTECG
OUMMETPIKEG KAl QAVTIOUUMETPIKEG IDIOMOPMEG HE TIC AVTIOTOIXEC IDI0OUXVOTNTEC. [apaPETPIKEC
avaAUoelg Ogixvouv OTI HeETaBAAovTag To AOyo BEAOUG MPOC avolyua Kal Ta PNXavikd XapakTnpioTiKa
TwV KaAwdiwv, N oeIpd TwV NpoTwv IBIopopPwv allalel. Mia adiacTtaTtonoinuévn NapapeTpog A%,
avaloyn HE Aautrnv nou eival yvwoTn and Tn Bswpia Twv andwv KaAwdiwv, NPOoTEIVETAI Kal yid T
dikTua kaAwdiwv O€ auTrn TNV €pyacia, n onoia EaptaTal and 1o Adyo BEAOUC NPOG Avolyua kai Tnv
apxIKn avnydevn enignkuvon Twv kaAwdiwv kal kabopilel Tn osipd eupavions Twv 191Iopoppwv. lMa
OIGPOPEG TIPEG AUTNG TNG NApauETpou, dUO I NEPICOOTEPEC IBIOUOPPEC HE OIAPOPETIKO OXNHUA EXOUV
I0EC OUXVOTNTEG, (PAIVOUEVO MOU XAPAKTNPI(ETal WG E€0WTEPIKOC OUVTOVIOWOG. vwpilovtac To
onuavtikd pdAo nou nailel auTtr) n NApAPETPOC OTN OUVAMIKY anoKpIon TwV HN YPAUMIK®OV
OoUCTNHATWY, €ival EUkoAo va emAeyoUv KATAAANAG Ta pNXavikd Kal YEWHETPIKA XapaKTNpPIOTIKA TV
OIKTUWV KaAwdiwv, ETOI WOTE va anoPeuxBolv TETOIOU €i00UGC CUVTOVIOWOI. BAGEI TWV anoTEAEGUATWV
TWV NAPAMPETPIKOV avaAUoEWV NPOTEIVOVTAl NUIEPNEIPIKEC OXECEIG YIA TOV UMOAOYIOHO TWV MPWTWV
IDI0CUXVOTATWV TOU CUCTHUATOC, EVK N OUYKPION AUTWV PE anoTEAEOUATA IDIOHOPPIKWV avaAUoswy
gival nNoAU IkavonoinTikr. AnodeikvUETal €Miong OTI N MPOCOMOIWON TOU NEPIMETPIKOU OAKTUAIOU
ennpealel oNUAvTIKA TN CUMPKETPIKN 1I0I0Jop®r) Tou OIKTUOU kaAwdiwv kal Tnv avTioToixn



1DloouxvOTNTA, AOYW TNC UNApENG MIAaC €vTOG €niNEdou IDIOMOPPrC Tou OAKTUAIOU. AVTIBETWC, Ol
QVTICUPUETPIKEG IDIOMOPPEC NAPAPEVOUV AVENNPEACTEC ANO TNV Napoucia Tou dakTUAIou.

H Ouvapikn andkpion &vog noAuBabuiou oucoTnuatog JIkTUoU KaAwdiwv npogoeyyileTal apxXIKwe
XpPNOoIJonoIwvTag éva 1000Uvapo PovoBaduio cUoTnua. H YETATponr) TWV YEWHETPIKWV Kal INXAVIKQV
XApakTNPIOTIKWV and To éva ouoTnua oTo aMo BacileTal o pia YEBODO Mou XPnaoIYonoIndnke aTta
apyika oTadla TnG €PEUVAG AUTNG Kal NApeExel KaTAANAEG OXEOEIG peTaoxnKaTiopou. AaupdavovTag
unown OIaMOPETIKEG YEWMETPIEG DIKTUWV KaAwdiwv kal OIaMOPETIKEG APXIKEG TACEIG OTa Kaiwdia
dnuioupyolvTal diaypAPaATa POVIUNG anokpiong yia To JovoBaduio ouoTnua BAcel TwV avaAuTIKOV
AUCEWV, eved npaydartonoloUvTal Pn YPAUMIKEG DUVAMIKEC avaAloeiC yia To noAupaduio. H alykpion
TV dlaypappdTwv Twv dU0 ocuoTNHATWY 0dNnyei 0To cupNEpacua oTI n HEBodoc auTn Pnopei va dwael
gia 1kavomoinTIK €KTIUNON TNG OUMMNEPIPOPAG TOU MOAUBABUIOU OUCTNAUATOG, HE KUPIOTEPO
nAEoVEKTNA OTI Npoadiopilel To PéyeBOG Kal Tn ouxvoTNTA TOU (POPTIOU MOU WMOpPEi va NPoKAAEDE! Wn
YPAUHIKA Qaivopeva e HIKPO oQAAJa kal o EAAXIOTO UMOAOYIOTIKO Xpovo. Mapatnpeital eniong ot
NPOKEIPEVOU va npaypaTonoinfolv UnepapUovikoi 1 UNoapUovIKoi GUVTOVIOHOI anairoUvTal Peyaia
@opTia. EIdIkG yia TOuC uMoapupovikoUG OUVTOVIOHOUG, anaiTouvTal Kal HEyaAd HEYEON apxXIKwmV
NapagopPpwoswy Kal TaxutnTwv. O ouvdudopog autwv Twv dU0 ouvBnkwv odnyei ot acToxia
Kahwdiou atnv apyxn Tng avdaiuong, OnAadn kata Tnv napodikn anokpion, odnywvTrag OTo
oupnEpacpua OTl éva NoAuBaduIo BikTuo kaAwdiwv dUOKOAG YMOPEI Va GUVTOVICTEI UNOAPUOVIKA.

H epyaoia nepidauPavel eniong pia diepelivnon TNG eNIPPONG TNG XWPIKNG KATAVOUNG EVOG ApHOVIKOU
(OPTIOU OTNV anokpion Twv OIKTUWV KaAwdiwv. OewpolvTal TPEIG SIAPOPETIKEG XWPIKEG KATAVOMEG:
pia GUUMETPIKN, Mia avTIOUUMETPIKN nepi Tov évav opilOvTio aova Kal Wia avTIOUPPETPIKA NEPi Toug
OUo opIfOVTIOUG GEoVEC. H pOvVIUN anokpion NapioTaveTal ypaPika yia GUXVOTNTEG POPTIOU EIiTE KOVTA
oTnv 10100UXvOTNTA TOU OUCTAMATOC, AMOCKONWVTAG Of (AIVOUEVA KUPIOU OUVTOVIOWOU, EiTE
MIKPOTEPEC and Tnv 1B100UXVOTNTA, EMIBIVKOVTAC TNV EVEPYOMOINGN UMNEPAPHOVIKWY OUVTOVICHWV.
MapaTtnpeital 6T N KAQUNUAWON TwV dIaYPAUKATWV €ival EVTOVOTEPN OTNV MEPINTWON AVTIOUHHPETPIKNG
(POPTIONG, KAl EMOUEVC, VIO €&va HEYAAO €UPOC OUXVOTATWV TOU (POPTIOU, Ol APXIKEC OUVONKEG
kaBopifouv To NAATOC TNG MOVIUNG ANOKPIONG TOU CUCTAMATOC. MapaAAnAa, dtav To dikTUO KaAWdiwv
@opTileTal OHOIOKOP(A, N NAPANOPPWOIPOTNTA TOU OAKTUAIOU £nnpedlel onuavTika To NAATOC TNG
anokpiong, KAaTi nou dev ouyBaivel oTNV NEPINTWON TNG AVTIOUPHETPIKNAG POPTIONG.

TéAOG, Npokelpévou va PeEAeTNOel n oupnepIPopd TETOIWV KATAOKEUWV UMO MPAyMaTIKa OUVAMIKG
(opTia ONwWC 0 Avedocg, NPoadIopileTal N KATAVOUN TWV AVEUOMIECEWY O TETOIOU €idOUC EMIPAVEIEC,
Baoilopevn OTIC oUCTACEIC Tou Eupwkwdika 1. H oTéyn oxnuatog unepBoAikoU napaporoeidolc
XwpileTal oc (WVEC Kal divovTdl Ol OUVTEAEOTEC nieonc yia kdBe {wvn XwpIioTa avaloya PE Tnv
OIelBuvon TOU QVEUOU. SUYKPIVOVTAC TNV MPOTEIVOUEVN KATAVOMN AVEHOMIECEWV WE ANOTEAEOHATA
NeEIpAUATWV  OTEYWV  OXNUATOC  unepBoAikoU  napaBolosidolc O agpoduvayikn — onpayya,
enBeBaiwveTal OTI n NPOCEYYION Nou akoAouBeiTal o auTrhv TNV epyacia odnyei e Aiyo peyaAUTEPEC
TIUEC OUVTEAEOTWV AVEUONIEONG, €V® N KATAVOUN TwV MIECEWV gival noAU IkavonoinTikr. Eniong,
npaypaTtonoiolvTal Pn YPAuMIKEG dUVAMIKEC avaAUCEIC XpNOILONOI®VTAG TV MPOTEIVOUEVN XWPIKN
KaTavour MIECEWV Kal dia npayuarikn kataypagn kabwg kai yia TeEXvnTr) XpovoioTopia avépou,
MPOKEIMEVOU Vva €evTonioToUV Un YPAPIKG @aivopeva cuvtoviopoU. To nmAAGTOoC TnG OUVAMIKAG
anokpiong Twv JIKTUWV CUYKPIVETAI JE QUTO MOU NPOKUNTEl anod Tnv 10odUvaun oTaTIKA avaAuon nou
npoteivel 0 Eupwkwdikag 1. Mapatnpolvrtal WeYAAeC TAAAVTWOEIC HPE OUXVOTNTEG I0EC HE TIC
I0100UXVOTNTEC TOU CUOTARATOG. To dlAypaupa Tou avépou napouaialel ouxvoTNTEC NOAU MIKPOTEPEC,
WOTO0O NPOKAAEI UNEPAPHOVIKOUC CUVTOVIOHOUG, v Mia MIKPr DIEYEPCON, HE GUXVOTNTA KOVTA OTNV
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1 INTRODUCTION

1.1 HISTORICAL SURVEY

Nature has always granted to the humanity examples to solve problems of covering spans. The
vaulted caves were used as shelters, the trunks of the fallen trees formed bridges to cross streamlets
or even rivers at the narrow passages and the interlaced vines constituted a sort of suspended roof,
while the trees, standing upright, represented the necessary masts to support these roofs. These
images, among many others, stimulated the human imagination and triggered structural engineering.
The need for progress and evolution, along with the development of technology, which brought new,
more efficient materials, generated the opportunity to elaborate new concepts, find new solutions,
overcome the existing limits and always set new ones. The examples are numerous, still standing over
the centuries, testifying the course of the human inventiveness.

Since the ancient Roman years, curves dominated in the field of engineering and architecture,
substituting straight lines, made of stones or wood, which were proved to be inadequate in some
cases. Arcades, arches, and domes were the best solution to cover large spans, such as aqueducts,
bridges, churches, etc. Later, thin shells, made of concrete, gained the interest of architects, giving a
different aspect to their creations with their lightness and captivating elegance. The function of these
structures was to carry loads in pure compression, thus avoiding bending of the members.

The reverse solution was realised by structures with members that operate in pure tension, which
belong to the family of tensile structures. The sails of ships were among the first membrane structures
ever used, providing resistance to wind, developing only tension and moving the ship over the seas.
The first suspended bridges, made of ropes, were used to cross canyons, while the first suspended
roof was the “velarium” of the Coliseum, built in 70 b.C. in Rome (Photo 1-1), protected the
spectators from rain and sun. During the last six centuries, many suspended bridges were
constructed, but only in the second half of the twentieth century, tensile structures became a pioneer
in the field of structural engineering, opening new frontiers.

Nonlinear dynamic response and design of cable nets



2 Chapter 1

Photo 1-1: Schematic representation of the “velarium” of the Coliseum in Rome, Italy

1.2 TENSILE STRUCTURES

The term “tensile structure” is attributed to structures, which, while guiding the applied loads to the
supports, remain constantly in tension. There are two groups of tensile structure: in the first one, the
main tension elements are ropes or strands and cables, which operate as uniaxially stressed members,
while in the second one, the tension is developed in biaxially stressed members, the tents or
membranes. The shear and flexural rigidities of these elements, as well as their buckling resistance
are negligible. Such structures are prestressed membrane or cable roofs, air-supported or inflated
structures made also of membranes, tensegrity structures combining beams and cables, suspended or
stayed bridges, antennae or guyed masts, sea-based applications, or even smaller structures such as
snow avalanche nets, sailboats, mooring lines, trawl lines and nets, floating or submerged
breakwaters, or aerostats. In most cases the tension elements are anchored to very stiff elements,
which work mostly in compression, such as masts, columns, pylons, beams, trusses or arches ([1-1],

[1-2]).

1.3 CABLE NETS

Cable nets belong to the family of tensile structures. They are characterised by their capacity to cover
long spans without intermediate supports and to carry loads much heavier than their own weight.
They are structures that always stimulate the interest and the imagination of both structural engineers
and architects, demanding their collaboration, as their structural behaviour and geometry are closely
related. The shape of the final surface depends on the geometry of their boundaries, the curvatures,
the levels of cable pretension and the eventual internal supports. The most common shape of cable
nets is the hyperbolic paraboloid with a surface that is convex with respect to one axis and concave
with respect to the other, with a rectangular, rhomboid, circular or elliptical plan. The net consists of
two families of prestressed cables, the main or carrying cables, which are suspended from the highest
points of the boundary and the secondary or stabilising ones, which are anchored at the lowest points
of the boundary. The difference of height between the highest or lowest points and the central node
is called sag of the roof in the direction of the main or stabilising cables, respectively. The boundary is
usually a prestressed reinforced concrete ring with a box cross-section.

These structures are very efficient, because the loads are transmitted through tension of the cables,
usually made of high-strength steel, having thus the best exploitation of the material. In addition, with
their unusual forms they differ from all other, conventional structures, something that makes them
extremely elegant. These characteristics render them one of the most attractive alternatives for
covering hangars, stadiums, swimming pools, ice rinks, exhibition halls, theatres, concert halls,
churches and other long-span structures. On the other hand, these structures experience large
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deformations, mainly because, due to their lack of shear rigidity, the cables change their shape in
order to equilibrate the loads without shear. The large deflections can be alleviated by appropriate
level of pretension. The design of such structures aims at maintaining all cables in tension under any
load combination; in case of cable slackening, the net may exhibit large deformations. Opposite
curvatures enable pretension in both directions, providing bearing capacity for loads directed
downwards, such as snow and wind pressure and upwards, such as wind suction. Flat or nearly flat
regions of the cable net surface should be avoided, because their stiffness is insufficient and they may
easily flutter. In general, however, the suspended roofs cannot be calculated on the basis of linear
theory, due to the large difference between their undeformed and their deformed shape. Thus, their
analysis should be geometrical nonlinear. The principle of superposition does not apply and separate
nonlinear analyses must be performed for each loading combination [1-3].

1.4 STRUCTURAL EXAMPLES

The first modern saddle-form cable net was the Raleigh Arena in North Carolina, built in 1953, which
for many years after its completion, constituted an important exemplar for such structures. The
saddle-shaped hyperbolic parabaloid roof form is created by a network of crosswise cables suspended
between two opposing intersecting parabolic reinforced concrete arches, which reach a maximum
height of 27.4m. They are inclined at approximately 21° and they cross each other at about 7.9m
above the ground. They are supported by columns of composite cross-section while they extend into a
tunnel below the surface at the east and west ends (Photo 1-2).

(© ()

Photo 1-2: Raleigh Arena in North Carolina (a) construction of the arches (b) the cable net (c) internal view
(d) the Arena today

The cable net consists of 47 main cables of diameters that vary between 19mm to 33mm, while the
stabilising cables are smaller with diameters between 13mm and 19mm. The dimensions of this
structure are 92mx97m, covering an area of 10,000m?, while the interior is column-free [1-4]. When
this structure was completed, the cables were just anchored to the border, and no pretension was
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applied. The roof soon began to flutter and oscillate violently, due to the turbulent wind. Inclined
cables were added, connecting the net with the columns, in order to stiffen the roof ([1-5]).

The Arizona Veterans Memorial Coliseum in Phoenix, Arizona, U.S.A. was built in 1965 (Photo 1-3).
The building has circular shape with 112m diameter. The edge ring, which is supported by steel
columns, has 30.5m maximum height and 19.2m minimum height. The cable network is a square
mesh with hyperbolic paraboloid shape. The roof carries over 1000 precast concrete panels [1-6].

© (d)

Photo 1-3: Arizona Veterans Memorial Coliseum in Phoenix, Arizona, U.S.A. (a), (b) placement of the concrete
panels on the cable net, (c) the completed stadium, (d) aerial view of the stadium

Another pretensioned cable net, creating the surface of a hyperbolic paraboloid, is the roof of the
Scandinavium Arena in Gothenburg, Sweden, constructed in May 1971 (Photo 1-4). The sag of the
roof in the direction of the main cables is 10m and that in the direction of the stabilising ones is 4m.
The grid of the network is orthogonal of 4mx4m. The ring beam has a rectangular cross-section with
a width of 3.5m and a height of 1.2m. An alternative solution with a ring beam with a cross-section of
a hollow steel box was investigated during design, but it was found to be too expensive. The contour
ring is supported by four stiff pylons and 40 circular columns. The pylons are designed to take large
horizontal forces. They are concrete walls, arranged radially, with a side length of 3.5m. The circular
columns instead are designed to undertake mainly axial forces. Therefore, the ring beam is
discontinuous at the top of the pylons, which influences the prestressing forces in the cable in the
areas between the pylons and the top of the ring beam. The forces in the stabilising cables are
significantly smaller than in other parts of the roof [1-7].
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(c) (d)

Photo 1-4: Scandinavium Arena in Gothenburg, Sweden (a) the stadium under construction, (b) placement of the
cladding, (c) the completed stadium, (d) the stadium today

A different cable structure was built in 1973 in Largo, Maryland, U.S.A., the US Air Arena (Photo 1-5).
The roof consists of a warped circular ring of 122m diameter with square cross-section of 2.4mx2.4m
and two groups of cables, which do not form a cable net. One set of cables is high and outside and

the other low and inside, running straight across the building [1-8]. In 2002 the Arena was
demolished (Photo 1-6).

(©) (d)

Photo 1-5: US Air Arena in Largo, Maryland, U.S.A. (a) the stadium under construction, (b) plan view
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Photo 1-6: US Air Arena in Largo, Maryland, U.S.A. during its demolition in 2002

Another saddle-form cable structure, now demolished, was the Sport Centre of San Siro in Milan,
which was inaugurated in 1976 (Photo 1-7 and Photo 1-8). It had an elliptical plan view with axes of
144m and 146m. The cables were arranged in a quadratic grid of dimensions 2mx2m. The ring, made
of steel, had a box cross-section with dimensions 2.5mx6.5m. The maximum height difference of the
ring was 18.4m [1-9]. On January 17, 1985, one of the largest snowfalls of the 20" century in Milan
caused large deflections of the net and severe damage to the cables. Three years later it was
demolished [1-10].

—

(a) (b)

Photo 1-7: Palasport of San Siro in Milan, Italy (a) the cable net, (b) the cable interconnections
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(a) (b)
Photo 1-8: Palasport of San Siro in Milan, Italy (a) aerial view during construction (b) the completed stadium

The saddle-shaped roof of Pengrowth Saddledome in Calgary, Alberta, Canada, is also a hyperbolic
paraboloid (Photo 1-9). When it was inaugurated on October 15, 1983, it was known as the Olympic
Saddledome as it would host the indoor ice events for the 1988 Winter Olympics. The horizontal
projection of the suspended roof is a circle with a radius of 67.65m, covering 13,900m2. From the
centre point of the roof the carrying cables rise 14m to the top and the stabilising cables fall 6m to the
valley of the ring. The bearing capacity of the main cables arises at 735kN, except of the four ones
situated at the centre of the roof, which have a bearing capacity of 1235kN. The breaking load of the
stabilising cables is 306kN. The edge ring consists of 16 precast elements of prestressed concrete and
its dimensions are 1.5mx4.3mx27.4m [1-11].

(a) (b)

Photo 1-9: Pengrowth Saddledome in Calgary, Alberta, Canada (a) the stadium under construction, (b) the
completed stadium

The Stadium of Peace and Friendship in Greece, is another example of a saddle-shaped cable net. It
was constructed in 1983 and it was used, among other stadiums, for the Olympic Games of 2004
(Photo 1-10). Its circular plan view has a diameter of 114m, and the sag of the roof is 6.15m, equal in
both directions. The net consists of 27 cables in each direction and the cable spacing is constant and
equal to 4m in both directions. The main cables have a diameter of 60mm and a breaking load of
3000kN, while the diameter of the stabilising cables is 46mm and their breaking load is 1850kN. The
edge ring is made of prestressed concrete, with a box cross-section of dimensions 6.40mx8.15m. The
thickness of its horizontal walls is 20cm and of the vertical ones 50cm. The ring seats on bearings,
which are placed on 32 pylons. These pylons consist of radially oriented concrete walls. The bearings
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allow small radial translations of the ring, but in case of violent horizontal forces, for example during a
seismic event, the ring is restrained in the radial direction of the roof [1-12].

(e) ®

Photo 1-10: Stadium of Peace and Friendship in Athens, Greece (a) the stadium under construction, (b), (c)
placement of the cables, (d) the cable interconnections (e) placement of the cladding, (f) the completed stadium

The Velodrome in London (Photos 1-11), which will host the Olympic track cycling events in 2012, is
under construction. Steel cables form a huge cable net roof, which has a span of 136.5m at its widest
point. The lightweight cable-net roof structure weighs only 30kg/m?. 16km of cables have been used
for the construction of the roof, weighing 100 tonnes alone. The cables were first laid out on the floor
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of the building, with the nodes that join them also affixed. The inner side of the roof is clad in timber,
while an aluminium cover is placed over the top of the timber cassettes to make the roof waterproof
[1-13].
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(e) ®

Photos 1-11: Velodrome in London, Great Britain (a) the stadium under construction, (b) the cable net,
(c), (d) placement of the cladding, (e) internal view, (f) virtual representation of the completed stadium

Another example of a suspended roof is a small cable net, in the shape of a hyperbolic paraboloid
surface, which forms the stage covering of the open theatre at Sao Jose do Rio Pardo, Brazil (Photo
1-12). The plan view of this structure is an ellipse, with the major axis equal to 20m and the minor
one 13m. An orthogonal mesh of 10x6 cables, parallel to the axis of the ellipse, forms the cable net.
The cables are anchored in a reinforced concrete ring, which has a rectangular cross-section
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measuring 1.00mx0.45m. The axis of the edge ring follows the shape of the hyperbolic paraboloid
surface. Four reinforced concrete pillars, of 3.70m height, sustain the edge ring [1-14].

Photo 1-12: The stage covering of the theatre at Sao Jose do Rio Pardo, Brazil

1.5 OBJECTIVE AND STRUCTURE OF THE THESIS

This thesis focuses on suspended roofs as the ones described above. These structures, being
nonlinear and lightweight, exhibit large deformations and fatigue problems, especially when they are
excited by dynamic loads, such as wind pressures. The geometric nonlinearity of cable structures
produces nonlinear dynamic phenomena and secondary resonances, unknown in common linear
structures, which may render their response unpredictable. The purpose of this research is to
investigate the dynamic behaviour of such structures and to provide useful guidelines for their design.
Beginning by their natural frequencies and vibration modes, which give insightful information about
their overall nonlinear dynamic response, proceeding with exploring cable nets under simple harmonic
loads with frequencies appropriately chosen to detect nonlinear resonant phenomena, and finally
applying wind loads with realistic amplitudes, spatial distributions and time variation, the intensity of
nonlinearity in their dynamic response and eventual problems of cable slackening or tensile failure are
evaluated, in order to conclude with valuable suggestions for future design.

Following the general introduction on tensile structures and cable nets in particular, presented in this
first chapter, chapter 2 contains a literature review on simple cables and cable nets, nonlinear
dynamic phenomena, as well as recommendations of the pertinent codes regarding the calculation of
the wind loads. In chapter 3, the dynamic behaviour of a simple cable net model is studied in detail
and its equation of motion is solved analytically. Nonlinear phenomena are detected and similarities
with a simple suspended cable are identified. Chapter 4 contains the validation of the finite element
software, which will be used in the next chapters for analysing multi-degree-of-freedom models. Static
and dynamic analyses of simple cable nets are conducted and the numerical results are compared
with analytical ones. Chapter 5 presents a thorough investigation on the dynamic analysis of multi-
degree-of-freedom cable nets, regarding their natural frequencies and vibration modes. The cable
ends are considered either as fixed or flexible, taking into account the deformability of the boundary
ring. Similarities with simple suspended cables are again underlined and semi-empirical formulae for
the estimation of the first eigenfrequencies are provided and proposed to be used for preliminary
design purposes. In chapter 6, the dynamic response of a MDOF cable net model is estimated using
an equivalent single-degree-of-freedom model, consisting of two crossing cables and considering the
vertical displacement of the central node as the only degree of freedom. Chapter 7 includes numerical
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analyses of cable nets subjected to harmonic loads, considering several spatial distributions and
frequencies, accounting for resonant conditions. Their dynamic behaviour is investigated, regarding
the cable net maximum deflection and the cable maximum or minimum tension. The results are
discussed and compared between cable nets with different boundary conditions. In chapter 8, the
wind pressure spatial distribution is defined for different wind directions according to Eurocode 1,
which is the current loading code in Europe, specifying wind pressure coefficients on structures. The
accuracy of the assumptions made for the shape of a hyperbolic paraboloid is verified by comparing
the pressure coefficients with the ones obtained by experimental results in wind tunnel tests reported
in the literature. In chapter 9, actual wind records or artificial time histories of wind velocity are used
to excite the cable nets, in order to compare their nonlinear dynamic response with respect to the one
resulting by quasi-static procedures. Chapter 10 includes a summary of this thesis, the basic
conclusions and contributions obtained from this research as well as suggestions for future research.
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2 THEORETICAL BACKGROUND AND
LITERATURE REVIEW

2.1 INTRODUCTION

The response of simple suspended cables subjected to static or dynamic loads is studied extensively
and many publications can be found in the literature. Analyses of larger cable structures, such as
cable nets, are also conducted by several researchers for specific geometries and loading conditions,
regarding the spatial distribution, the load amplitude and the load frequency. In this chapter, the main
notions describing the behaviour of nonlinear systems are provided in order to understand qualitative
features of the response of cable structures. Differences between linear and nonlinear systems are
also highlighted. The equation of motion and the analytical expressions of the eigenfrequencies for a
simple suspended cable and a simple cable net are reported from the literature, being the base of this
investigation. The geometry of saddle-shaped cable nets is delineated, while important conclusions of
publications regarding their static and dynamic response are also included. Design rules for cable
structures, technical requirements and mechanical characteristics of cables are reported from the
current codes, in order to use realistic values for the material of the cables in the analyses that will
follow. Emphasis is given on the wind action, being the main dynamic load affecting suspended roofs.
The wind spatial distribution referring to common shapes of roofs is retrieved from Eurocode. The
calculation of the static wind load is based on equivalent static procedures, while the dynamic one on
time-history diagrams produced by actual records of the wind velocity or by stochastic procedures.

2.2 NONLINEAR SYSTEMS

2.2.1 Behaviour of nonlinear systems

Cable structures have negligible bending, shear and buckling resistance. Because they cannot sustain
any compression, they transmit the applied loads to the foundations by changing their shape and by
developing only tension in their members. Thus, the deformed state of such structures is
characterised by large displacements. The deformed shape differs significantly from the initial
geometry of the unloaded structure, with remarkable change in stiffness as the deformation evolves.
This interaction between the stiffness of the system and its deformed state is known as geometric
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nonlinearity and it is the principal characteristic of such structures and their main difference from
conventional ones [2-1].

According to Nayfeh and Pai [2-2], the modelling of nonlinear structural systems may be linear,
pseudo nonlinear or nonlinear. In the first case, linear models describe both static and dynamic
response and the solutions are unique. In the second case, a nonlinear model describes the static
behaviour, but the dynamic one may be analysed by a linear model. The third case refers to a
nonlinear static and dynamic model, which can be used for calculating the overall response of a
nonlinear system. Only in the latter case is it possible to detect several dynamic equilibria and each
one can be examined for a set of initial conditions and system parameters.

2.2.2 Nonlinear static analysis

As already mentioned, because of the geometric nonlinearity, the stiffness of nonlinear systems is
related to the deformation. Thus, cable structures cannot be analysed on the basis of their original
geometry, but it is necessary to take into account the deformed state at every step of the applied
load, performing nonlinear structural analyses considering large displacements. This means that the
internal forces do not vary linearly with the applied load, rendering the principle of superposition
invalid [2-3].

For simple problems, such as SDOF cable systems, the analytical solution in static equilibrium can be
easily obtained. For a given displacement, the stiffness of the system and the external load is
calculated for the deformed geometry. For a given external load a trial and error procedure is
required, until convergence is achieved. For complicated problems of nonlinear systems such as MDOF
cable structures, numerical simulations are necessary, taking into account geometric nonlinearities.
The Full Newton-Raphson method is one of them [2-4]. According to this method, the load is applied
in steps, and the stiffness matrix is calculated in each iteration of every loading step, until
convergence is obtained. The Modified Newton-Raphson method follows a similar procedure. The only
difference from the Full Newton-Raphson method is that the stiffness matrix is not calculated in each
iteration, but for every iteration of the same load step keeps the initial stiffness matrix. This
assumption makes the method faster, but convergence is slower [2-4].

Several other procedures were also developed to solve large nonlinear problems, based on Newton’s
methods, such as the ones described in [2-5] — [2-8].

2.2.3 Nonlinear dynamic analysis

The dynamic response of a system is described by the following equation of motion [2-9]:
[MKX} + [CKXE + [KKx} = {P(t)} (2-1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {P(t)} is the
vector of the external dynamic load, while {x}, {x} and {X} the displacement, the velocity and the
acceleration vectors, respectively. For linear systems exact solutions of Eq. (2-1) can be obtained, but
for nonlinear systems, for which the stiffness depends on the displacement, that is [K]=[K(x)],
numerical techniques are required for analysing them, because the solution of the nonlinear ordinary
differential equations becomes too complicated. However the results of single numerical analyses are
unable to present all the features of the system’s response.

During the last decades, the nonlinear behaviour of structures stimulated the scientists’ interest in
many fields. New terms were defined to describe nonlinear phenomena, unknown to the engineers
dealing with conventional structures exhibiting linear response, such as attractors, limit cycles or
closed paths, spirals, nodes and saddle points of equilibrium, stable and unstable equilibrium points,
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superharmonic and subharmonic resonances, jump phenomena, bifurcations, etc. [2-10]. New
methods were also found to identify and solve such problems ([2-11] — [2-13]). Many researchers
have studied the occurrence of such nonlinear phenomena, addressing several applications in
mechanical and structural engineering. Some representative examples are included in ([2-14] -
[2-18]). In [2-19] a survey of recent developments in the field of nonlinear dynamic response of
structures is presented.

Two types of analysis are available for solving dynamic problems: the frequency domain analysis and
the time domain analysis [2-20]. The frequency domain analysis is based on the principle of
superposition and is not appropriate for nonlinear structures. However, if the structure is considered
as weakly nonlinear, it could be applied, but at first, it is necessary to carry out an eigenvalue analysis
taking into account the stiffness in the deformed state due to the mean value of the dynamic load and
any gravitational load and then adding the response of the fluctuating component of the dynamic
load. On the other hand, the only reliable method to calculate the dynamic response of nonlinear
structures is the time-domain method [2-21] in combination with the Full or Modified Newton-Raphson
methods.

The three important requirements for a numerical procedure are 1) convergence — as the time step
decreases, the numerical solution should approach the exact solution, 2) stability — the numerical
solution should be stable in the presence of numerical round-off errors and 3) accuracy — the
numerical procedure should provide results that are close enough to the exact solution. There are
several types of time-stepping procedures, as the methods based on interpolation of excitation (i.e.
piecewise exact method), methods based on finite difference expressions of velocity and acceleration
(i.e. central difference method) and methods based on assumed variation of acceleration (i.e.
Newmark method, Wilson 8) ([2-22], [2-23]). These methods are generally stable if the time step is
small enough, i.e. At<1/2T.,,, where T, is the smallest period of the structure and tends to become
unstable if At>T,. On the other hand, a very small time step, smaller than required, is not necessary
because it only increases the computational time. However, the time step should always describe the
dynamic load.

The Composite method, introduced by Bathe [2-24] is a time integration method for solving nonlinear
dynamic problems in time domain analysis, which is recommended for nonlinear systems. While,
according to the standard Newmark method, the displacements, velocities, and accelerations are
calculated for every time step At, the Composite one calculates them for every 0.5At. For large
deformation problems, the Newmark method can become unstable, while the composite scheme
remains stable. However, for a given time step size, the scheme is about twice as expensive
computationally as the Newmark method, due to the extra solution step at time t+0.5At [2-25].

2.2.3.1 Phase portrait

In what follows, the phase portrait is described, which is one of the main tools that gives us the
possibility to study a nonlinear system and identify properties of its motion, such as equilibrium,
periodicity, unlimited growth, stability, instability, etc. The phase portrait construction is based on the
transformation of the equation of motion in a function of one less unknown variables, and the
representation of this function on a diagram of Cartesian axes x and y, called phase plane [2-10]. For
a SDOF dynamical system, its motion may be expressed as:

_P® _C;

- X x = % = g(x, %, 1) (2-2)

MX + Cx +Kx = P(t) = X
M M M

A system is in equilibrium if its state does not change with time, which leads to x=x=0 and
consequently to g(x,0,t)=0. Two types of equations are distinguished:
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— the autonomous type, in which time t does not appear on the right hand side, and
— the non-autonomous type or forced equation in which g depends explicitly on time t.

The non-autonomous equations represent systems subjected to loads varying with time. For an
autonomous system, adopting the transformation x =y, Eq. (2-2) becomes:

X = g(x, %) —=X 5y = g(x,Y) (2-3)

A state at a time t, is described by a pair of humbers consisting of the displacement x(t;) and the
velocity x(tp), which can be considered also as the initial conditions. In such a system, the initial
conditions determine all following states in a free motion. In the phase plane, with axes x and y, every
state of the motion, at every time t, is represented by a point, having the coordinates (x(t),y(t)). The
succession of states creates a curve, passing through the initial point for an undamped system, which
is called a phase path, or trajectory or orbit. Figure 2-1 shows a closed path, where a point P leaves
the initial state (x(to),y(ty)) and after a time T returns to it, leaving again and returning to the same
point an infinite number of times. Every circuit lasts the same time T, which does not depend on the
initial conditions. Hence, the closed path defines a periodic motion, with period T and amplitude equal
to the maximum value of x encountered by the curve. The time t does not appear on the phase
portrait, but it determines the direction of the path, which is obtained from the relation x =y. When
y>0, then also x >0, which means that x is increasing with time and when y<0, x <0, meaning that x
is decreasing with time. Therefore, the direction of the path is from left to right in the upper half-
plane and from the right to the left in the lower half-plane as the arrow of Figure 2-1 shows.

Figure 2-1: A closed path defining periodic motion

Equilibrium points correspond to constant solutions with constant displacement and zero velocity and
acceleration. They are situated at points (x,0) where g(x,0)=0 and they can be regarded as
degenerate phase paths. An equilibrium point surrounded by closed paths is called centre (Figure
2-2a). Figure 2-2b shows an unstable equilibrium point called saddle. This equilibrium point can never
be reached in a finite time. In this case, the paths are hyperbolas, leading away from the equilibrium
state to infinity and the asymptotic lines are called separatrices.

Y Y
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saddle

separatrices

(a) (b)

Figure 2-2: (a) Centre point, (b) Saddle point
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If damping is included in the system, two cases are distinguished. In the first case, the damping is
strong and no oscillation occurs. The paths start at infinity and lead very quickly to the origin, which is
called stable node. Such a system is called dead beat (Figure 2-3a,b). In the second case, the
damping is weak and the system performs oscillations with decreasing amplitudes. The paths have the
form of a spiral and the origin is called a stable spiral or a stable focus (Figure 2-3c,d).
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A A A

\/H &\H AA H%
ST

@) ©) (d)

Figure 2-3: (a) Damped time solution for strong damping, (b) Phase portrait for strong damping, (c) Damped
time solution for weak damping, (d) Phase portrait for weak damping
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2.2.3.2  Nonlinear resonances

In nonlinear dynamics there are three main types of resonances. The first one is the external
resonance, depending on the frequency of the external excitation Q and its relation with the
eigenfrequencies of the system w. It consists of the primary resonance as well as the subharmonic
and superharmonic resonances, called secondary resonances. The second one is the internal
resonance, depending on the characteristics of the system and specifically on the relation between its
natural frequencies. The third one is the parametric resonance ([2-26] — [2-27]).

In a harmonic-forced system, the external excitation tries to force the system at oscillations of
frequency Q, against its natural tendency to perform free vibrations with frequency w. In undamped
or lightly damped linear or nonlinear systems, when the loading frequency is equal to the
eigenfrequency, that is Q=w, even a weak excitation forces the system to unbounded vibrations, with
a continuously increasing amplitude and the system is said to be in the state of fundamental (primary)
resonance. In nonlinear systems, superharmonic resonance may occur when the loading frequency
may be expressed as:

Q=(1/n)yw (2-4)

where n is an integer. When the loading frequency is larger than the frequency of the system, related
to it with the expression

Q=nw (2-5)

where n is again an integer, phenomena of subharmonic resonance may occur. In both cases, the
system responds in such a way that the free oscillation term does not decay to zero in spite of
presence of damping and in contrast to the linear solution. Subharmonic oscillations can have
potentially catastrophic effects [2-28].

In contrast to SDOF systems, which have only a single linearised natural frequency and a single mode
of motion, an n-DOF system has n linearised natural frequencies and n corresponding mode shapes
(some of which can be generalised modes corresponding to repeated eigenvalues). When two or more
linearised natural frequencies are commensurable or nearly commensurable, for example w,xw;,
W20, WrR3W1, W3RWrEW;, W3R2W£W;, W4RW3EW,+w; and so on, the corresponding modes may
be strongly nonlinearly coupled leading to internal resonances. If an internal resonance exists in a free
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system, energy imparted initially to one of the modes involved in internal resonance, will be
continuously exchanged among all the modes involved in that internal resonance. Moreover, if a
harmonic external excitation of frequency Q acts on a MDOF system, then, in addition to all primary
and secondary resonances, resonant combinations of frequencies might exist. Finally, it should be
mentioned that, during the internal resonances, the beat phenomenon characterises the response of
the system, due to the combination of frequencies very close to each other.

In parametrically excited systems, the excitation appears as coefficient in the governing differential
equations, simulating the time-dependent boundary conditions. In contrast to the case of external
excitations, a small periodic parametric excitation can produce a large response when the frequency of
the excitation is close to twice one of the natural frequencies of the system (principal parametric
resonance).

The relation between oscillation amplitude and frequency is described by the response diagram in
which the steady-state amplitude, denoted as a, is plotted on the vertical axis and the frequency ratio
Q/w on the horizontal axis. For a free vibration of an undamped and unforced oscillator, the response
is represented by one curve, called the backbone curve. For the forced system, the response is
represented by different curves depending on the amplitude of the external force. These curves can
be interpreted as perturbations out of the equilibrium state. In linear systems, the backbone curve is a
straight vertical line and the response curves for the forced systems approach asymptotically this line,
as the forcing frequency Q approaches the system’s frequency w. This indicates the phenomenon of
the primary resonance, in which the vibration amplitude increases infinitely when the force has the
same frequency with the system. In nonlinear systems instead, the backbone curve is a bending curve
representing either the softening or the hardening behaviour of the system (Figure 2-4). The
softening behaviour means that the stiffness of the system decreases as the oscillation amplitude
increases and the hardening behaviour means that the system’s stiffness becomes progressively
stronger for large amplitudes [2-19].

lalk lald lald

L

backbone
curve

= Qf0 = Qfw = Qf0)

1
a) b) <)

Figure 2-4: Amplitude-frequency curves for undamped systems with (a) softening nonlinear behaviour, (b) linear
behaviour, (c) hardening nonlinear behaviour

Looking into the diagrams of Figure 2-4, important observations are made [2-10]:

— The bending of the response curves proves the bounded oscillations of the nonlinear systems for
sufficiently small forces with frequencies close to the system’s frequency, even if the system is
undamped. In linear systems, even a small force, having the frequency of the system produces
vibrations of infinitely increasing amplitudes, due to the fundamental resonance. In nonlinear
systems instead, the nonlinearity controls the oscillation amplitude. As the amplitude increases (or
decreases) the system becomes more (or less) stiff, changing its natural frequency, and the forcing
term does not remain in step with the natural oscillation.
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— Observing the response curves of the hardening (or softening) system, for Q/w<1 (or Q/w>1) a
single response is expected, while for ratios Q/w>1 (or Q/w<1), there might be three different
amplitudes of the system for the same forcing level. The initial conditions determine which of these
responses is the actual response of the system. When only one response exists, this response is
stable. When three different responses exist, only the oscillations with largest and smallest
amplitudes are stable, while the remaining intermediate one is unstable.

— The multivaluedness of response curves due to nonlinearity leads to jump phenomena and
consequently to hysteresis loops. If a force is applied to a nonlinear system with a hardening
behaviour, described by the diagram of Figure 2-5, with an increasing frequency from Q; to Q,, the
response point will move on the upper curve as far as point C, but then it will drop to point D on
the lower curve and continue to point E. If the force has a decreasing frequency from Q, to Q,, it
will follow the curve EDF, but at point F it will jump to the upper curve at point B, and continue
until point A. This is in contrast to linear systems, where no hysteresis loops exist in frequency
response functions, and the eventual steady states do not depend on the choice of initial
conditions.

Figure 2-5: The jump phenomenon and hysteresis loop for a system with hardening behaviour

2.3 SIMPLE SUSPENDED CABLE

2.3.1 General

A sagged cable is considered, subjected to its self-weight, spanning a distance L. The two supports
are at the same level. The sag of the cable at midpoint is f, its diameter is A and its mass density is m.
The self-weight causes the deflection of the cable, while tension develops in the cable, tangential to
the cable profile. No longitudinal loads are acting on the cable; thus, the horizontal equilibrium of a
cable segment requires that the horizontal component of cable tension is constant along the cable and
equal to H (Figure 2-6).

L/2 L/2

H Ll
nan /

zY L
7

Figure 2-6: Sagged cable under its self-weight

As described in [2-29], the geometry of an inextensible suspended cable is expressed as:
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z(x) = mL%{COSh(%j - cosh{ngA (% - xﬂ} (2-6)

where mgA is the self-weight of the cable per unit length. Given that the length of the cable segment
is calculated as:

ds? —dz? +dx® = 35 - |14 Ez (2-7)
dx dx

the horizontal component of the cable tension is defined as:

d?z ds dz )\
H—s = -mgA— = -mgA, |1 +| — -
e mg ™ mg +(dxj (2-8)

An equivalent simply supported beam loaded by its self-weight could simulate the cable. Hence,
moment equilibrium at the central point yields:

 mgAL?

2
_mgAl
8f

Hf H

(2-9)
Eg. (2-9) expresses also the horizontal component of the cable tension. For cables with sag-to-span

ratio smaller than 1/8, the profile adopted by the cable can be described with accuracy by the
parabola:

AL 2 2
0022 a2

In case the origin of the coordinates is set at the mid-point of the cable curve, as shown in Figure 2-6,
Eqg. (2-10) becomes:

Comgl? (xY X\
z(x):Wr =4fr (2-11)

The arc length of the cable, described by Eq. (2-7), can be rewritten as:

2
L dz
S= jo 1+(&j dx (2-12)
Differentiating Eq. (2-10) we obtain:

dz 4f X d’z  8f
d_X:T(l_z_j and £2- (2-13)

If the series expansion is considered [2-30]:

1 1 1-3 1
,/1+x:1+Ex—2.4x2+2'4.6x3...~1+§x (2-14)

taking into account the first two terms, neglecting second order terms because the sag-to-span ratio
is small with respect to 1, Eq. (2-12), which expresses the length of the cable, becomes:
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L L 1 4f 2 X 2
szj 1+z'2dx=j 1+2|—=|{1-22] ldx=>
0 0 20 L L

2 L 2
zX+8£ X 3S:L1+i
L . L2

The straight cable segment AB of Figure 2-7 is assumed with initial unstressed length equal to dsy,=dx.
Considering an elongation at the cable, the deformed segment is A'B' with length ds.

2 L (2-15)
d 8f2 x2 322 x3

=S=X+8 - | X—-———+ —"—
L B3 2 4 3 .

Y
A ds B'

(x+u,v,w) (X+u+dx+du,v,w)

A ds, B

X
] /x,o,O) (x+%,0,0)

Figure 2-7: Elongation of cable segment AB

The Green-Lagrange strain (large strain) is defined as [2-31]:

2
du 1(du
Ex6l = 4y +E(d_xj (2-16)

The stretched length ds is:

Y du = du?
ds = (dx+du)2 :dx\/[1+2d—)l’('+d%J =dx1+2g, g (2-17)

:

and the elongation of the segment over the initial length is:

~ dx 1 +2g, g —dx T
dx

ds? —ds?
2ds3

= x6L ~1=> &g = (2-18)

ds—ds,
dsg

The engineering strain (small strain) is described by a simpler expression, neglecting the second order
term:

du
xe =4y (2-19)
The stretched length ds is expressed as:
ds=dx+du=dx(l+g,,.) (2-20)
and the elongation of the segment over the initial length is:
ds—-ds, dx(1+¢g,.)-dx
_ —Eye (2-21)

So dx

According to the Hooke’s law, the cable tension n on a cable segment due to an elongation &, is:
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22
n=EAg, (2-22)
Assuming Green-Lagrange or large strains Eq. (2-22) becomes:
n _ds® —dsj 503
EA 2ds2 (2-23)
while, for engineering or small strains, it is:
n ds-dsg
=T (2-24)

EA ds

For a small difference between the deformed and the undeformed length, the difference between the
Green-Lagrange and the engineering strain is also small. This is confirmed by the chart of Figure 2-8,
where the ratio of the deformed length over the unstressed one is plotted with respect to the strain €.

1.30 ~ o small strains O large strains
1.20 ~ ]
2 1.10 - Emmmgg-aﬁﬂ
© 100 snaaesaEE
0.90 ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20

Figure 2-8: Difference between small and large strains

Consider now the suspended cable of Figure 2-9. If dsy is the original length of an infinitesimal
segment at point P and ds is its deformed length, then:

ds3 = dx? +dz? (2-25)

ds?=(dx+du)?+(dz+dw)? (2-26)

where u and w are the longitudinal and the vertical components of the displacement, respectively
[2-29].

L/2 L/2

undeformed - 9—+ —_—H,
e |

-
-

-

zy POcku,v,ziw) === === \.deformed

state

Figure 2-9: Deformed cable
Subtracting Eq. (2-25) from Eq. (2-26) and dividing by 2ds3:

ds? -dsj 1du®> dx du 1dw? dz dw
- (2-27)

= + += +
2ds% 2 ds% dSO dSO 2 ds(z) dSO dSO
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The left hand side of Eq. (2-27) can be written:

ds® —ds§ _ds—ds, ds+ds, _ds-dsg , . Gs—dso | _
ZdS% B dSO ZdSO B dSO 2d50 a

(2-28)

_ ds-ds, +1 ds —ds, 2
~ds, 2| ds,

This is the assumption of large displacements and large strains. However, neglecting the second term,
which is very small, Eq. (2-28) results in the assumption of large displacements and small strains and
Eq. (2-27) becomes:

ds®> -ds§ 1du®> dx du 1dw? dz dw _ds-—ds,

== + += + ~

(2-29)

Assuming that for flat cables the longitudinal change in length is small and neglecting this second
order term, Eq. (2-29) results in:

2
ds-d
s—ds, dx du dz dw 1[dwj (2-30)

= + +=
dsg ds, ds, dsy ds, 2\dsg

2.3.2 Static response of simple cables

A simple cable with initial unstressed length Sy, spanning a distance L, is studied next. A concentrated
load P is applied at middle span and the cable stretches until an equilibrium position is obtained with a
deflection at the midpoint equal to z; from the chord connecting points A and B, as shown in Figure
2-10. The self-weight of the cable is neglected and the material is assumed as linearly elastic. The
equation of static equilibrium is reported from [2-32].

L L
N,V L/2 L/2 Vo
X =l 1y
A B A i B
z s s/2 Pl 2, 5/2

So
Figure 2-10: Cable with concentrated load at middle span
The vertical component V of tension N is:
V=P/2 (2-31)
The sums of moments about points A and B give:

H-P. L

and the tension of the cable is:

2
N=+V?2 +H? :%,/u[i} (2-33)
1

while the stretched length S is:
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L 2
S=2 (E) +2z? (2-34)

which is related to the tension and the deflection by Hooke's law:

N _(S-S,) N
OZEE:K:ET:S:SO(1+EJ (2-35)

Combining Egs. (2-33), (2-34) and (2-35), we obtain:

2z, | L 1
P=2AE | — (2-36)

So 142z, /L)?

Eq. (2-36) shows the nonlinear relationship between the load P and the deflection of the cable z;. It is
difficult to obtain an explicit expression for z; as a function of P, without using numerical methods.
Differentiating Eq. (2-36) the linearised stiffness of the cable can be evaluated:

(0P _4nE[ L 1 2:37)
oz L SO [1+ (221 /L)2]3/2

which depends on the deflection of the cable. In Figure 2-11 the non-dimensional load is plotted as
function of z;/L for two different cases of initial lengths, So=L and Sy=1.05L. In the first case, the
unloaded cable without pretension has a stiffness equal to zero (represented by the tangent angle of
the curve at z;=0). In the second case, in which the cable’s initial length is larger than the span, the
cable at first is slack, without any tension and without any stiffness, until the deflection becomes
equal to:

2
L |(So
=22 -1 2-38
“ Z(L] (2-38)

which for Sp=1.05L results in z;=0.16L. In both cases, as P and z; increase, the stiffness of the cable
also increases and the response tends to become linear, in other words the system becomes stiffer.

0.6
0.5 A ——S0/L=1
0.4 1 —=—S50/L=1.05
w
< 0.3 1
a
0.2 1
0.1 A

AR
.....

0 T = T T T 1

0 0.1 0.2 0.3 0.4 0.5
21/L

Figure 2-11: Load-deflection curve for central concentrated load

Following the same procedure for the cable of Figure 2-12, the expressions for the tension, the
deformed length and the deflection of the cable are derived.
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Figure 2-12: Cable with a concentrated load at an arbitrary location
The tensions of the cable are:

Pab Pab
Ny, =— and Ny =— -
A Ye, B YC, (2-39)

where

a=x/L, b=1-a, y=zy/L, ¢4 = and ¢, =

1 1
Je(v/ay L+ (v /by (2-40)

The stretched lengths S; and S, are:

Sy =yx2+22 =L and S, = /(L -x,)? + 22 :LCL (2-41)

Cy 2

and the unstressed lengths Sy;, So2 and Sq are:

S . _ L
01 — o 5 L
¢, Pb (2-42)
a AEy
L
Sq, =
¥, Pa (2-43)
b AEy
L L
So =Sp1 +Spy =
0 =01 +902 o 194'2 Pa (2-44)
a AEy b AEy
The load is expressed as:
P v | L L ? L
AE " 7ab g—cl—c2+ [§+c1—c2J +4a§(c2—c1) (2-45)

The horizontal component of tension is constant along the cable, since no horizontal loads are applied.
Simulating the cable by a simply supported beam, loaded in the same way as the cable, the deflected
shape is the shape of the moment diagram of the equivalent beam:

Px;(L—x;)

H= 1 1 -
X = X2, (2-46)
The analogy of the deflected cable to the moment diagram of a simply supported beam is useful in
order to obtain the prestressed configuration of cables subjected to multiple loads. This moment
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analogy method can be used for the generalised problem with multiple loads P; applied at points x;
along the horizontal projection of the span, either if the horizontal component of tension is known, or
the deflected profile at a specific point is known [2-32]. The chord connecting the endpoints of the
cable makes an angle 6 with the x-axis as illustrated in Figure 2-13.

X+t

Figure 2-13: Cable with multiple concentrated loads

The vertical reactions are:

Xni1 i3

Ro = ! |:i(xn+1 =X;)P; + HZn+1:| (2-47)

n+l [ i=1

1 n
Rni = —{Z XiP; + HZn+1:| (2-48)

If a simply supported beam directed along the chord is considered instead, the moment at any point i
is:

Xni | 21 jeitl

m; = L{ZI‘,X]'(XnA - X;)Py + Zn:xi(xml _Xj)Pj:l (2-49)

while the moments M; in the cable must be zero at every point:

1 i n
M; = |:zxj(xn+1 = Xi)Py + D Xi(Xny1 = X;)P; + HZn+1:| -Hz; =0=
Xnt |51 j=i+l (2-50)

m, +H(x, tanB—-2,) =0 = m, —Hd, = 0 = d, =%

where d; is the distance of the cable from the chord at point i. Eq. (2-50) shows that if the horizontal
component of the cable tension is known, all d; can be calculated. If, on the other hand, a distance d;
at point I is known, the distance d; at any point i can be also calculated by:

m;

d; = m_IdI (2-51)

The vertical component of tension in each segment is equal to the tension of the equivalent beam:

i
Vi =Ry + Z;Pj (2-52)
j=
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and the tension in each cable segment is:

N, = {V? +H? (2-53)

The undeformed length of each segment is calculated by Hooke's law:

Si —Sqi 5. - \/(Xi ~xi4)* + (2 -24)°
2i 200 ol = ]
o 0 LT (2-54)

N; = EA

The horizontal component of tension is not constant along the cable if horizontal loads are applied. In
such a case the following expressions are used (Figure 2-14):

N, = V2 +H? (2-55)
Via =V -P; (2-56)
Hi =H -Q; (2-57)

® Hius
Vi+1
Figure 2-14: Equilibrium at the point i

If H; and V; are known, it is possible to calculate H;, V; and N; at every point i of the cable, using Egs.
(2-55) — (2-57). If, in addition, the unstressed lengths Sy and the coordinates at point 0 are known,
the coordinates of all points can be calculated:

N.
S = [1 + ﬁ] “Soi (2-58)
H.
Ax; = N—: s, (2-59)
V.
Ar = Vig 2-60
N T (2-60)
Xi+1=Xi+AX] (2-61)
Zi1=z+Az (2-62)

If only the horizontal distances Ax; are known, the vertical distance Az; and the stressed lengths S; are
calculated as:
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Az; = — . AX; (2-63)

N.
Si =g X, (2-64)
i
In case H; and V; are not known, the solution to the problem can be obtained only by iteration
methods consisting of the following steps:

— Assume H; and V,

— Calculate V;, H; and N; [Egs. (2-55), (2-56) and (2-57)]

— Calculate x;, z; and S; [Egs. (2-58) — (2-64)]

— Compare the computed X,+1, Z,+1 and Sy4; to the exact values at the end point n+1 and if they are
different, assume new H; and V; and repeat from the first step.

A cable subjected to a uniformly distributed vertical load is also assumed. Two cases of loading are
taken into account: a) loads distributed uniformly along the horizontal span of the segment, e.g.
permanent suspended loads, snow etc. and b) loads distributed uniformly along the arc length of the
segment e.g. self-weight of the cable [2-32]. In the first case, with a uniform load over the horizontal
span of the cable segment (Figure 2-15), the vertical reaction at point A is obtained by the sum of
moments about point B:

V, —Htang + %L (2-65)

The equilibrium of forces on the differential length is expressed as:

dH

——=0=H=H, =H -
- = A =Hg (2-66)
(cjl—\):dx =—pdx = V=V, —px (2-67)

and using Eq. (2-65), the vertical reaction Vg is calculated:

Vg = Htan - %L (2-68)

H,—

A = X v
A e _ Lt; 5 { dx
R S e
B s Iz dH
—H+5 ~dx
? l‘ dx
L V+d—de
DETAIL "a" dx

Figure 2-15: Uniform distributed load over horizontal span

The cable tension at point P, located at distance x from the end A, is calculated as:

2
N = JH? + (V, —px)? = H\/l ; {tane +%[1 _ZTXH (2-69)
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The vertical distance z of point P, shown in Figure 2-16, is:
z=xtan6+d (2-70)

where d is the distance from the chord to the cable, expressed as an expression of the moment m, at
point P in the equivalent simply supported beam:

m
dzﬁzg—ﬁ(L—x) 2-71)

If the sag of the cable at midpoint is defined as f, the horizontal component of the cable tension is
calculated as:

2 2
f:&:H:&

8H 8f (2-72)
I T T I
Va
H ‘_At - - X
z Ve
g~ H
- X - |
-y L —
Figure 2-16: Point P at distance x
The unstressed length of the cable segment AP is determined as:
ds ( N ]ds0 ds, ds 1
—=|1+— = =—
dx EA ) dx dx dx [1 . Nj (2-73)
EA
Expanding to series according to [2-30]:
Lo xex?-x3s (2-74)
1+x

assuming that N/AE<<1, and neglecting the terms N/EA of higher order, Eq. (2-73) becomes:
ds, N \ds N \N
20 o 2o |2 -
dx [ AE] dx ( AE) H (2-75)

If the unstressed length of the cable is known, the sag f can be determined combining Egs.
(2-69)(2-72) and (2-75). It is convenient to define the non-dimensional variables:

f X
U=tan6+4r[1—2tj (2-76)
_pL -
p= SAE (2-77)

with:
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Up=tanBb+4f/L and u;= tanB-4f/L (2-78)

The total unstressed length is:

S L Ug +w/1+u(2)
TO:ﬁ Ugy1+U} —u“/1+uf+log—2 +
Uy +1+Ug
L 1
+g—f[u1—uo +§(uf—u8)}}

Using various numerical procedures to determine the roots of Eq. (2-79), the sag f could be
calculated. If the cable is considered as inextensible, with p=0, the expression defining the sag f is:

(2-79)

3(Sq 1, 5
f=L |22 -1-=tan%8 -
\/8[ L 2 an J (2-80)
while the unstressed length becomes:
so-L/1+87  Lanzg
0= +§L—2+E an (2_81)
and if 6=0:
3(Sy
f: L —_— — = -
8[ ] ] (2-82)
8 2
So=L1+=— -
0 [ + 3 LZJ (2-83)

In case a uniformly load q along the arc length of the cable segment is considered, as shown in Figure
2-17, a different solution is obtained.

Figure 2-17: Cable with uniform load along the arc length of the cable

The equilibrium of forces on the differential length yields:

dH

E;=02H=HA=HB (2-84)
d—de——qu:>d—v——qE 2-85
dx dx " dx (2-85)

Since the tension must be directed along the tangent to the arc:
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dz
V= Hd—X (2-86)

while, taking into account the arc’s length given by Eq. (2-7), the cable tension is defined:

2
ds dz
N=H-—=H,]1+|— -
™ +(dxj (2-87)

Substituting Eqg. (2-86) into Eq. (2-85) the classic catenary’s equation for the deflected profile of the
arc arises:

d(, dz ds d?z q dz\?
SRl Vi e N Y ) -
dx[ dxj qu:dx2+H +(dxj (2-88)

and applying the boundary conditions z=0 at x=0 and z=Ltan® at x=L, the solution is:

z(x) = %{cosh(y +B)- cosh{y + B[l - Zfﬂ} (2-89)
where
_qL  eimhl B
B= M and y =sinh (tane sinhBJ (2-90)

Thus, the vertical component V and the tension N of the cable at a point x on the horizontal span are,
respectively:

V= Hsinh{y + 5[1 - 2%}} (2-91)

N=H cosh{y + B[l - ZEH (2-92)

The total stretched length is obtained by integration of Eq. (2-85):

45 S Va-Vo
dx dx L qL (2-93)
and the unstressed length is calculated by integration of Eq. (2-75), applying the boundary conditions
at the ends of the cable sy=0 at x=0 and sy=S5, at x=L.:

dsp (; NYds _ So _Va-Ve 1 |, VaNa-—VeNs
dx AE Jdx L gL 2AE qL

(2-94)

2.3.3 Dynamic response of simple cables

A simple cable is first treated as a single-degree-of-freedom (SDOF) undamped system, with supports
at the same horizontal level [2-32]. The mass of the system is concentrated at the central node. This
node is assumed to move only vertically. The cable is loaded by a concentrated load in the middle.
The undeformed length of the cable is s,. The initial deflection of the cable is considered to be equal
to z5. Due to the weight of the concentrated mass M, a static load P is assumed causing a static
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deflection z*. Then, a load AP(t), varying with time is also applied, or an initial displacement Az,

(Figure 2-18).
undeformed geometry
geometry under static load

geometry under dynamic excitation

2 e
~ N
J
(b)
Figure 2-18: Single-degree-of-freedom cable (a) with time-dependent load, (b) with initial displacement
The equation of motion at any time t, as described in Figure 2-19, is:
(2-95)

Mz" = P(t) — 2N(t) sin(p(t))
where Mz is the inertia force, P(t) the external excitation and 2N(t)sing(t) the vertical component of
the cable tension. The dot denotes differentiation with respect to time. The deformed length of the

cable at time t is s(t), defined as:
t ; L) t 2"t
? - ]/(z ®f +[§j = % _ /[ZT()] ‘1 (2-96)

and the angle of inclination ¢(t) of each section is expressed as:
2z (t) _ tang(t)
(2-97)

. 27" (t)
sing(t) = = =
s(t) N 2 tan2 o(t) +1
oo o
N(t) N(t)
AN
£ \m/ %

|

P(t)=P+AP(t)

Figure 2-19: Equilibrium of the central node

If the material is considered as linearly elastic, the cable tension is:
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N(t) = AEe = AES(Z—_SO = N(t) = AEg = AE[SLwltan2 o) +1 - 1j (2-98)
0 0
where
teng() = 22 = gt (2-99)

Substituting Egs. (2-97), (2-98) and (2-99) in Eq. (2-95), the nonlinear equation of motion of the
mass M is obtained as a function of the forcing term P(t):

ML .. L 1
—q(t) =P(t) - 2AE — - —=(q(}) 2-100
2 [50 1lqz(t)+1] (2-100)

The load consists of a steady prestressing force P and a time varying one AP(t), while the non-
dimensional deflection q(t) consists of a static deflection g and a transient one Aq(t):

P(t)=P+AP(t) (2-101)
q(t) = q+ Aq(t) = q(t) = g+ Aq(t) = 0+ Aq(t) = Aq(t) (2-102)

Thus, Eqg. (2-100) becomes:

%Ad(t) = (P+AP(t))- 2AE[L - . ](q + Aq(t)) (2-103)

S0 \J(g+Aq(e)* +1

In case of static equilibrium, the load P is expressed as:

So \/qz +1

and Eq. (2-103) becomes:

p_ zAE[L- L ]q (2-104)

ML .. L + Aq(t
P b(e) = ap(t) - 28 T aq(y -| —-240__ 4 (2-105)
So \/(q+Aq(t)) +1 \/q +1
Taylor expansion implies [2-30]:
’ (n)

f(z+Az)=f(z)+f§—|Z)Az+...+¥Az” (2-106)
where Az — 0. Retaining only the first order term, Eq. (2-106) becomes:

f(z+Az) - f(z) =f'(2) - Az (2-107)
If we consider the function:

__ 9
f(q) = = and Aq(t)<<1 (2-108)

q +1
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taking into account Eq. (2-107), we obtain:

’

g+ Aq(t) a__|_a |, _( 1 J
- = q=|-——=7 (Aq (2-109)
Ja+aq®P +1 Yo +1 {quu] (@ +1)°

Substituting Eq. (2-109) into Eq. (2-105) yields:

20P(t)

MAq(t) + KAq(t) = 3

(2-110)

where K is the stiffness of the cable in the static equilibrium, obtained by Eq. (2-37):

K‘”:E[L 1 J (2-111)

o ()

In free vibration the equation of motion is:

MAG(t) + KAq(t) = 0 (2-112)

having the solution:
Aq(t)=asin(wt)+bcos(wt) (2-113)

where w is the natural frequency of the system in the static equilibrium:

w_\/E_ 4AENL 1 (2-114)
MM So (g 1)

and the amplitudes a and b are defined by the initial conditions:

(a,b) - [%Aqm)j (2-115)

where Aq(0) and Aq(0) are the initial velocity and displacement, respectively.
In free damped vibration the equation of motion becomes [2-33]:

MAG(t) + CAQ(t) +KAq(t) =0 =
c

= Aq(t) + %Aq(t) + %Aq(t) =0 ?’Z@ AG(t) + 2TwAg(t) + w?Aq(t) = 0 (110
where C is the damping ratio. For (<1 the solution is:

Aq(t)=[Asin(wqt)+Bcos(wgt) e (2-117)
where

Wy = wy1-3 (2-118)

The amplitudes A and B are defined again by the initial conditions:
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(A,B) = [Aq(o) ;Aq(o)zw ,Aq(O)J (2-119)
d

In forced vibration, in which AP(t) is a non-zero oscillatory load, expressed as AP(t)=aPsinQt, the
equation of motion of a damped system is:

MA(E) + CaG(t) + Kna(t) = 257 = ad(t) + 20g(®) + w?aq) = 250 (2-120)

having the solution:
2aP 2\
Aq(t) = 1-B“)sinQt — 2B cos Qt +
ML[(1-B?)? +(2CB)2]{( 1)
+e {Aq(O) cos wpt + Aq(0) ;Aq(O)(',w sin th}}
d

where B=Q/w and

Wp = Wyl -? (2-122)

The vibration modes and natural frequencies of a nonlinear system can be calculated conducting a
linear modal analysis. Although it is not appropriate to perform any kind of linear analysis for
nonlinear systems, it is important to know their linearised frequencies, in order to detect nonlinear
dynamic phenomena, depending on the natural frequencies of the system, as it will be proved further
on. Pugsley [2-34] gave some semi-empirical expressions for the first three in-plane modes of a
sagged suspended chain, which could represent a hanging inextensible cable without pretension. He
demonstrated the applicability of the results by conducting experiments on cables, in which the sag-
to-span ratio ranged from 1:10 up to about 1:4. He used the expression:

2
(O :an\/%{l—sn[gj ] where n=1,2,3 (2-123)

where f is the sag, g is the acceleration due to the gravity, S is the length of the chain and the
coefficients a, and B, were obtained from experimental results. For the first three natural frequencies
of the chain, from which the first and the third are related to antisymmetric modes and the second is
related to the symmetric mode, the equations expressing the natural frequencies, based on Eq.
(2-123), were:

2n |g £
n-1.4 [g )2

0 == 5 1—1.5(§j (2-125)
-2 [g )2

0y - 22 19 1_0.7(§j (2-126)
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From these formulae, it is interesting to note that the mass density m do not influence the frequencies
of the hanging chain. These frequencies are similar to the natural frequency of the simple pendulum,
which is:

W= /= (2-127)

where L is its length (Figure 2-20), confirming that the hanging chain or the suspended inextensible
slack cable swing in the vertical plane like a pendulum and the only force that tends to bring it back to
the equilibrium state is gravity.

Figure 2-20: Simple pendulum

Ahmadi-Kashani [2-35] compared the semi-empirical formulae of Pugsley with numerical results for
the entire range of sag-to-span ratio and slope angles 6 (Figure 2-21). It was shown that Eq. (2-124)
provided good approximations for the first frequency for slope angles 0°<8<65°. For the second mode
the formula of Eqg. (2-125) was applicable to larger values of 6 i.e. 15°<8<85° and for the third mode
Eg. (2-126) did not yield as accurate results for angles 8>35°. The reason may be due to the fact
that, as the mode numbers increase, the experimental results become less and less accurate.

& i
— @ -F|

Figure 2-21: Geometry of the hanging cable assumed by Ahmadi-Kashani [2-35]

Improving the coefficients a, and B, for the expressions of the second and third natural frequencies,
new approximate formulae were provided, for the first four in-plane and out-of-plane natural
frequencies, applicable to a wide range of sag/span ratios and inclination angles. Thus, denoting the
length of the cable as S, the in-plane natural frequencies of a hanging inextensible cable were
expressed as:

2n |g )

W, VAL 1—3.00[§j (2-128)
2n-1.43 [g £)?

0 =T 1_1.44(§j (2-129)
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2n-2 |g £
= Z11-1.30] = -
I f[ < ] (130
2
2n-2.45 |g f
= Z|1-0.90| — -
Wy 5 f[ (Sj ] (2-131)
while its out-of-plane natural frequencies were:
2n |g £
=——.[2]1+0.25| = -
RS { ) (sj } (2-132)
0, = 22 9_1_077 AN
2 - 4\/5 f_ . S | (2'133)
oy =203 g_1—0 07(ij2_
PTan N s (2-134)
0, =24 1914 o7/ L 2

Irvine and Caughey [2-36] developed a linear theory for the free vibrations of a suspended cable, in
which the sag-to-span ratio f/L is about 1:8 or less. They derived specific formulae for the frequencies
of the in-plane and out-of-plane vibrations, introducing also the horizontal component of the
pretension. They also compared their numerical results with experimental ones. The out-of-plane
modes of a sagged cable were the swinging ones with frequencies:

w, :nTn % where n=1,2,3... (2-136)

where H is the horizontal component of the initial pretension and m the cable mass density. The in-
plane motion could be distinguished in antisymmetric in-plane modes, consisting of antisymmetric
vertical components and symmetric longitudinal components and in symmetric ones, consisting of
symmetric vertical components and antisymmetric longitudinal components. The frequencies of the
antisymmetric in-plane modes of a sagged cable were described by:
2nn [H
=—_[— where n=1,2,3... 2-137
"L \m ( )
The natural frequencies w of the symmetric in-plane modes could be calculated by solving the
following equation:

~ ~ ~ 3

() 0 4w
t — = e— e — — -
an[zj 2 N (Zj (2-138)

where:
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®=wl,|— (2-139)

and

2
f)* LEA
N = (8—] (2-140)

L) HL,

where L. is the cable length defined as:

£ 2
Lo = L[l + 8&) } (2-141)

The length L is usually only a little larger than the span itself. Assuming L=L, for small sag-to-span
ratios, Eq. (2-140) becomes:

2
1> EA
=64 | 2 -
(Lj v (2-142)

The parameter A%, which involves the cable geometry and elasticity, plays an important role in the
cable’s symmetric vibrations. The values of the frequencies for the in-plane symmetric modes depend
on this parameter. Several cases were explored in [2-36] for different values of this parameter:

a) For large values of A? the cable is considered as inextensible and Eq. (2-138) becomes:

L(B) 8
an S 1=5 (2-143)

with the first two roots at:

(®);=2.86n and (® ),=4.92n (2-144)
while the higher roots are quite accurately expressed as:

(®)n=(2n+1)n, where n=3,4,5,... (2-145)

b) For law values of A’ the cable is considered as a taut string with negligible sag and Eq. (2-138)
becomes:

®
tan(iJ = -0 (2-146)
with roots:
(@ )s=(2n-1)n, where n=1,2,3,... (2-147)

c) The roots of Eq. (2-138) depend on the value of the parameter A%

The first root lies between 1/2n and 1.43n, the second root lies between 3/2n and 2.46n, the third
root lies between 5/2n and 7/2n and so on. In particular for:

— M\?<4n? the frequency of the first symmetric in-plane mode is smaller than the frequency of the first
antisymmetric in-plane mode and the vertical modal component of the first symmetric mode has no
internal nodes with zero displacements along the span (Figure 2-22).
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— AN*=4n’ the frequency of the first symmetric in-plane mode is equal to the frequency of the first
antisymmetric in-plane mode. This phenomenon is called crossover of modes and this value of A2
designates the first crossover point. The vertical modal component of the first symmetric mode is
tangential to the profile of the cable at each support (Figure 2-22).

— A*>4n? the frequency of the first symmetric in-plane mode is larger than the frequency of the first
antisymmetric in-plane mode and the vertical modal component of the first symmetric mode has
two internal nodes with zero displacements along the span (Figure 2-22).

— AN=16n” the second crossover point occurs and the frequency of the second symmetric in-plane
mode is equal to the frequency of the second antisymmetric in-plane mode.

— In general, the parameter A? takes the value (\,)*>=(2nn)? at the n™ crossover point.

// s
// ’/
P -

- sy -
- ¥>4n x

Figure 2-22: First symmetric mode for different values of the parameter A2

In addition, it was observed that the frequencies of the antisymmetric modes remain constant as A2
changes, while the frequencies of the symmetric modes change and at the crossover points become
larger than the corresponding antisymmetric ones. This was also confirmed be conducting several
experiments changing the sag of the cable and observing the first symmetric and the first
antisymmetric in-plane vibration mode. As shown in Figure 2-23 the shape of the first symmetric
mode changed before and after the first crossover point, while the one of the first antisymmetric
mode remained unaltered.

2™ mode (antisymmetric) 2 mode (symmetric)

(@ (b)
Figure 2-23: First two vibration modes of a simple suspended cable (a) before crossover, (b) after crossover

It should be mentioned that if an inextensible cable is investigated the phenomenon of modal
transition does not occur, since A> assumes a large value and the frequencies of the symmetric modes
are no longer dependent on this parameter. The formulae provided by Irvine and Caughey, taking into
account the pretension, are not comparable with the previous ones of Pugsley and Ahmadi-Kashani,
which do not consider the pretension.

Rega and Luongo [2-37] explored an inextensible cable with flexible supports. Although an
inextensible cable was assumed, the dynamic behaviour of the cable with the flexible supports was
similar to the one of the elastic cable with fixed ends. The authors also investigated an elastic cable
with flexible supports and they concluded that the cable extensibility plays a more important role than
that of the supports in the system’s dynamic behaviour. The former is sufficient by itself to cause
crossover of all modes, while the latter causes transitions only under certain conditions.
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The natural frequencies of an inclined cable do not present points of frequency crossover as proved in
[2-38]. The points of frequency crossover are replaced by regions of frequency avoidance, in which
the frequencies of the symmetric and the corresponding antisymmetric mode are close but distinct
and their relative separation increases as the inclination angle of the cable increases. Due to the cable
inclination, there is no longer symmetry of the static cable profile, which prohibits the formation of
two separable sets of mode shapes. Near the frequency avoidance, the modes become hybrid, with
mixture of symmetric and antisymmetric shapes and this has an important effect on the cable tension
[2-39].

Hagedorn and Schéfer [2-40] investigated the effect of the nonlinear terms in the equations of motion
on the first normal modes of the oscillations of an elastic flexible cable under the action of gravity. In
[2-41] a nonlinear finite element approach was provided in order to calculate the static deflection and
natural frequency for small oscillations about the nonlinear equilibrium position for single-span cables.

Zhang and Peil [2-42] studied the dynamic behaviour of an inclined cable in parametrically unstable
zones for eleven cases of loading amplitude Py and for four cases of frequency ratios w/w,, where w is
the loading frequency and wq the cable’s frequency. They showed that the deformation modes of the
cable depend on the loading amplitude and the frequency ratio. For frequency ratio n=1.0 the cable
vibrates according to the first mode, while for n>1.0, modal transition takes place between the first
mode and the modes of higher order, with the increase in the excitation strength. The change of the
deformation mode indicates parametric instability of the cable. Therefore, the nonlinear parametric
instability of the cable depends on both the frequency and the strength of excitation. Once the
parametric instability occurs, the amplitudes of the cable will increase greatly, with vibration
amplitudes larger than the ones caused by the fundamental resonance.

In [2-43] the equation of motion of an elastic cable as a continuous system was developed, having a
quadratic and a cubic nonlinear term. The authors used the parameter A, defined by Eq. (2-142), as a
parameter that determines the dynamic response of the cable. The frequency-amplitude relationship
was obtained, proving that the behaviour of the cable is initially hardening for low A? values. As A\
increases the behaviour is softening at low vibration amplitudes and becomes hardening again as the
amplitude increases. In [2-44] the frequency-response curves for two prestressed cables were drawn,
for a taut cable and a suspended sagged one. It was proved that the quadratic nonlinearity is
responsible for the softening behaviour and the cubic nonlinearity for the hardening one. The
shallower the cable is, the lower the effect of the quadratic nonlinearity becomes. Thus, the taut
string presents a hardening response for every amplitude value, due to the prevailing cubic
nonlinearity in the equation of motion. Instead, the response of the sagged suspended cable is
softening at low vibration amplitudes, due to the large value of the coefficient of quadratic term, and
becomes hardening as the amplitude increases. The same conclusions were derived in [2-45] where
superharmonic resonance conditions of a simple cable were studied. In [2-46] the equation of motion
of suspended elastic cables was studied under subharmonic resonances, detecting stable and unstable
solutions. In [2-47] — [2-49] it was proved that internal resonance conditions of a suspended cable at
crossover points lead to bifurcation mechanisms. A study for bifurcation and chaos mechanisms of
simple cables, associated with the nonlinearity of the system, was also included in [2-50].

Srinil et al. [2-51] studied the free vibrations of sagged flexible horizontal or inclined cables in three-
dimensional motion, conducting time-history analyses. It was shown that not only the 1:1 internal
resonance between symmetric and antisymmetric modes — which corresponds to the crossover or
avoidance points, respectively — but mostly the 2:1 internal resonances produce hybrid profiles of the
cable’s vibration and enhancement of the cable tension in some time intervals.

Doctoral Thesis of Isabella Vassilopoulou N.T.U.A. 2011



Theoretical Background and Literature Review 41

In [2-52] the free vibrations in three-dimensional motion of four undamped cables with different
parameter A> were explored, by means of time-history analyses. The cables were: a) one with small
sag, considered as taut, b) one with A’ corresponding to the first crossover point, c) one
corresponding to the 2™ crossover point and d) one with large sag. The ends of the cables were at
the same level. Each cable was subjected to an initial displacement, having the spatial shape of a
vibration mode at a time. No initial velocity and acceleration were taken into consideration. The cable
nonlinear dynamic response was depicted in displacement diagrams versus time and diagrams of the
maximum and minimum tension versus time, as well as Fourier amplitude spectra of the cable vertical
displacements, in order to distinguish the frequencies of the oscillation. The interest was focused on
two cables, which corresponded to the 1% and 2™ crossover point. 1:1 and 2:1 internal resonances
produced beat phenomena in the time-history diagrams and transition of the vibration profile, exciting
the modes involved in these internal resonances.

A review on nonlinear vibrations of simple suspended cables, regarding the mathematical modelling of
the system, the methods of analysis, nonlinear dynamic phenomena, was included in [2-53].
Bifurcations and chaos phenomena of simple cables were also discussed in [2-54].

The dynamic response of a structure definitely depends on its stiffness and mass, but also on its
damping. Damping is a characteristic of the structure associated with its capacity to dissipate the
kinetic energy during the induced vibrations. It plays the most important role in the control of the
oscillations caused by dynamic loads [2-55]. It is usually expressed as a percentage of the critical
damping C.. For example, in a SDOF system the damping is calculated as [2-22]:

C=0Cy =2TM (2-148)

where C is the damping ratio, M is the mass and w is the circular natural frequency of the structure. In
order to estimate the damping ratio in a system, experimental work is required in models or
prototypes. That is why it is very difficult to estimate percentages of damping [2-22]. There are three
sources of damping in cables: a) the material damping, due to the friction forces developed between
the separated strands laid into a cable rope, which is usually small, b) the connection damping, due to
the loss of energy from friction in joints and support connections and c) the environmental damping,
due to the friction between the cables and the medium in which it is embedded, usually air or water
[2-32]. Damping ratios for transmission lines, approximating the value of 2%, are suggested in [2-56].
Measurements of damping ratios for cable stays of a bridge, varying between 0.1%-0.3%, are
reported in [2-57] and [2-58]. According to experiments, it was found that damping ratio is much
higher for a slack cable, i.e. 4%, compared to a taut cable in which the damping ratio could arise at
0.4% [2-59].

2.4 CABLE NETWORKS

2.4.1 General

Prestressed cable net roofs can produce a wide range of shapes. The most frequent shape is the
hyperbolic paraboloid. This kind of cable net is also called saddle roof, because the form resembles
the shape of a saddle [2-60]. The surface of a hyperbolic paraboloid follows a convex curve with
respect to one axis and a concave curve with respect to the other (Figure 2-24).
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(a) (b)
Figure 2-24: (a) Hyperbolic paraboloid, (b) Saddle roof

Mathematically, the hyperbolic paraboloid is a doubly ruled surface, and when it opens up along the x-
axis and down along the y-axis, it can be described by:

2 2
(2-149)

m|><

N

cr|~<
N

For constant values of z, which correspond to a horizontal plane, the section is a hyperbola. For
constant x or y values, corresponding to a vertical plane, the section is a parabola. If f,/Ly and f,/L,
are the sag-to-span ratios of a cable net forming a hyperbolic paraboloid surface, in x and y direction,
respectively, Eq. (2-149) becomes:

at, , 4f
Xx? - —Ly? (2-150)

Z =
L% L3

with f,, f, taking always positive values. In case the sags are equal in both directions and the
boundary is a cycle, with L,=L,=L, the expressions giving the geometry of the structure (Figure 2-25)
are:

4 5

2= -y?%) (2-151)

4x2+4y?=|2 (2-152)

Figure 2-25: Saddle roof with circular plan view

A saddle-form cable network consists of two families of prestressed cables, which projected in plan
create an orthogonal grid. The cables that are suspended from the highest points of the boundary are
called carrying or main cables, while the stabilising or secondary cables are anchored at the lowest
points of the boundary (Figure 2-26).
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&X //////

a) (b)
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Figure 2-26: Components of a cable net: (a) main cables, (b) secondary cables

The cables are anchored to a boundary ring usually made of prestressed concrete with a closed box
cross-section. It is supported by columns arranged radially and it is either rigidly connected with the
columns or it seats on bearings placed on the top of the columns.

2.4.2 Static response of cable nets

Leonard in [2-32] gave an analytical solution for a simple cable net, consisting of two crossing cables,
prestressing one another (Figure 2-27). The main features of that study are reported next. For the
solution process, the prestressed state was considered to be the reference state. The origin of the
coordinate system was placed at the central node and each segment was directed away from that
node. The cross-sectional area at the unstressed state was A, and the instantaneous value of the
elastic modulus at the reference state is Eg, conventionally based on the unstressed area Ay, but
assuming that it remained the same at the additionally deformed state. The span £ and the sag ratio fr
for the two cables were equal. The initial pretension Nr with a horizontal component Hg, the
elongation ratio Az and the length L of each segment in the prestressed reference configuration were
the same for both cables.

=

A

Figure 2-27: Simple cable net

Let Sy be the initial unstressed length of the cables and € the small initial strain, which, according to
Hooke's law, will be:

L-S, N
e—t-=> _ Ne (2-153)
So ErAg

If p is defined as:
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p = |1+4f2 (2-154)
then
b4 V4
L=?/1+4f§ =?p (2-155)
Ny 2L
L S, L S N Hgp
ANg=—="04— -0 _11¢e=1 R _—14+_R -
RS, TSy S, So . ErAg  EgAg (2-157)
The segment stiffness matrix is:
1B -B
Kl== -
[K] L{_B B} (2-158)
where
[B,]=Ng[1]+ (ErAoAg —Ng JOri [Bri]" (2-159)
and Bg; are the direction cosines for segment i in the prestressed reference state:
[6r:17 =[0 1/p 2 /p], [BRo]" =0 —1/p 2fz /p]
(2-160)
[Brs]" =[1/p 0 -2fg /p], [Bral" =[-1/p O -2fg /p]
Substituting Egs. (2-156) and (2-157) into Eq. (2-159):
Hrp
[Bil= HRP[I]+[ERA0(1+ E ; J—HRP][GRi][eRi]T = HeplI] + ErAg [0 B ]" (2-161)
RM0
The system stiffness matrix is:
[B.]+[B,]+ Bs]+[Ba]i ~[B:] ~[Bo] —[B5] —[B4]
) -] B 0] [0 (0]
[Kl=1 - [B,] 01 [B,] [01 [0 (2-162)
- [B5] 01 01 [Bs] (0]
|
|

| 0] [0] [0 [B4]

where [0] denotes a 3x3 null matrix. The equation of equilibrium for the system to be solved is:

1]+ (B2 ]+ B3]+ [Bs]} -[B:] -[B;] ~[Bs] -[B4[Ds] [Pi]
. -B, B0 0] 0]y [P
KIp]=P]=* -[B] 0] B.] [0 (0] |Ds|=|Ps| (2-163)
- [B;] 0] [0 [Bs] [0] |Ds| [P,
~[B4] | [0] [0 [01 [Bs]]Ds| |Ps]
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Applying the boundary conditions, the displacements {D,}, {Ds}, {D4} and {Ds} of the support nodes
2 to 5 are zero, and the external loads {P.}, {Ps}, {P+} and {Ps} are unknown changes in reactions,
the matrix is partitioned as shown by dashed lines. Thus, the equation of equilibrium becomes:

{[Bl]+[BZ]+[B3]+[B4]}[D1]:[Pl] (2-164)

For the system of Figure 2-27 Eq. (2-164) becomes:

4 2Hzp3 +ERA, 0 0
p3
2Hep +EgA, du | |Px
0 4 — 3 0 dip | =|Py (2-165)
p d13 Pz
0 0 8 Hpp® +4ER A f2 ||
L fp3

where dj; is the displacement of node 1 in the x; direction. The solution of Eq. (2-165) is:
d11=d12=0

P.1p? (2-166)

dis = 8Hrp® + 4ExAof2)

In the chart of Figure 2-28 the nondimensionalised deflections w are plotted with respect to the sag
ratio fr, for three values of the ratio ErAy/Hgr, where w is defined as:

EqA
w = 8d;5 —~—0 2-167
P,/ (2-167)

It is noted that as the sag ratio increases the system becomes stiffer and the deflection of the central
node decreases. As the ratio ErA¢/Hr increases corresponding to smaller horizontal component of
pretension Hg, the stiffness of the system also decreases and for the same sag ratio fr the deflection
increases. However, the effect of the sag ratio to the deflection of the central node is more important
than the one of the modulus of rigidity. For f;>0.20 the three curves practically coincide, while values
of sag ratio larger than 0.45 do not influence the deflection significantly.

80 1 ExAo/Hr 100 —— 500 —e— 1000
60
z 40
20 -
0 T T T AAAA|AAA 1
0 0.1 0.2 0.3 0.4 0.5
fr

Figure 2-28: Deflections vs. sag ratio of cable net

Gero in [2-61] and [2-62] introduced a method for the scaling of a large network to a smaller one,
both having fixed cable edges. The method is based on the Buckingham Pi theorem, which is a key
theorem in dimensional analysis ([2-63], [2-64]). The Buckingham Pi theorem states that the
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functional dependence between a certain number (e.g.: n) of variables can be reduced by the number
(e.g. k) of independent dimensions occurring in those variables to give a set of p=n-k independent,
dimensionless numbers. It provides a method for computing sets of dimensionless parameters from
the given variables. However, the choice of dimensionless parameters is not unique.

The method proposed the transformation of a network with large number of cables, called prototype,
to a smaller network, that had a geometry similar to the prototype, referred to as model, using
transformation relations and design charts that were produced with geometrically nonlinear analyses.
The two networks, the prototype and the model, should have similar geometries, so that their
corresponding quantities could also be similar. All cables were arranged in equal distances and had
the same material, which was assumed to be linearly elastic. The nets were uniformly prestressed and
loaded with nodal loads. The charts described the behaviour of the model, nhamely the maximum cable
tension and the maximum net deflection, for different loads and axial cable stiffness. A typical chart
for a flat cable net is shown in Figure 2-29. Using the transverse transformation relations, it was
possible to evaluate the behaviour of the prototype. The charts produced were dimensionless and
could be used for every system of units.

Pretension
——p=50 —-=—p=40 —4a—p=30 ——p=20 —%—p=10
100 -
5
£ 60 5.0
a w0 45
© 40 3.0 3.5
x . : Nodal load
> 20 - .
0.5 1.0
0 T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Max net deflection

Figure 2-29: A typical design chart for a flat cable net with axial cable stiffness EA=20000

The proposed transformation relations are the following:

2 2
E L N
W, =W, |-m|=m| |2 : nodal loads -
i p[EP J[LP j (ij (2:169)
L, V(N
Ap =A™ P : cable cross-sectional area (2-169)
L, ) (N,
En (Lo V(N
EA), = (EA)D(E—”‘J(L—’“J (N—pJ : cable axial stiffness (2-170)
p p m
2
N
Pn =P, En [Lm | [ Do : cable pretension (2-171)
E, \ Ly ) (N
2
N
Tn=T, Em [ Lm | [ Do : cable tension (2-172)
E, \L, ) (N,
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Lm

dp = dp ™
p

: nodal deflections (2-173)

where N is the number of the cables per direction, L is the maximum length of the cables, E the
elastic modulus of the cables, while m and p are subscripts referring to model and prototype,
respectively.

However, the deformability of the edge ring caused a variation in the tension of the cables and in the
deflection of the net. Szabd et al. [2-65] proposed a method of preliminary analysis of cable nets with
elliptical plan view, which considers the effect of the closed edge ring on the response of the net. This
method was developed in two steps: a) the edge ring was presumed infinitely rigid and consequently
undeformed, and the problem was solved only for the cable force distribution that caused
compression to the ring, b) the edge ring was presumed deformable and the problem was solved only
for the cable force distribution that developed bending to the ring. However, that method did not take
into account the change of the cable geometry, thus the calculation was based on the undeformed
structure. The influence of the deformations could be taken into consideration by repeating the
process, taking the changed shape as a basis for the next iteration.

In [2-66] some mathematical techniques were described, in order to determine the initial shape of
cable structures and compute their displacements resulting from static loads, considering the
geometric nonlinearity. In [2-67], cable nets with elasto-plastic behaviour were assumed and the
equilibrium equations were derived, considering the history of loading and the slackening of cables. A
numerical method to calculate the static response of cable nets was presented in [2-68]. The
numerical results were compared with experimental ones, resulting in good agreement.

A mathematical model for the analysis of such systems was presented by Talvik [2-69], in which the
cable net and the flexural boundary structure were treated as two separate substructures, the former
as a nonlinear structure and the latter as a linear one. At first, 1) the equilibrium position of the cable
network was determined, using the dynamic relaxation method, 2) the cable forces of the segments
adjacent to the contour were transformed to nodal loads applied to the contour, 3) the displacements
of the elastic contour beam were calculated and 4) transformed to the displacements of the cable net
supports. These displacements were compared with the ones calculated at step (1) and used for the
second iteration, beginning again from step (1). The significance of the edge ring modelling to the
static response of the cable net was also underlined in [2-70].

Majowiecki and Zoulas [2-71] investigated the influence of the mesh net and the bending stiffness of
the contour ring on the structure’s response. They showed that the number of cables did not influence
significantly neither the net’s vertical displacement in the centre of the rope net, nor the horizontal
displacement of the ring, but instead the internal forces of the ring depended on the mesh density. As
the ring’s moments of inertia increased the vertical and horizontal deformation of the net and the ring,
respectively, decreased, the axial force of the ring and the cable forces decreased also, while the
ring’s moment increased. They concluded that the interaction between the cable net and the flexible
boundary ring should be taken into account in the analysis and that the fixed end hypothesis did not
give any useful design information for actual structures, even for a preliminary design phase.

2.4.3 Dynamic response of cable nets

In tension structures, the dynamic loads are more significant than static loads and they may lead to
large amplitude vibrations, overstressing of cables and fatigue problems. In cable structures, the
stiffness is relatively small compared to other structural types while the mass may be large because of
attached components or cladding. The natural frequencies of such structures are expected to be
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smaller than most other structural components, since they are proportional to the square root of the
stiffness to mass ratio.

In [2-72] the author derived a formula for the first frequency of a simple flat cable net, consisting of
two cables, having the same pretension and cross-section. Leonard in [2-32], considering lumped or
consistent masses [2-9], provides an analytical solution for the frequencies of a simple cable net with
initial sag, having the shape of a cross as described in section 2.4.2. Reporting from [2-32], the
Rayleigh-Ritz procedure [2-73] is applied and the displacement u; of cable segment i of length L, is
written as a linear combination of two shape functions:

ui(x) = g1 (x)djy +y,(x)d;; (2-174)
where the shape functions are:
Wi(x)=1-x/L=1-§ and y,(x)=x/L=E (2-175)

and di;, di; are nodal values of u; at x=0 (§=0) and x=L (§=1), respectively.

If m is the mass density per unit volume in the prestressed state, the consistent mass matrix for
segment i will be:

my; My
M; = -
. {mn mzj (2-176)
where
L
my = [ Amy; (w;(x)dx with i,j=1,2 (2-177)
0

and A is the cross-sectional area in the prestressed state. If my and Ay are the mass density per unit
volume and the cross-sectional area of the cable segment in the unstressed state, respectively, then,
applying the principle of conservation of mass, the total mass of the segment is:

mAL=m0Aoso=m0AOL/)\R (2'178)

where Ar is expressed by Eq. (2-157). Hence, the consistent mass matrix for the segment i is
expressed as:

M — MAL 2 1| myAgLi2 1
' 6 |1 2] 6MAy |1 2 (2-179)
If the mass matrix is considered as lumped, then:
my 0 mAL[1 0] myA,L[1 O
M; = == - ]
| {0 mzj 2 {0 117 2h |0 1 (2-180)
where
L
m; = [ Amy;(x)dx i=1,2 (-181)
0

The assembled mass matrix of the cross cable system is therefore:
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M= mO—AOLa
6h¢

00
00 (2-182)
10
01

where a=3 and b=0 for lumped mass matrix and a=2, b=0.5 for consistent mass matrix. Applying the
boundary conditions, the displacements {D,}, {Ds}, {D4} and {Ds} of the support nodes 2 to 5 are
zero, thus the equations of free vibration of node 1 are:

_2mgA L’ a
3Ar

]+ {B,1+[B,1+[B3]+[B, ]ﬂ[d] - [0] (2-183)

and the three eigenfrequencies of the system are:

) 16EAof2 )|
W, = _ M 2 4HRp+R—2°R
_2am0A0£p o p

- 1/2
W, = 29E_Ar [ _He p3 +4f2 =
1 ExAg R

|amy/? p?
24 1Y H H 1/2 (189
R R | 2 R 2)3/2 2
W, = 1+ 1+ 4f, 1+ 4f, + 4f, =
! am, (2 (1+4f§] ( ErAg 5 ][ERAO ( R) R]
- 5 1/2
o = | L2 | 1 [1+ Te J( Tr (1+4f§)+4f§]
amgr? (1+4f2 ErAo \ErAg
3 2 2E.A, )|
W, =W3 =| ——R = |4 p+ RO =
2amyA,/p /p p?
[ 12 Az 2H 1
W, = W3 = Z—E( R p3+1j =
_amof p ERAO
r 2 1/2 2-185
0, —wy =| 22Er |1 (1+ ol 1/1+4fzj( 2Hq (1+4f2)3/2+1] N e
20 amgr? | 1+ 4f2 ErAo * \ErAq i
- ) 1/2
W, =W3 = leRz 1 5 [1+ Te ]( 2Tr (1+4fR2)+ 1]
amof 1+4fR ERAO ERAO
with eigenvectors:
0 0 1
Vl = 0 7 Vz = 1 7 V3 = 0 (2'186)
1 0 0

For multi-degree-of-freedom models numerical analyses have been conducted in order to investigate
the dynamic behaviour of the system regarding the natural frequencies. In [2-74] a transfer matrix
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method was presented for calculating the natural frequencies of orthogonal flat cable nets. Examples
with up to six cables in each direction were compared with a finite element method and their results
for the first four frequencies showed good agreement. This method resulted in frequencies of the net,
which were independent of the number of the cables in each direction. A boundary element approach
was included in [2-75] in order to calculate the eigenfrequencies and the mode shapes of the free
vibrations of flexible membranes with arbitrary shape. In [2-76] the authors presented a
computational scheme for vibration analysis of flat cable nets consisting of highly tensioned cables
and having orthogonal projections in plan. They were assumed to be subject to inertial forces
concentrated at the cable intersections. The technique was based on decomposing the n dimensional
vector space of a problem with n degrees of freedom, into a humber of independent subspaces each
of dimension r, where r<n and then solving for the r eigenvalues.

Gambhir and Batchelor, in [2-77], developed a finite element method for the analysis of cable nets,
flat or with initial sag, modelling the prestressed cable net as a series of finite length curved elements.
Several boundary shapes were applied in order to evaluate their method. The numerical results giving
the fundamental frequency of the cable net were compared with experimental ones resulting in
sufficient accuracy. In [2-78], they investigated the influence of various parameters, such as the cable
cross-sectional area, the initial pretension and the sag-to-span ratio, on the natural frequencies of 3D
cable nets of two different types: type A, a hyperbolic paraboloid, bounded by straight line generators
with cables parallel to these generators (Figure 2-30), and type B, being a hypar cable net with curved
boundaries (Figure 2-31). It was shown that the natural frequencies a) were inversely proportional to
span or linear dimension for both types of cable networks, b) were proportional to IN , Where N is the
pretension in each cable, for both types, c) were linearly related to the surface curvature, denoted as
8h,/L, d) were closely related to those of a taut cable if the rise/span ratio was zero, and as the ratio
increased modal transition occurred. The modal shapes were not influenced by the change in cable
span and pretension. In addition, an increase in the cable rigidity, resulting from an increase of the
cross-sectional area of the cables, which also yielded to an increase of the mass per unit length, kept
unaltered the natural frequencies.

Figure 2-30: Cable net of type A (from [2-78])
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Figure 2-31: Cable net of type B (from [2-78])

Seeley et al. [2-79] studied the natural frequencies and modal shapes of a cable network with a
circular plan view, forming a concave surface. The nets consisted of circular and radial cables with
sag-to-span ratios between 1/9 and 1/15. The fundamental frequency of the net was described by an
approximate formula, by means of the sag and the sag-to-span ratio. The value of this natural
frequency was proved to be close to an average of the frequencies of the first in-plane and out-plane
modes of a simple sagged cable with the same sag-to-span ratio.

Talvik [2-69] noticed that, in a cable network with an elliptical flexible contour ring (Figure 2-32), the
first vibration mode involved mostly the contour ring, while the next four modes were determined only
by cable net deformations. In the case of forced vibration, the motion of the contour ring dominated,
while the cable net executed coupled motion.

Figure 2-32: Saddle-shaped cable network with elliptical boundary structure (from [2-69])

Most of the pertinent publications, referring to the dynamic behaviour of cable nets, present new
computerised methods of analysis and other numerical techniques to calculate the nonlinear dynamic
response of cable networks and membranes, by solving the governing equations of motion ([2-80] —
[2-87]), several of them compared with experimental results. In [2-88] a modified modal
superposition method is used, appropriate for nonlinear systems, considering their geometrical
nonlinearities by changing the geometry under load.

Geschwindner and West [2-89] studied the dynamic behaviour of the Aden Airways Network, having
the shape of a rhomboid hyperbolic paraboloid. They conducted nonlinear dynamic analyses of a cable
network oscillation for symmetric or antisymmetric spatial distributions of the dynamic load. They
concluded that a uniform loading produced an almost linear dynamic response, whilst antisymmetric
loads rendered the behaviour of the system more nonlinear.

Fan et al. [2-90] investigated the nonlinear dynamic response of a cable suspended roof during a
strong earthquake. They concluded that, although the cable suspended roofs were not damaged as
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other stiffer structures during strong earthquakes, since their natural frequencies were low in relation
to the earthquake frequencies, they might loose their bearing capacity to resist vertical seismic effect,
due to the nonlinear vibration of the system, which procured jump phenomena detected in the
diagrams of the backbone curves.

Lazzari et al. [2-91] proposed a numerical analysis of the response of wind-induced flexible structures,
offering the advantage to capture the effects of nonlinearities of both structural and aerodynamic
origins of the problem. They also studied the free vibrations of a real saddle-form cable net, its
resonant behaviour and its dynamic response under wind action. They interpreted the beat
phenomenon of the displacement time-history diagram, in case of primary resonance, as the change
of stiffness due to increase of deformation, producing also a change of the resonance frequency and
avoiding the well-known continuously increasing amplitude of vibration, which occurs in linear
systems.

Damping results from energy loss mechanisms and can be explained as material structural and
aerodynamic. The damping sources are the structural system and its material, the roof cladding, the
nodal point joints, the pre-stressing, the influence of air and external loads and the supporting
structure. The damping ratio depends on the vibrating modes. Damping ratios, obtained by model
tests for a rhomboid saddle-shaped roof, vary between 1% and 3%, if the structure is made of a
cable net, 5%-10% if the cable net is combined with membrane and 7%-12% if the structure consists
only of a membrane [2-92]. In [2-21], the damping ratio of an opened cable net roof was referred
equal to 0.78%. The cable net had a surface of a hyperbolic paraboloid, with a circular plan view of
diameter L=120m and a sag-to-span ratio equal to f/L=3% for both main and secondary cables. The
self-weight of the roof, including the net and the cladding was equal to 0.6kN/m? and an additional
air mass was assumed to be vibrating with the roof, only in resonant conditions, equal to 60kg/m?. In
addition, the measured frequencies and damping ratios were mentioned, for the first four vibration
modes of the saddle-shaped net roof over the Palais de sport in Milan, Italy, having a diameter of
125m (Table 2-1) and for the first two vibration modes of an experimental 20mx20m saddle-shaped
net with edge cables and roofing membrane (Table 2-2).

Table 2-1: Measured frequencies and damping ratios for the roof of the Palais de sport in Milan

Mode f (Hz) 4
1 0.7407 0.0188
2 0.8197 0.0218
3 1.0526 0.0164
4 1.1236 0.0110
Table 2-2: Measured frequencies and damping ratios for the experimental net
Mode f (Hz) 4
1 1.59 0.0179
2 1.74 0.0175

The damping of a MDOF system is introduced as Rayleigh damping, which is expressed as [2-22]:
[Cl=ac[M]+a1[K] (2-187)

where [C] is the damping matrix, [M] is the mass matrix of the system and [K] is the stiffness matrix
corresponding to the zero initial displacements. The constants a, and a; have units of sec® and sec,
respectively. The damping ratio for the n" mode of a system is:

dp a;wp

Cn :E+T (2-188)
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The coefficients a, and a; can be determined from specified damping ratios ¢ and ¢ for the i and jt"
modes, respectively, which leads to the following expression:

1 ci @ ¢
2| i 0 _J5i i
2| 1 o, {01} {cj} (2-189)

;

If both modes have the same damping ratio , then:

Z 20;0;
Qo = -
0 0+ 0, (2-190)
a; =C 2
7o+ 0 (2-191)

The modes i and j, chosen to define the coefficients ay and a;, must ensure that the damping ratio will
be reasonable for all the modes contributing to the response. If, for example, five modes are included
in the dynamic analysis and have almost the same damping ratio, the coefficients aq and a; should be
calculated taking into account the eigenfrequencies of the first and the fourth mode. In this way, the
damping ratio of the second and the third mode is slightly larger than ¢, while for modes higher than
the fifth one it increases monotonically with frequency [2-22].

2.5 CABLE PROPERTIES

The basic element for cables is the steel wire with a tensile strength larger than that of ordinary
structural steel. The steel wire has a cylindrical shape with a diameter of between 3 and 7 mm. A
single straight wire, surrounded by a single layer of six wires with the same pitch and direction of
helix, makes up the seven-wire strand [2-93], as shown in Figure 2-33.

= ®

Figure 2-33: Seven-wire strand

A straight wire core surrounded by successive spinning of layers, generally with opposite direction of
helix, creates the multi wire helical strands, called spiral strands. Due to the twisting of the layers, the
helical strand becomes self-compacting and thus there is no need to wrap or apply bands around the
strand to hold the wires together. Typical values of the elastic modulus for a spiral strand are E=145-
170GPa, depending on the size, almost 15-25% lower than the one for the single wire. In addition,
the strength of the helical strand is approximately 10% lower than the sum of the breaking strengths
of the individual wires. The way of winding defines the type of the strand. The main types of strands
are those with one layer of wires (single layer strand), with two layers consisting of the same number
of wires for each layer (seale strand), with two layers of wires having the same diameter for each
layer (filler wire strand), with two layers of wires having different diameters in the outer layer
(Warrington strand) and the multi-layer strands (combined patterns strand), as illustrated in Figure
2-34. Alternatively, the wire rope is composed by a number of steel wires spun together to form six
strands, which in turn are spun together around a fiber core to form a rope (Figure 2-35).
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Single Layer Seale Filler Wire Warrington Combined Patterns

Figure 2-34: Basic strand construction

Figure 2-35: Wire rope

Locked coil strands are composed of two types of twisted wire: in the core normal round wires
arranged as in a normal helical strand, and in the outer layers wires of a special Z-shape. This Z-shape
is chosen so that the wires interlock which, in combination with the self-compacting effect from the
spiral arrangement, ensures a tight surface (Figure 2-36). The locked-coil strands are more compact
than any other type of strand. The elastic modulus is approximately E=160-180MPa.

Figure 2-36: Typical cross-sections of locked coil strands

The term lay refers to the direction of the twist of the wires in a strand and to the direction that the
strands are laid in the rope. In some cases, both wires in the strand and strands in the rope are laid in
the same direction; otherwise, the wires are laid in one direction and the strands are laid in the
opposite direction, depending on the intended use of the rope. The six types of lays used in wire
ropes are as follows: 1) Right Regular Lay (RRL): The strands are laid in clockwise direction around
the core and the wires in the strand are laid in a counter clockwise direction. 2) Left Regular Lay
(LRL): The strands are laid in a counter clockwise direction around the core and the wires in the
strand are laid in a clockwise direction. In this lay, each step of fabrication is exactly opposite from the
right regular lay. In these two ways, the wires are parallel to the longitudinal axis of the strand. 3)
Right Lang Lay (RLL): The strands are laid in a clockwise direction around the core and the wires in
the strands are laid in clockwise direction. 4) Left Lang Lay (LLL): The strands are laid in a counter
clockwise direction around the core and the wires in the strand are laid in a counter clockwise
direction. These two lays are more resistant to the bending fatigue and to the abrasion than the
previous two. 5) Right Alternate Lay (RAL): The strands are laid in clockwise direction. The wire in the
strands are laid in a clockwise and counter clockwise direction in alternating strands and 6) Left
Alternate Lay (LAL): The strands are laid in a counter clockwise direction, while the wire in the strands
are laid in a counter clockwise direction in alternating strands [2-94]. These six different lays of wire
rope are shown in Figure 2-37.
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Figure 2-37: Lays of wire rope

The length of a rope lay is the distance measured parallel to the centre line of a wire rope in which a
strand makes one complete spiral or turn around the rope. The length of a strand lay is the distance
measured parallel to the centre line of the strand in which one wire makes one complete spiral or
turnaround the strand. The lay length of a rope is the basic factor controlling the breaking load and
extension characteristics of the finished cable. The breaking load is relatively low for short lay lengths
and greater for longer lay lengths. Spiral strand constructions normally have lay lengths in the range
9-12 times the cable diameter, depending on the size of the finished strand and the number of the
layers of wires. A small size strand may have long lay length, and thus large values of modulus and
breaking loads. As the spiral becomes larger and more complex, the lay has to be shortened in order
to produce a good, tight strand, which leads to low values of modulus and breaking load. On the other
hand, the locked coil construction may have longer lays, not depending on the size of the cable, due
to the interlocking of the outer wires [2-21].

OME ROPE LAY

STRAND NO,

Figure 2-38: Lay length measurement

Eurocode 3, Part 1.11 [2-95] provides design rules for structures with tension components made of
steel, which are adjustable and replaceable. These products are prefabricated, and installed into the
structure on-site. For cable nets, two types of cables are recommended: the spiral strand ropes
(having the characteristics of Table 2-3) and the full-locked coil ropes (with characteristics listed in
Table 2-4).
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Table 2-3: Spiral strand ropes (from [2-95])

Construction 1x19 1x37 1x61 1x91

Diameter ds [mm] 3to 14 61to 36 20 to 40 30 to 52

Wires per strand 19 37 61 91
Quter wire per strand 12 18 24 30
Breaking force factor K 0.525 0.52 0.51 0.51

Table 2-4: Full-locked coil ropes (from [2-95])

ds

Construction 1 layer Z-wires 2 layer Z-wires > 3 layer Z-wires
Diameter ds [mm] 20 to 40 25 to 50 40 to 180
Tolerance d +5% +5% +5%

Breaking force factor K 0.585 0.607 0.643

The value of the rope self-weight is related to the metallic cross-section and the unit length, taking
account of the weight densities of steel and the corrosion protection system. For spiral strands or
locked coil strands the following approximate expression for the nominal self-weight may be used:

k=WAn (2-192)

where w is the unit weight in kN/(m'mm2), given in Table 2-5 and A, is the metallic cross-sectional
area in mm?2, calculated as:

2
= %f (2-193)

A
where d is the external diameter of the rope or strand, including sheathing for corrosion protection if
used. The fill-factor f is defined as the ratio of the sum of the nominal metallic cross-sectional areas of
all the wires in a rope (A) and the circumscribed area (A,) of the rope based on its nominal diameter
(d), also given in Table 2-5.

Table 2-5: Unit weight w and fill-factors f (from [2-95])

Fill factor f
Core wires | Core wires | Core wires number of wire layers Unit wei%ht
Ropes +1layer | +2layer | + >2layer around core wire wx10
Z-wires z-wires z-wires 1 2 3-6 >6 kN/(m'mm?2)
Spiral strand 0.77 1 0.76 | 0.75 | 0.73 0.830
2 | Full-locked coil 0.81 0.84 0.88 0.830
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Regarding the modulus of elasticity, the exact values should be derived from tests. Notional values of
elastic moduli, for first estimations, when test results are not available, are tabulated in Table 2-6 for
locked coil strands and bundles of strands.

Table 2-6: Notional values for the modulus of elasticity Eq in the range of variable loads Q (from [2-95])

. . Eo [KN/mm?2]
High strength tension component Steel wires Stainless steel wires
1 Spiral strand ropes 150 + 10 130 + 10
2 Full locked coil ropes 160 + 10 -

The characteristic values of the yield stress f, and the ultimate tensile strength f, shall be taken from
the relevant technical specifications. The following values f, are recommended:

Table 2-7: Recommended nominal tensile strength values f, for steel and stainless steel wires (from [2-95])

fu [N/mm?2]
steel wires round wires 1770
Z-wires 1570
stainless steel wires round wires 1450
The minimum breaking load of the cable is obtained as follows:
F..= d° R, K [kN] (2-194)
™" 1000

Where d is the diameter of the rope in mm, K is the breaking force factor and R; is the rope grade in
N/mm?2, which is designated by a number (e.g. 1770 [N/mm?2]).

2.6 WIND ACTION ON STRUCTURES

The main dynamic loads affecting structures are the seismic load and the wind action. Cable
structures, belonging to the family of lightweight structures, are more susceptible to wind loads,
rather than to seismic ones. Eurocode 1, Part 1.4 [2-96], which is the current code in Europe, provides
guidance regarding the determination of the wind load acting on structures, including the whole
structure, parts of it or elements attached to the structure, e. g. components, cladding units and their
fixings, safety and noise barriers. However, it is addressed to engineers dealing with structures having
typical shapes, such as vertical walls of rectangular buildings, free-standing walls, parapets and
fences, flat, monopitch, duopitch, hipped or multispan roofs, canopies, vaulted roofs or domes. For
unusual shapes of structures, wind tunnel experiments are recommended as the only reliable method
to evaluate the wind pressure on the structure’s components.

2.6.1 Wind nature

The wind is the motion of the air with respect to the ground, caused by the differences of pressure
between two points of the earth’s atmosphere. The sun provides the energy necessary for this motion,
by heating the earth. The atmosphere, which is quite transparent to the solar radiated heat, absorbs
the heat from the earth and re-emits part of it to the ground and part of it to the higher layers of the
air. The atmospheric pressure is produced by the weight of the overlying air. As the air moves
vertically, it experiences a change of pressure and a change of temperature. On the other hand, the
difference of temperature between the poles and the equator of the earth produces the horizontal
motion of the air.

As the air moves horizontally, the surface of the earth exerts a drag force, produced by the roughness
of the terrain and the friction developed between the earth and the air. This force reduces the velocity
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of the flow near the ground, and decreases as the height above ground increases, up to the end of
the boundary layer, where the free atmosphere begins. There, this force is considered as negligible
and the wind flow has a gradient velocity along the isobars. The depth of the boundary layer depends
on the wind intensity, the roughness of terrain, and the angle of latitude and ranges from a few
hundred meters to several kilometres [2-97]. The roughness of the earth’s surface, induced either by
mountains, hills and forests, or by man-made obstructions, such as buildings, bridges and dams, not
only decreases the wind velocity but also changes the wind direction causing the turbulence of the
flow.

2.6.2 Wind velocity

2.6.2.1 Wind velocity records

The wind velocity can be divided in two parts; the mean wind velocity, described as a static part in the
wind direction at a certain height and the time dependent velocity (gust) described as the dynamic
part, having three different components in the along-wind, the horizontal cross-wind and the vertical
cross-wind directions at a certain height. However, the main fluctuations occur in the longitudinal
direction, which is also the mean direction of the flow. Close to the ground, the mean velocity
decreases and the flow becomes more turbulent. Both phenomena occur due to the roughness of the
earth’s surface [2-98]. Generally, it is assumed that the mean wind velocity does not change with time
over periods of 10min to 1 hour [2-99].

Structures, designed to sustain strong winds, may carry anemometers that measure the wind velocity
and direction at specific time steps. For example, cable stayed or suspended bridges are equipped
with such devices, in order to select the appropriate positions to place dampers to suppress cable
vibrations of large amplitudes. Wind turbines, guyed masts, towers and chimneys are also wind-
sensitive structures [2-100] — [2-109]. Wind velocity records are provided in [2-21], [2-97], [2-110] —
[2-112]. Typical wind velocity records are shown in Figure 2-39, retrieved from the Department of
Water Resources and Environmental Engineering of the School of Civil Engineering of the National
Technical University of Athens [2-113].
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Figure 2-39: Typical wind velocity records

2.6.2.2 Basic wind velocity

According to Eurocode 1 [2-96], the fundamental value of the basic wind velocity, denoted as vy g, is
the characteristic 10 minutes mean wind velocity, irrespective of the wind direction and time of year,
at 10m above ground level in open country terrain with low vegetation. The basic wind velocity,
referring to a height of 10m above ground of terrain with low vegetation, is expressed as:

Vb=Vb,0 " Cdir " Cseason (2-195)
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where g, and Cseason are the direction and season factor, respectively. The recommended value for
both factors is 1. Thus, Eq. (2-195) becomes:

Vb=Vp,0 (2' 196)

2.6.2.3 Mean wind velocity

The mean wind profile in horizontally homogeneous terrain was first represented by the power law in
[2-114] and expressed as:

a
VA
Vy = vre{z H ] (2-197)

ref

where Vy is the mean velocity at a height z,4 and V. is the mean velocity at a reference height z.,
while the exponent a depends on the terrain roughness. Assuming that at some height above ground,
called gradient height zs;, the air movement is not influenced by the ground obstruction and
consequently, the wind velocity above that height is constant [2-115], Eq. (2-197) becomes:

a

z

Vy = Vg [Z—Hj (2-198)
G

where Vg is the velocity at gradient height. The parameters z; and a depend on the ground
roughness. Typical values for the gradient height are listed in Table 2-8.

Table 2-8: Typical values of parameters in wind profiles (from [2-112])

Terrain description Zg (M) a
1 Open seq, ice, tundra, desert 250 0.11
2 Open country with low scrub or scattered tress 300 0.15
3 Suburban areas, small towns, well wooded areas 400 0.25
4 Numerous tall buildings, cities, well developed industrial areas 500 0.36

If the wind velocity V¢ at height z.¢ is known, the velocity Vg is calculated as:

a
Z
Ve = vref[z G j (2-199)

ref

Nowadays, the logarithmic law is used widely to represent the wind velocity profile. It is applicable to
heights in excess of 10m. Below this height the velocity is assumed to be constant and equal to
V(10m) [2-116]. According to the logarithmic law the wind velocity at height z is expressed as:

V(Z) = 2.5Us In[zi] (2-200)

o

where z is the height above the surface, V(z) is the mean wind velocity at height z and z, is the
roughness length. The shear velocity or friction velocity is calculated, taking into account the
reference mean velocity 10m above ground level:

gt - vaom) V(10m)vk

2.5|n(10m] (2-201)
ZO
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where k is the surface drag coefficient. If k is known the corresponding value for z, can be calculated
from Eqg. (2-200):

V(z) )

2.5u, (2-202)

z, =z-e(

Typical values of the roughness length z, and the surface drag coefficient k are listed in Table 2-9.

Table 2-9: Typical values of k and z, (from [2-116])

Terrain description k Z, (M)
Sand 1.2-1.9 0.0001-0.001
Sea surface 0.7-2.6 0.005
Grass 3.4-7.6 0.01-0.10
Pine forest 28.0-30.0 0.90-1.00
Suburban area 10.5-15.4 0.20-0.40
Cities 14.2-16.6 0.35-0.45
Large cities 20.2-25.1 0.20-0.80

According to Eurocode 1 [2-96], the mean wind velocity V.,(z) at a height z above the terrain,
depends on the terrain roughness and orography and on the basic wind velocity vy, and it is expressed
as:

Vin(2)=Co(2) c(2) Vb (2-203)
where ¢,(z) is the orography factor, taken as 1.00, c(z) is the roughness factor, which is equal to:

¢(z) = k. In(z/z,) for zmin £ Z £ Zmax

(2-204)
Cr(Z) =k In(zmin/zo) for z < Zyin
k; is the terrain factor depending on the roughness length z,:
kr =0.19(Zo/Zo )" (2-205)

Zmax IS the maximum height equal to 200m, zp,, is the minimum height, z, is the roughness length, z,
is the roughness length for terrain category II, equal to 0.05m. The heights z,, z,; and zn, are
defined in Table 2-10.

Table 2-10: Terrain categories and terrain parameters (from [2-96])

Terrain category Zo (M) | Zpjp (M)
0 Sea or coastal area exposed to the open sea 0.003 1
I Lakes or flat horizontal area with negligible vegetation and without obstacles 0.01 1

IT Area with low vegetation such as grass and isolated obstacles (trees, buildings) with

separations of at least 20 obstacle heights 0.05 2
III Area with regular cover of vegetation or buildings or isolated obstacles with separations 03 5
of maximum 20 obstacle heights (such as villages, suburban terrain, permanent forest) )

IV Area in which at least 15% of the surface is covered with buildings and their average 1.0 10

height exceeds 15m

In order to compare the power law, the logarithmic one and the mean velocity based on Eurocode 1,
a basic wind velocity is assumed equal to 30m/sec, referring to a height of 10m for a country terrain
with low vegetation. The wind velocity profiles for the three considerations are shown in Figure 2-40,
where it is shown that the logarithmic law results in conservative values of the wind velocities with
respect to the power law and Eurocode 1.
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Figure 2-40: Wind velocity profiles

2.6.2.4  Turbulence intensity

The fluctuation of the wind velocity is known as turbulence, which depends on the height and on the
roughness of the terrain. It is higher in rougher terrains than in smoother ones and it decreases as the
height increases [2-112]. The turbulence intensity I(z) is a parameter measuring the turbulence at
height z and it is defined as the standard deviation of the turbulence o(z) divided by the mean velocity
V(z):

I(2)= o(2)/V(2) (2-206)

The variance varies with height dependent also on the ground roughness and mean wind velocity. In
[2-116] the variance is expressed as:

0(z2) = 2.63u*n(0.538 + 2/ 2, )" (2-207)
with

n=1-z/H (2-208)
H is the gradient height, given as:

H=ux/(2 B wsinp) (2-209)

where B is a constant equal to 6, w is the angular rotation of the earth equal to 7.2722:10°rad/sec
and @ is the local angle of latitude.

In Eurocode 1 [2-96], the turbulence intensity is defined as:

I(2)= 0v/Vm(2)=ki/{In(z/2,) - Co(2)} fOF Zimin < Z < Zmax (2-210)

IV(Z)= Iv(zmin) forz < Zmin (2'211)

where z,. is the maximum height equal to 200m
Zmin IS defined in Table 2-10
Vin(z) is the mean wind velocity at height z
oy is the standard deviation of the turbulence:

0=k Vo ks (2-212)

k; is the turbulence factor with recommended value 1.00, k; is calculated from Eq. (2-205) and v, from
Eq. (2-196).
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2.6.2.5 Wind velocity power spectra

In statistical signal processing and physics, the properties of a time function are specified by the
power spectral density, which is a positive real function of a frequency variable. It is often called
simply the spectrum of the signal. It describes how the power of a signal or time series is distributed
with frequency. In case of the wind, most countries have their own wind velocity spectrum, according
to the weather conditions of the area, providing information about the main frequencies of the wind
velocity. Several wind velocity power spectra are reported from the literature in [2-99]. Davenport
[2-117] suggested that the wind velocity spectrum could be calculated as:

5, (n) = ) - (E(m)*

o3+ EoRf (2-213)

where f(n) is the non-dimensional frequency, expressed as:

1200n

fn) = V(10m)

(2-214)
n is the velocity frequency, V(10m) is the mean wind velocity at 10m and the friction velocity u* is
defined by Eq. (2-201).

Kaimal [2-118] introduced the height above the ground z:

200 - (u*)* -f(z,n)

n-3[t+50-f(z,n)P (2-215)

Su (Zl n) =

with

f(z,n) = % (2-216)

where V(z) is the mean wind velocity at height z, which can be calculated according to the logarithmic
law (Eg. (2-200)).

The spectrum suggested by Eurocode 1 [2-96] is calculated as:

6.8-02 -f (z,n)

S,(z,n) = 2-217
n3llt +10.2-f (z,n)P (2:217)
where o, is the standard deviation of the turbulence, defined by Eq. (2-212), and
n-L(z)
f (z,n) = -
L(z,n) V@ (2-218)
7 a
= | — > .
L(2) = L, (ZJ for z 2 zqiy (2-219)
L(2)=L(zmin) for z < Zmin

where L(z) is the turbulent length scale representing the average gust size for natural winds, with a
reference height of z=200m, a reference length scale of Ly=300m, and a=0.67+0.05In(z,). The mean
velocity is calculated according to Eq. (2-203), while the roughness length z, and the minimum height
Zmin are taken from Table 2-10.
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In order to compare the different wind velocity spectra, the basic wind velocity is assumed again
equal to 30m/sec, referring to a height of 10m for a country terrain with low vegetation and the
spectra of Kaimal and Eurocode 1 are calculated for z=25m. The non-dimensional spectral densities,
according to the three considerations, defined as:

n-S(z,n)

s(z,n) = (V(10m))2 (2-220)

are plotted in Figure 2-41. In this chart it is shown that the spectrum calculated according to Eurocode
1 approaches the one of Kaimal.
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Figure 2-41: Wind velocity spectra

2.6.3 Wind artificial functions

In order to perform a nonlinear dynamic analysis for the wind action a wind velocity time-history
diagram is required. In case no wind velocity records are available, it is convenient to create wind
artificial functions giving the wind velocity fluctuations. In [2-119] efficient methods were presented to
simulate random processes as a series of cosine functions with random phase angles and almost
evenly spaced frequencies. It was suggested that the random process could be simulated as:

N
f(t) = v2 /S, () )Aw cos(wit + @) (2-221)
a

where Sy(wy) is the spectral density function of f,(t) at frequency wy, @ is an independent random
phase uniformly distributed between 0 and 2n, and

w
Bw = — % (2-222)

Wi = Wy + 0w (2-223)

where dw is a small random frequency introduced. The frequency band, which is divided in N parts,
must contain all the significant natural frequencies of the structure. For nonlinear structures the
frequency step Aw should be small, in order to take into consideration the fact that the natural
frequencies of such structures vary with the amplitude of response.

In [2-21], Eq. (2-221) took the form of the wind velocity and was rewritten as:
N
v(z,t) = \/EZJSV (z,n;)An cos(2nn;t + @;) (2-224)
i=1

with
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n
An = —T= (2-225)
N
Ny =n, +i-An (2-226)

where n=2n/w. In [2-120], Eq. (2-224) was combined with the recommendations of Eurocode 1
[2-96], in order to use an artificial time-history diagram of the wind velocity to calculate the dynamic
response of a structure. Based on the Fourier transform of Eq. (2-221), a simulation algorithm is
proposed in [2-121] to generate sample functions of stochastic process with three components in
space, giving as an example a simulation of turbulent wind velocity fluctuations.

Taking into account the wind velocity spectrum of Eurocode 1 [2-96] and assuming a mean wind
velocity equal to 30m/sec, a time-history diagram of the wind velocity, calculated from Eq. (2-224), is
plotted in Figure 2-42.
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Figure 2-42: Artificial wind velocity time-history diagram

2.6.4 Wind pressure on structures

According to Bernoulli's theorem a horizontal airflow velocity V produces a pressure P as:
1 2
P+ EpV = constant (2-227)

where the second term has dimensions of pressure and is called dynamic pressure, while p is the air
density. This expression cannot be used in the case of turbulent flows around structures [2-112].
Pressures are expressed in a non-dimensional form, independent of the wind velocity:

AP
1/2pV?

P (2-228)
where C, is called the pressure coefficient and AP is the pressure above or below the atmospheric
pressure, induced by the wind over the surface. Thus, if P, is the atmospheric pressure, AP can be
written as:

AP=P-P, (2-229)

Values of the pressure coefficient are provided in [2-97]. According to Eurocode 1 [2-96] the wind
pressure on a structure’s surface is calculated, taking also into account the velocity fluctuations. In
what follows the methodology suggested by this code is described.
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2.6.4.1 Peak velocity pressure

The peak velocity pressure qy(z) at height z, including the mean velocity and the short-terms velocity
fluctuations is:

1
Gp(2) = [1+7-Iv(z)]-§~p-vrﬁ(z) = c.(2) G (2-230)
where p is the air density, which depends on the altitude, the temperature and the barometric

pressure, with recommended value 1.25kg/m?, 1,(z) the turbulence intensity obtained by Egs. (2-210)
and (2-211), q, the basic velocity pressure and c.(z) the exposure factor:

Qb =1/2p(Vp) * (2-231)
Ce(2) =[1+71,(2)]cf (2)c3 (2) (2-232)

2.6.4.2  Wind pressure on surfaces

The wind pressure on external surfaces is:

We=Cpe Gp(2) = Cpe Ce(2) Gb=Cpe[1 + 71, (2)Ic? (2)c3 (Z)%M (2-233)
and the wind pressure on internal surfaces, called suction is:

W=y 0(2) = G €(2) Bo=ClL + 71, @I (I3 ()5 PV (2-234)
where q,(z) the peak velocity pressure, q, the basic velocity pressure, c.(z) the exposure factor, Cye
and ¢, the pressure coefficient for the external and internal pressure, respectively. Pressure, directed

towards the surface is taken as positive, and suction, directed away from the surface as negative, as
shown in Figure 2-43.
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Figure 2-43: Pressure on surfaces (from [2-96])

2.6.4.3 External pressure coefficient Cpe

The external pressure coefficient ¢, depends on the size of the loaded surface A and it is provided in
tables for loaded areas A of 1m? and 10m?. Values for the local coefficients Cpe,1, May be used for the
small elements design, with an area per element of 1m?, while values for the overall coefficients Cye,10
may be used for the overall loaded structure. For 1m?<A<10m?, the pressure coefficient is calculated
as:

Cpe = Cpe1 - (Cpe,l 'Cpe,lo) logio A (2-235)
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The recommended procedure for loaded areas between 1m? and 10m? is shown in the diagram of
Figure 2-44.

pe 4

pe,1

Cpe,10

-

0.1 1 2 4 6 810 A[m;]

Figure 2-44: External pressure coefficient for building with a loaded area A between 1m? and 10m? (from [2-96])

The value of the pressure coefficient ¢, also depends on the shape and the dimensions of the roof, as
well as the wind direction. The ones for vaulted, duopitch or flat roofs are reported next, as
recommended in [2-96].

2.6.4.4 Vaulted roofs

The vaulted roof is divided into zones as shown in Figure 2-45 and the reference height is taken equal
to z.=h+f. The pressure coefficients, which can be used for such roofs, are shown in the diagram of
Figure 2-45. For 0<h/d<0.5, the coefficient cu 10 is obtained by linear interpolation, while for
0.2<f/d<0.3 and h/d=0.5, two values of c,e 10 have to be considered.
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Figure 2-45: External pressure coefficients ¢y 10 for vaulted roofs with rectangular base (from [2-96])

2.6.4.5 Duopitch roofs

The zones of duopitch roofs are illustrated in Figure 2-46 with positive or negative pitch angle. The
pressure coefficients Cpe,; @nd Cpe,10 are provided for orthogonal wind directions 8=0° (Table 2-11) and
©=90° (Table 2-12). For pitch angles between a=-5° and a=+5° the roof should be considered as flat.
The positive values of these coefficients correspond to overpressure and the negative ones to
underpressure. In case positive and negative values are proposed, both values should be considered
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but without mixing positive and negative values on the same face. The reference height z. should be
taken as h.

upwind face upwind face

wind wind
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Figure 2-46: Key for duopitch roofs (from [2-96])

Table 2-11: External pressure coefficient for duopitch roofs for wind direction 8=0° (from [2-96])

pitch Zone for wind direction 8 = Q°
angle F G H 1 J
a CD_e 10 | Cog 1 CD_e 10 | Cn_e 1 Co_e 10 | Cp_e 1 Cog 10 | Cog 1 Cp_e 10 Cped
-45° -0.6 -0.6 -0.8 -0.7 -1.0 -1.5
-30° -1.1 -2.0 -0.8 -1.5 -0.8 -0.6 -0.8 -1.4
-15° -2.5 -2.8 -1.3 -2.0 -0.9 -1.2 -0.5 -0.7 -1.2
o +0.2 +0.2
-5 -2.3 -2.5 -1.2 -2.0 -0.8 -1.2 0.6 0.6
o -1.7 -2.5 -1.2 -2.0 -0.6 -1.2 +0.2
+> 0.0 0.0 0.0 0.6 0.6
1159 09 | -2.0 08 | -15 -0.3 -0.4 -1.0 -1.5
+0.2 +0.2 +0.2 0.0 0.0 0.0
+30° 05 | -15 05 | -15 -0.2 -0.4 -0.5
+0.7 +0.7 +0.4 0.0 0.0
o 0.0 0.0 0.0 -0.2 -0.3
+45 10.7 0.7 0.6 0.0 0.0
+60° +0.7 +0.7 +0.7 -0.2 -0.3
+75° +0.8 +0.8 +0.8 -0.2 -0.3
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Table 2-12: External pressure coefficient for duopitch roofs for wind direction 8=90° (from [2-96])

Zone for wind direction 8=90°
Pitch angle- a F G H I
CDg 10 Cog 1 Cng 10 Cog 1 Cng 10 Cng 1 Cog 10 CD_e 1
-45° -1.4 -2.0 -1.2 -2.0 -1.0 -1.3 -0.9 -1.2
-30° -1.5 -2.1 -1.2 -2.0 -1.0 -1.3 -0.9 -1.2
-15° -1.9 -2.5 -1.2 -2.0 -0.8 -1.2 -0.8 -1.2
-5° -1.8 -2.5 -1.2 -2.0 -0.7 -1.2 -0.6 -1.2
5° -1.6 -2.2 -1.3 -2.0 -0.7 -1.2 -0.6
15° -1.3 -2.0 -1.3 -2.0 -0.6 -1.2 -0.5
30° -1.1 -1.5 -1.4 -2.0 -0.8 -1.2 -0.5
45° -1.1 -1.5 -1.4 -2.0 -0.9 -1.2 -0.5
60° -1.1 -1.5 -1.2 -2.0 -0.8 -1.0 -0.5
75° -1.1 -1.5 -1.2 -2.0 -0.8 -1.0 -0.5

2.6.4.6  Flat roofs

The surfaces of flat roofs are divided in zones according to the dimensions and the height of the
building, depending on the wind direction. The pressure coefficients are provided for each zone of the
surface. In Figure 2-47 the zones of flat roofs with parapets, sharp, curved or mansard eaves are
defined and the corresponding pressure coefficients Cpe;; and Cpe10 are listed in Table 2-13. The
reference height for flat roof and roofs with curved or mansard eaves should be taken as z.=h, while
for parapets it should be taken as z.=h+h, (Figure 2-47).

Edge of eave _

hy ,-"/’ y
G Lo
h | & z.=h
| | I
Parapels Curved and mansard eaves
| d |
| 1
T e=bor2h
o/ F whichever is smaller
R b : crosswind dimension

wind\‘

eld F

Figure 2-47: Key for flat roofs (from [2-96])
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Table 2-13: External pressure coefficient for flat roofs (from [2-96])

Zone
Roof type F G H I
Cpet0 Cpel Coe,l0 Coet Cpe10 Cpel Cpe,i0 | Coes
Sharp eaves 18 | 25 | 12 | 20 | -07 | -1.2 10
hy/h=0.025 | -1.6 | 22 | -11 | -1.8 | -07 | -1.2 102
With - +0.2
carapets | o/h=0.05 14 | 20 | 09 | -16 | -07 | -12 2
+0.2
hy/h=010 | -12 | -1.8 | -08 | -1.4 | 07 | -1.2 02
r/h = 0.05 -1.0 | -15 | -1.2 | -1.8 0.4 J_rg.zz
cuved |\ h-o010 | 07 | -12 | -08 | -14 0.3 +0.2
eaves 02
r/h = 0.20 05 | 08 | -05 | -08 0.3 J_fg-zz
a=30° 1.0 | -15 | -1.0 | -15 -0.3 J_r(()).zz
Mansard a = 45° -1.2 -1.8 -1.3 -1.9 0.4 +0.2
eaves 02
a = 60° 13 | 1.9 | 13 | -19 0.5 +822

2.6.4.7 Internal pressure coefficient ¢y

Internal and external pressures should be considered to act at the same time. The internal pressure
coefficient, ¢y, depends on the size and distribution of the openings in the building envelope. Open
windows, ventilators, chimneys, etc. as well as background permeability, such as air leakage around
doors, windows, services and through the building envelope are considered openings of a building. A
face of a building is regarded as dominant when the area of openings at that face is at least twice the
area of openings and leakages in the remaining faces of the building.

When the area of the openings at the dominant face of a building is twice the area of the openings in
the remaining faces, the internal pressure coefficient should be calculated as:

Ci=0.75Cpe (2-236)

In case the area of the openings at the dominant face is at least 3 times the area of the openings in
the remaining faces, then:

Cpi=0.90Cye (2-237)

where ¢, is the value for the external pressure coefficient at the openings in the dominant face. When
these openings are located in zones with different values of external pressures an area weighted
average value of cpe should be used. When the area of the openings at the dominant face is between
2 and 3 times the area of the openings in the remaining faces linear interpolation for calculating ¢,
may be used. For buildings without a dominant face, the internal pressure coefficient c, should be
determined from the diagram of Figure 2-48, and is a function of the ratio of the height and the depth
of the building, h/d, and the opening ratio py for each wind direction 6, which should be determined
as:

B Zarea of openings where ¢, is negative or 0.0
B " area of all openings

(2-238)
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If it is not possible to estimate p for a particular case, ¢, should be taken as the more onerous of +0.2
and -0.3.

—h/d<0.25 == =h/d>1.00
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Figure 2-48: Internal pressure coefficients for uniformly distributed openings

In case there are no openings in the surfaces of the building, the internal pressure can be neglected,
i.e. c;=0.0 [2-122].

2.6.4.8 Canopy roofs

A canopy roof is defined as the roof of a structure that does not have permanent walls. The degree of
blockage under a canopy roof, shown in Figure 2-49, depends on the coefficient ¢, which is the ratio
of the area of feasible, actual obstructions under the canopy divided by the cross-sectional area under
the canopy, both areas being normal to the wind direction.

Empty, free-standing canopy (p=0) h

Canopy blocked to the downwind eaves by
stored goods (¢=1)

Figure 2-49: Airflow over canopy roofs (from [2-96])

The value @=0 represents an empty canopy, and ¢=1 represents the canopy fully blocked with
contents to the down wind eaves only (this is not a closed building). The maximum and minimum
values of the overall force coefficients, ¢, and the net pressure coefficients ¢, et are provided for flat
and monopitch canopies, listed in Table 2-14 and for duopitch canopies in Table 2-15, for ¢=0 and
¢=1, taking account of the combined effect of wind acting on both the upper and lower surfaces of
the canopies for all wind directions. Intermediate values may be found by linear interpolation.
Downwind of the position of maximum blockage, c,net Values for ¢=0 should be used. The overall
force coefficient ¢; represents the resulting force, while the net pressure coefficient represents the

maximum local pressure for all wind directions. It should be used in the design of roofing elements
and fixings.
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Table 2-14: Values of the coefficients ¢, e and ¢; for monopitch canopies (from [2-96])

Net pressure coefficient Cp et
B 31
b/10
wind c A (o] b
5
b/10
B i
- d/10 d/10 e
+ p >
Overall force
Roof angle a Blockage ¢ coefficient & Zone A Zone B Zone C
Max all @ + 0.2 +0.5 +1.8 +1.1
0° Ming =0 -0.5 -0.6 -1.3 -1.4
Ming =1 -1.3 -1.5 -1.8 -2.2
Max all ¢ + 0.4 + 0.8 +2.1 +1.3
5° Ming =0 -0.7 -1.1 -1.7 -1.8
Min@ =1 -1.4 -1.6 -2.2 -2.5
Max all ¢ + 0.5 +1.2 + 2.4 +1.6
10° Ming =0 -0.9 -1.5 -2.0 -2.1
Minp =1 -14 -2.1 -2.6 -2.7
Max all @ + 0.7 + 1.4 + 2.7 + 1.8
15° Ming =0 -11 -1.8 -2.4 -2.5
Ming =1 -1.4 -1.6 -29 -3.0
Max all ¢ + 0.8 + 1.7 +2.9 +2.1
20° Ming =0 -1.3 -2.2 -2.8 -2.9
Ming =1 -1.4 -1.6 -29 -3.0
Max all ¢ + 1.0 + 2.0 + 3.1 +2.3
25° Ming =0 -1.6 -2.6 -3.2 -3.2
Ming =1 -1.4 -1.5 -25 -2.8
Max all @ +1.2 +2.2 +3.2 +2.4
30° Ming =0 -1.8 -3.0 -3.8 -3.6
Ming =1 -1.4 -1.5 -2.2 -2.7

Nonlinear dynamic response and design of cable nets




72 Chapter 2
Table 2-15: Values of the coefficients ¢, et and ¢ for duopitch canopies (from [2-96])
Net pressure coefficient ¢, pet
B 1
: b0
. C A | D A |C b
wind
—
b/10
B 3
> d10 s 10}«
dfs
d
Roof Blockage ¢ Overgll_ force Zone A Zone B Zone C Zone D
angle a coefficient ¢¢
Max all ¢ +0.7 + 0.8 +1.6 + 0.6 +1.7
-20 Ming =0 -0.7 -0.9 -1.3 -1.6 -0.6
Minp =1 -13 -15 -2.4 -2.4 -0.6
Max all ¢ + 0.5 + 0.6 +1.5 + 0.7 + 1.4
- 15 Ming =0 -0.6 -0.8 -1.3 -1.6 -0.6
Ming =1 -1.4 -1.6 -2.7 -2.6 -0.6
Max all ¢ + 0.4 + 0.6 +1.4 + 0.8 + 1.1
- 10 Ming =0 -0.6 -0.8 -1.3 -1.5 -0.6
Mingp =1 -1.4 -1.6 -2.7 -2.6 -0.6
Max all ¢ + 0.3 + 0.5 + 1.5 + 0.8 + 0.8
-5 Ming =0 -0.5 -0.7 -1.3 -1.6 -0.6
Ming =1 -1.3 -1.5 -24 -24 -0.6
Max all ¢ + 0.3 + 0.6 +1.8 + 1.3 + 0.4
+5 Ming =0 -0.6 -0.6 -14 -1.4 -1.1
Mingp =1 -1.3 -13 -2.0 -1.8 -1.5
Max all ¢ + 0.4 + 0.7 +1.8 + 1.4 + 0.4
+ 10 Mingp =0 -0.7 -0.7 -15 -14 -14
Mingp =1 -1.3 -1.3 -2.0 -1.8 -1.8
Max all ¢ + 0.4 + 0.9 + 1.9 + 1.4 + 0.4
+ 15 Ming =0 -0.8 -0.9 -1.7 -14 -1.8
Mingp =1 -1.3 -13 -2.2 -1.6 -2.1
Max all @ + 0.6 +1.1 +1.9 + 1.5 + 0.4
+ 20 Ming =0 -0.9 -1.2 -1.8 -14 -2.0
Minp =1 -1.3 -14 -2.2 -1.6 -2.1
Max all @ + 0.7 + 1.2 +1.9 + 1.6 + 0.5
+ 25 Ming =0 -1.0 -1.4 -1.9 -1.4 -2.0
Mingp =1 -1.3 -1.4 -2.0 -1.5 -2.0
Max all ¢ + 0.9 + 1.3 + 1.9 + 1.6 + 0.7
+ 30 Ming =0 -1.0 -1.4 -1.9 -14 -2.0
Mingp =1 -1.3 -1.4 -1.8 -14 -2.0
NOTE + values indicate a net downward acting wind action
- values represent a net upward acting wind action
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2.6.5 Wind tunnel experiments

The most reliable method to calculate the wind pressure on a surface of a particular shape is the
method of physical simulation, in which a scaled model of the construction is immersed in a turbulent
atmospheric flow, simulated in a wind tunnel. Many publications referred to such experiments,
regarding simple suspended cables, ([2-123], [2-124]), or real design projects concerning structures
with unaccustomed geometries, such as the roofs of the Olympic stadium in Rome [2-125], the
“Stadio delle Alpi” in Turin ([2-126], [2-127]), the “Karaiskaki” stadium in Athens ([2-127], [2-128]),
“le grand Stade” in Paris [2-129], and the hangar at the airport in Riga (Latvia) [2-130], or roofs with
normal shapes, such as canopy roofs ([2-131] — [2-134]), hip roofs [2-135], cantilevered roofs
([2-136] — [2-137]), duopitch roofs [2-138], curved roofs ([2-139], [2-140]) or flat roofs with circular
plan view ([2-141] — [2-142]). In some of these publications, only the dynamic response of the
structure was discussed. In others, pressure coefficient maps were also suggested, referring though to
specific geometries. The results of the tests on models with common shapes can be compared and
probably provide amendments to the approach of Eurocode 1.

Concerning the tensile structures, such as membranes or cable nets, some researchers performed a
numerical simulation with the aid of suitable Computational Fluid Dynamics (CFD) programs ([2-143]
— [2-144]), while others invented approximate procedures to estimate the wind pressure distribution
on their models ([2-145], [2-146]). Few publications report the results of wind tunnel experiments of
saddle roofs. In [2-147] the Calgary Olympic Coliseum in Canada was scaled for a wind tunnel test, in
order to measure the maximum deflection of the net. Wind tunnel studies were carried out by Beutler
[2-148], giving diagrams of the wind pressure distribution over a rhomboid saddle-form roof and for
three different directions of the wind. Other results of wind tunnel test, using as models saddle-
shaped suspended roofs with a rhomboid plan view, were also published in [2-149] — [2-151].
Buchholdt [2-21] gave a diagram of the pressure coefficient for an opened cable roof having the
geometry of a hyperbolic paraboloid. In ([2-152] — [2-155]) a series of wind tunnel experiments was
conducted on saddle-form roofs with rectangular, square and circular plan view and maps of wind
pressure coefficients on the roof and the lateral walls for three different wind directions were
provided.

2.6.6 Wind force

According to Eurocode 1 [2-96], the wind force, F,, acting on a structure or a structural element may
be determined by vectorial summation of the forces F, e, Fw,i and Fg. For roofs or walls, the wind force
becomes equal to the difference between the external and internal resulting forces, while friction
forces F; act in the direction of the wind components parallel to external surfaces. These forces are
expressed as:

l:w,e = CsCq Zwe 'Aref (2_239)
surfaces

" surfaces I © (2-240)

Ffr =Cf - qp(ze) : Afr (2-241)

where we and w; are the wind pressure on external and internal surfaces, respectively, A is the
reference area of the structure or structural element and Ay is the area of external surface parallel to
the wind. The structural factor, defined as c.cy, consists of the size factor ¢, accounting for the effect
on wind actions from the non-simultaneous occurrence of peak wind pressures on the surface, and
the dynamic one cq, which considers the effect of the vibrations of the structure due to turbulence.
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The friction coefficient c; takes values between 0.01 (very smooth surface) and 0.04 (very rough
surface).

The size factor is defined as:

. 147-1,(2) B2

° 1+7-1,(z) (2-242)
and the dynamic one, as:
1+2-k, - I,(z) VB2 +R?
Cq = (2-243)

147-1,(z.) - VB?

where z. is the reference height, k;, is the peak factor defined as the ratio of the maximum value of
the fluctuating part of the response to its standard deviation, I, is the turbulence intensity defined in
section 2.6.2.4, B? is the background factor, allowing for the lack of full correlation of the pressure on
the structure surface and R? is the resonance response factor, allowing for turbulence in resonance
with the vibration mode.

The background factor is expressed as:
1

b+h )% (2-244)
L(z.)

B? =

1+O.9-[

where b and h is the width and height of the structure and L(z.) is the turbulent length scale at the
reference height, defined by section 2.6.2.5. It is on the safe side to use B*=1, leading to c,=1. The
peak factor k,, defined as the ratio of the maximum value of the fluctuating part of the response to its
standard deviation, is obtained by:

0.6
kp = 1'2 . |n(V . T) + m (2‘245)

where T is the averaging time for the mean wind velocity and is equal to T=600 seconds, while the
up-crossing frequency v should be expressed as:

/ R? :
V= nllx W W|th V2 0.08 HZ (2'246)

where n; 4 is the natural frequency of the structure and R? is:

I'I2

2-0

R? = Si(ze/nyx) Ry(Np) -Rp(Np) (2-247)
where & is the total logarithmic decrement of damping, with recommended values for cables between
0.006 and 0.02, S, is the non-dimensional power spectral density function, and R,, Ry are the
aerodynamic admittance functions. The non-dimensional power spectral density function is:

. SV ,
S, (zn) = ”(o—()zzn) (2-248)
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where o, is the standard deviation of the turbulence, defined by Eq. (2-212), and S,(z,n) is the one-
sided variance spectrum according to Eq. (2-217) in section 2.6.2.5. The aerodynamic admittance
functions are calculated as:

1 1 .
R, =—-— (1-e M) i
e 0 (2-249)
1 1 2.
Rp=—- (1-e“™) ;
b, 2. 0 (2-250)
with
4.6-h
Nh = mﬂ(ze,m,x) (2-251)
46-b
Np = Tz fL(Ze M) (2-252)

where f (z.,nyy) is defined by Eq. (2-218) in section 2.6.2.5.

2.7 SUMMARY AND CONCLUSIONS

In this chapter, the main concepts regarding the nonlinear static and dynamic behaviour of structures
are summarised, focusing on cable structures and specifically on simple suspended cables and cable
networks. The dynamic response of cable nets is investigated in this work and the principal dynamic
load affecting the lightweight structures is the wind, which, in some cases, causes cable failure due to
fatigue. Hence, the calculation of the wind load on the surfaces of a structure is reported from the
literature and the standing codes.
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3 ANALYTICAL SOLUTIONS FOR SIMPLE CABLE
NETS

3.1 INTRODUCTION

During the last decades, the attention of several researchers has been focused on cable vibrations.
Due to its geometric nonlinearity, the cable response under dynamic loading is very complicated,
dominated by phenomena that do not appear in a linear structure. The field of nonlinear dynamics has
been developed introducing several methods that detect this kind of nonlinear phenomena [3-1].

A first approach to cables’ dynamic response has been oriented towards calculating the frequencies of
a simple cable. Pugsley [3-2] introduced semi-empirical formulae for the three in-plane frequencies of
a suspended sagged chain. Ahmadi-Kashani [3-3] obtained closed formulae for the frequencies of an
inclined hanging inextensible cable, while in [3-4] the authors derived formulae for the natural
frequencies and mode shapes of taut, inclined cables. Burgess and Triantafyllou [3-5] explored and
compared the elastic frequencies of a horizontal sagged cable and an inclined one. Irvine and
Caughey [3-6] derived formulae for the frequencies of the in-plane and out-of-plane vibrations of a
horizontal suspended cable. Rega and Luongo [3-7] studied the natural frequencies of an inextensible
cable with flexible supports. Rega et al. [3-8] instead, explored the effect of nonlinear terms on the
crossover frequencies of a prestressed or slack cable. The nonlinear dynamic response of a simple
cable is studied in many works. In [3-9] the equation of motion of a simple cable as a continuum
system is presented, having quadratic and cubic nonlinear terms. In [3-10] the response curves of a
taut cable and a suspended sagged one are plotted, exploring the influence of nonlinear terms on the
steady-state response of the cable. In [3-11] and [3-12] the authors studied the motion of a
suspended elastic cable under nonlinear resonances.

In more recent works the analytical equations of motion are solved numerically giving the dynamic
response of a simple cable. Takahashi et al. [3-13] showed that the in-plane antisymmetric response
of a cable under a symmetric harmonic load occurs through bifurcation, the frequency for this
bifurcation depends on the sag-to-span ratio and within the unstable regions a strong coupling
between symmetric and antisymmetric responses is observed. In [3-14] the authors evaluated
numerically the analytical solution of the equation, describing the motion of sagged flexible horizontal
or inclined cables, detecting nonlinear phenomena, such as internal resonances, crossover or
avoidance points, through the time-history diagrams of the cable’s dynamic response. An investigation
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of a simple cable vibration is presented in [3-15], taking into account higher order terms of
longitudinal dynamic deformation, capturing thus nonlinear coupling of longitudinal/vertical
displacements.

Very few publications provide analytical solutions for the equation of motion of cable nets or their
natural frequencies. Chisalita in [3-16] provided a formula for the first frequency of a simple flat cable
net, consisting of two crossing cables, having the same cross-section and pretension. Leonard [3-17]
referred to a similar cable net including the initial sag of the cables. He presented expressions of its
three natural frequencies, considering lumped or consistent mass. Seeley et al. [3-18] gave a formula
for the fundamental frequency of a circular cable network, with cables arranged radially and ring-wise,
for a limited range of the sag-to-span ratio, showing that the first frequency of the net depends solely
on the sag. For multi-degree-of-freedom models numerical analyses have been conducted, in order to
investigate the dynamic behaviour of the system, regarding the natural frequencies ([3-19], [3-20]) or
its dynamic oscillation ([3-21], [3-22]). In [3-23] the author presented a simple approach to calculate
natural frequencies of geometrically nonlinear cable structures, using straight axial elements. He
analysed two different flat nets consisting of two or four cables and a saddle-shaped cable net of an
actual structure. The frequencies of these models were compared with the results referred by other
sources and found to be in good agreement. Talvik in [3-24] presented and verified a mathematical
model for the analysis of prestressed cable networks with flexible contour ring. The equations were
solved by iterative methods and explicit time integration.

In this chapter, the simplest cable net is taken into consideration, aiming at deriving the analytical
equations in static and dynamic equilibrium. It is a symmetric system of two crossing cables having
the same geometrical and mechanical characteristics. The motion of the central node is investigated,
allowing for all three translational degrees of freedom. Expressions of the three natural frequencies of
the system are also provided, referring to the prestressed but unforced state. However, deriving an
exact analytical solution of this equation of motion is proved to be very difficult due to the complexity
of the nonlinear terms. In addition, detecting the conditions that cause resonant phenomena by
solving numerically the equation of motion is a time consuming procedure requiring a trial and error
iterative process. Thus, several simplifications are made which lead to the analogy of a Duffing
oscillator, the analytical solution of which can be found in the literature ([3-25] — [3-27]) and several
applications are provided in [3-1]. On the basis of this simplification, expressions of the steady-state
response regarding the deflection of the net are reported in this work and dynamic phenomena that
characterise nonlinear systems are delineated, such as nonlinear resonances, bending of the response
curves, hysteresis loops and instability regions, leading to unexpected large amplitudes of oscillation.
An example is presented in order to confirm the theoretical conclusions and to compare the exact
model with the simplified one.

3.2 CABLE NET WITH TWO CABLES (EXACT MODEL)

3.2.1 Geometry

The simplest possible cable net model is studied, which is a structure consisting of two crossing
perpendicular cables (Figure 3-1). The ends of the cables are fixed while the central node is free. The
span of each cable between the supports is equal to L and the cable sags are f.
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Figure 3-1: Geometry of cable net: (a) plan view, (b) perspective view

The uniformly distributed mass of the cables is considered as lumped. Additional concentrated mass
can be taken into account. The total mass is attached to the central node. No local sag is produced
between two adjacent nodes, as no self-weight is taken into account. Both cables have the same
cross-section, material and initial pretension Ny, with horizontal component Hy. The initial pretension is
introduced as initial strain € to all cable segments, which, according to Hooke’s law, is equal to:

25
Ny = EAgq = H, TN (3-1)

where Sy is the length of each segment at the equilibrium state under pretension expressed as:

Sy =+(L/2) +f2 (3-2)

Assuming small strains, the initial length S, for all segments is equal to:

sOZSN‘50350: Sv.___Sn
So l+gg | No (3-3)
EA

Considering instead large strains, the initial length S, for all segments is equal to:

2 Q2
e, =3 ZSODSO: S __ Sw
255 V1+2g \/1+2N0 (3-4)
EA

3.2.2 Equilibrium of the central node

If we define as u, v and w the displacements of the central node, referring to the global axes x, vy, z,
respectively, the deformed structure is shown in Figure 3-2.
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Figure 3-2: Deformed cable net: (a) plan view, (b) perspective view
The deformed lengths of the cable segments are calculated as:
S, :\/(L/2+u)2 +v2 4+ (f+w) (3-5)
Sy = J(L/2-uf +v2 +(F+w) (3-6)
Sy =yu +(L/2+ V) +(F-w) (3-7)
Sy =AUz +(L/2-v) +(F-w) (3-8)

The cable tension for each deformed segment, with the assumption of large displacements — small
strains, is expressed as:

N, = BA[ 2750 | Jpa[ S8 S0 | pal SO |y paf SioSw 39)
SO SO SO SO
while for large displacements — large strains:
2 _ 2 2 _ 2 2 _ 2 2 B 2
N, = Ea ST50 | gl SH S0 | g SUoSu |y g SSH (3-10)
255 25§ 25 252

where i=1,2,3,4, and their components, referring to the global axes, are calculated by the following
expressions:

Nix= Ny*(L/2+u)/(S1) (3-11)
Niy= N1"V/(S1) (3-12)
Niz= Ny*(F+w)/(Sy) (3-13)
Na= No*(L/2-U)/(S2) (3-14)
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Nay= -No"v/(S) (3-15)
Na.= -No: (F+w)/(S) (3-16)
Nax= N3'u/(S3) (3-17)
Nay= N3*(L/2+V)/(S3) (3-18)
Na.= -Ns*(F-w)/(S3) (3-19)
Nax= -Na"u/(S4) (3-20)
Nay= Na*(L/2-v)/(Ss) (3-21)
Naz= Na*(f-w)/(S4) (3-22)

The sum of forces at the central node, referring to the x, y, z global axes, are:

Nx= Nix = Nax + N3y - Nay (3-23)
Ny= Nyy - Nay + N3y - Nay (3-24)
Nz= Niz - N2z + N3z - Ng; (3-25)

3.2.3 Stiffness and eigenfrequencies of the system

Assuming large displacements but small strains, differentiating equations (3-23)-(3-25) with respect to
u, v and w, respectively, the stiffness coefficients of the cable system are obtained:

oN oN oN
=2 K, =—L,K,=—2% (3-26)

K Yy
ou ov oW

X

and the three corresponding natural frequencies of the system, dependent on the displacements u, v
and w, are:

K K [K
Wy = lewy: WY,(DZI Wz (3-27)

The frequencies w, and w, refer to a horizontal vibration of the central node with respect to x and y
axes, while the w, frequency refers to a vertical vibration of the central node. Considering zero
displacement (u=v=w=0) for the unforced and undeformed state, the stiffness coefficients at the
prestressed equilibrium states are:

1+2N—0+8N—0i
4. (BAL% + 2N5L2 + 8Nf2)  4EA EA EA L2

K - -
S vy 1] .
L2
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1+2N—0+8N—Oi
_4.BALZ + 2N5L2 + 8Nf2)  4EA EA EA 2

K, = _ _K
y0 x0 -
3 L 3 (3-29)
V(2 +a2) {1+4f2]
12

f2 _Ng o Ng f?
8—+2—+8——
_ 4.(BEAF2 1 INGL? + 8Nof2)  4EA [ 2 “EACEA 2

K., =
S O wat] o
LZ

while the three corresponding natural frequencies of the system can be expressed by:

2
1+2'\l—0+8'\|—0f—2
Kyo Kyo 4EA EA EA L
w =W = = = .
X0 =0 T\ M ML 2y (3-31)
(1+4]
12

2 2
(8f2+2N°+8N°f2j
Ko [4EA (L EA  EAL
P =y T '

ML 3 (3-32)
f

which are exactly the same as the ones reported by Leonard [3-17] for the same cable system.

In [3-17] and in chapter 2 the stiffness coefficient of a simple cable is provided, in the prestressed
configuration due to a load P, applied at middle span and causing a deflection z:

7 No ,Nozi
K@) - HRE| L 1 4EA 1> EA  EA?
) = L _ . _
s — |- T = (333)
Zy Zy
[1+4L2J [1+4L2J
where
2
2 (;j +zf
Sp=—"2 (3-34)

1+N—O
AE

Comparing the stiffness coefficient K,y of Eq. (3-30) with the one of Eq. (3-33), it is noted that for z;=f
the second cable of the cable net doubles the stiffness of the system. Thus, the cable net is stiffer
than a simple cable with the same geometry and the same mechanical characteristics. This is an
additional effect of the stabilising cable, besides offering stiffness for both upward and downward
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loads and enabling pretension. As the cable net deforms, one of its cables becomes stiffer and the
other softer. If one of the two cables becomes slack, its stiffness vanishes and the cable net response
becomes similar to the one of a simple cable.

Assuming instead large displacements and large strains, the stiffness coefficients of the cable system
at the presstressed, unforced and undeformed equilibrium state are:

1+3N—°+8N—°ﬁ
4-(EAL2 #3NGL? +8Nof2)  4EA EA  EA?

,(L2+4f2)3 L {1+4f2J3 (3-35)

KxO = KyO =

7+ -
4 (BEAF2 + INGL® +16Nof2)  4EA [ 2 EA T EAL?

Ky = = .
B A =
L2

and the three corresponding natural frequencies of the system:

[ N0 Nof ]

0 y0 4EA

Oxo = ®By0 =47y s (3-37)
‘ 1+4

2 2
[ fzJ
o - Koo _ |4EA L EA " EAL
07V M ML (3-38)

3
f2
{1 + 4L2]

The corresponding eigenvectors are:

1 0 0
=10], Vv, =|1|,V,=|0 (3-39)
0 0 1

For common levels of initial cable stress, at about 20% of the yield stress and for modulus of elasticity
165GPa, which is a common value for materials used in such structures, the difference between the
two assumptions arises at maximum 0.09% for all three eigenfrequencies, independently of the sag-
to-span ratio, as illustrated in Figure 3-3. The difference is small if a sag-to-span ratio equal to
f/L=1/20 is assumed, for initial cable stress varying between 10% and 35% of the yield stress, as
shown in Figure 3-4. Thus, computing the eigenfrequencies with the assumption of small strains, gives
results that are considered as sufficiently accurate for all practical purposes.

Nonlinear dynamic response and design of cable nets



92 Chapter 3
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Figure 3-3: Difference of eigenfrequencies: (a) wy and wyo, (b) Wy, for initial cable stress 20% of the yield stress
(s: small strains, I: large strains)
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Figure 3-4: Difference of eigenfrequencies: (a) Wy and wyo, (b) Wy, for sag-to-span ratio f/L=1/20
(s: small strains, I: large strains)

In both cases, if L>=8f?, then Wy =Wy =Wz, Which means that a crossover between the three vibration
modes occurs. Crossover points occur when two or more eigenfrequencies with different modal
shapes are equal. Cable structures are characterised by such crossover points [3-28]. For L°<8f?,
Kxo,y0<Kz and wygy0<w,, Meaning that the first vibration modes of the cable net are defined by the
horizontal motion of the central node, regarding the x and y axes. For L2>8f% instead, Kxo,y0>Kz and
Wyo,y0> Wz, Meaning that the first vibration mode of the cable net is defined by the vertical motion of
the central node. The variation of the ratio Ky ,0/K. With respect to the sag-to-span ratio, considering
large and small displacements, is plotted in Figure 3-5, for Young modulus E=165GPa, yield stress
0,=1570MPa, considering one of the most common categories of cable steel St 1570/1770. The
pretension is equal to 20% of the yield stress. In this chart, it is shown that independently of the f/L
ratio, the difference between the two assumptions of large or small strains is negligible. It is also
noted, that the coefficients Ky and Ky, become larger than K,, as the sag-to-span ratio becomes
smaller than 1/\/§ =0.354, which would never be the case for an actual cable net.
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Figure 3-5: Variation of the ratio Ky ,0/K,o with respect to the sag-to-span ratio f/L

In Figure 3-6 the variation of the ratio Ky,y0/Kz with respect to the level of pretension is illustrated,
considering large and small displacements, for Young modulus E=165GPa, yield stress 0,=1570MPa
and sag-to-span ratio equal to 0.2 and a level of initial stress between 10% and 35% of the yield
stress. The level of pretension does not change significantly the ratio of the stiffness coefficients,
while the difference between the two assumptions is again negligible.
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Figure 3-6: Variation of the ratio Ky,,0/Kz With respect to the pretension level

3.2.4 Equations of static equilibrium

The equilibrium for static loads is described by the following equations:

Nx=Nix - Nax + N3y - Nax = Py (3-40)
N,=Ny, - Nay + Ny - Nay = P, (3-41)
Nz=Ni; - No; + N3, - Ng; = P, (3-42)

where Py, P, and P, are the three components of the external static load, applied on the central node,
with respect to the global axes.

The maximum permissible deflection, caused by a vertical load exerted on the central node, can be
defined with respect to the maximum allowable stress of the cables, which is considered equal to the
yield stress o,. According to Hooke's law, at the ultimate stage, the cable stress is expressed as:

oy = E(SI S_ SO J r i=1l213l4 (3'43)
0

Substituting the initial length of the cable segments, expressed by Eq. (3-3), taking into account Eq.
(3-2), Eq. (3-43) becomes:
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g
Y41
s, =-E N L/2P +F2,i=1,2,34 (3-44)
1+ —
EA

Substituting the deformed lengths of the cables, defined by Egs. (3-5)-(3-8), Eq. (3-44) becomes:

(1)
E +1
(L/2F +(F+w)? =—2~[(L/2)2 +f2]:>
1+-0
EA
(3-45)
)
E
w? £ 2fw = —2-[(|_/2)2 +f2]— [(L/z)2 +f2]
[1 +-0
EA
The four solutions of Eq. (3-45) are:
w=+f+f2-Q (3-46)
where
2
2
Q-|1- fr2p e (3-47)

The minimum absolute values of these four solutions constitute the maximum permissible deflection,
which is defined as:

Winax | = ‘f ~Jf?-Q ‘ (3-48)

The maximum permissible deflection depends on the sag and the span, the yield stress oy, the initial
pretension in terms of initial strain and the Young modulus E. The diagram of Figure 3-7 shows the
variation of the ratio wpa/L with respect to f/L, for yield stress o,=1570MPa, Young modulus
E=165GPa and initial stress equal to 20% of the yield stress, which are common values for cable nets.
For values of the sag-to-span ratio between 1/35 and 1/2, the values of the ratio wpa/L are smaller
than 0.05, and as the ratio f/L increases, wmax/L decreases. The maximum load causing the maximum
deflection is shown in Figure 3-8, as a ratio of the load over the initial pretension, with respect to the
sag-to-span ratio. In this chart an eventual cable slackening is taken into consideration, by setting the
stiffness of the slackened cable equal to zero. As the net becomes stiffer and the ratio f/L increases,
the maximum permissible load also increases.
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Figure 3-7: Maximum deflection variation with respect to the sag-to-span ratio
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Figure 3-8: Variation of the ratio of the maximum static load P, over the initial pretension Ny, with respect to
the sag-to-span ratio

3.2.5 Equations of motion

In case a dynamic load is applied on the central node, the equations of motion of this node for the
three directions of the global axes are expressed in the equilibrium state:

M + CU + Ny, =P, (t) = MU + CU + Ny, —Nyy + N3y —Nygy =P, (t) (3-49)
MV +CV +N, =P, (t)= MV + CV +N;, —N,, +N3, —Ngy, =P, (t) (3-50)
MW + CW + N, =P, (t) = MW + CW + Ny, —N5, + N3, =N, =P, (t) (3-51)

where Py(t), Py(t) and P,(t) are the three components of the external dynamic load, varying with time,
referring to the global axes. The damping C is a function of the damping ratio {, expressed as [3-29]:

C=0C,=2Mwyo (3-52)
3.2.6 Numerical example

3.2.6.1. Geometry and prestressing

A numerical example is considered of a cable net consisting of two cables having a diameter D=10mm
and cross-sectional area A=7.85'10"°m?. The span of the cables is L=50.00m and their sag f=2.50m.
The cable material is treated as nonlinear, having no compression branch, and linear elastic tension
branch, with Young modulus E=165000MPa (Figure 3-9a). The initial strain of the cables is €,=0.001,
which is interpreted as an initial pretension Ng=EAg,=12.959kN. If a maximum cable stress is taken
into account, it is set equal to the yield stress 1570MPa (Figure 3-9b), which corresponds to a strain
€max=0.0095152 and a maximum cable tension Ny.=123.31kN.
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Figure 3-9: Material constitutive law with zero compression branch and: (a) infinitely linear elastic tension branch,
(b) linear elastic tension branch limited by the yield stress
3.2.6.2. Static response

A vertical displacement towards +z is enforced at the central node, in steps of 0.05m. The length of
each segment at the equilibrium state under pretension is calculated from Eq. (3-2):

Sy =(L/2) +f2 =257 +2.52 = 25.12m (3-53)

while the initial length S, for all sesgments, according to Eq. (3-3), is:

o _ Su _ 2512
® " 1+g, 1+0.001

=25.10m (3-54)

The deformed lengths of the cable segments are obtained by Egs. (3-5)-(3-8) and the cable tensions
by Eq. (3-9). The static load P,, which counterpoises the imposed deflection w, is calculated from Eq.
(3-42), taking into consideration Egs. (3-11)-(3-22). For a nonlinear material with infinitely elastic
tension branch, the load — displacement curve is plotted in Figure 3-10 and the cable tension variation
with respect to the central node deflection, in Figure 3-11. The curved diagrams show the intense
nonlinearity of the system.

350 7
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Figure 3-10: Load — displacement curve for nonlinear material with infinitely elastic tension branch
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Figure 3-11: Cable tension variation with respect to the central node deflection for nonlinear material with
infinitely elastic tension branch: (a) segments 1 and 2, (b) segments 3 and 4

When the vertical displacement becomes equal to w=0.27m, the length of segments 3 and 4 is
calculated from Eq. (3-7):

Sy =J(L/27 + (F-w)? =425% + (2.5-0.27)% = 25.10m (3-55)

which is equal to the initial unstressed length S,. This means that, for this imposed vertical
displacement, segments 3 and 4 become slack. As the displacement increases, the distance between
the central node 1 and nodes 3 and 4 further decreases, until w=f=2.50m and then it increases again.
When w=4.73m the length of these two segments becomes again equal to Sy:

Sy =J(L/2) +(F-w) =252 +(2.5-4.73)° = 25.10m (3-56)

and as the displacement w continues to increase, tension develops again and the cables stop being
slack. The length of segments 1 and 2 always increases as the displacement w increases. The
diagrams of the distance between the central node and the anchorages of segments 1 and 3 are
illustrated in Figure 3-12.

£ 27 A distance of nodes 1-2 = 26 7 distance of nodes 1-3
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0 1 2 3 4 5 0 1 2 3 4 5
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Figure 3-12: Distance between node 1 and (a) node 2, (b) node 3, with respect to the central node deflection for
nonlinear material with infinitely elastic tension branch

If a nonlinear material is considered with null compression branch and a limit for tension stress equal
to the yield stress, the load — displacement curve is plotted in Figure 3-13 and the cable tension
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variation with respect to the central node deflection in Figure 3-14. The change of stiffness,
represented by the abrupt change of the slope of the load — displacement curve in Figure 3-13, occurs
when the imposed displacement becomes w=0.27m and cable segments 3 and 4 become slack, as
shown in Figure 3-14b. Up to this level of imposed displacement the response appears to be
practically linear, while beyond that level it exhibits the well-known nonlinearity of single cables.

50 -
max P,=40.20kN

TV ;
= 30 1
i:/ slope change at w=0.27m
& 20 7 p,=6.07kN :

10 A l Wmax=1.63m !

0 T T T T I\: 1
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Figure 3-13: Load — displacement curve for nonlinear material with linear elastic tension branch limited by the

yield stress
150 5 -
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Figure 3-14: Cable tension variation with respect to the central node deflection for nonlinear material with linear
elastic tension branch limited by the yield stress: (a) segments 1 and 2, (b) segments 3 and 4

The behaviour of the system is the same as described before, until the imposed displacement
becomes w=1.63m, which corresponds to a static load P;=40.20kN. Then, the stress of segments 1
and 2 becomes equal to the yield stress, a limit which represents the maximum allowable cable stress,
causing failure of the cables. The tension of these cable segments is equal to the maximum tension
Nmax=123.31kN, while cable segments 3 and 4 are slack at the end of the calculation. The maximum
allowable displacement is also verified by Eq. (3-48), using Eq. (3-47):

2
o
Q- _E—Z |Lr27 +£2]= —10.70m? (3-57)
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W e | = ‘f —\f2 - Q‘ = ‘2.5 ~2.5% + 10.79‘ =1.63m (3-58)

3.2.6.3. Eigenfrequencies

The distributed mass of the cables is considered equal to m=7.85kN-sec>*m™, while an additional
concentrated mass is applied on the central node, equal to M.=0.1t=0.1kN-sec’>*m™. The masses are
considered as lumped, so that the total mass at the central node is equal to M=m-4S,/2-A+M =
=0.131kN'sec>m™. Assuming large displacements and small strains, the stiffness coefficients are
obtained by Egs. (3-28)-(3-30):

2
1+2N—°+8N—°f—
4EA EA  EA?

KxO :KyO = L f2 3
[1+4]
L2

2 N N 2
81:—2+2—0+8—0f—2
4EA | L EA  EAL
KZO= :

L 3
f2
[1 +4 sz
and the corresponding natural frequencies, at the presstressed, unforced and undeformed equilibrium
state from Egs. (3-31) and (3-32):

( K /
Wy = Wyg = KI\);IO = I\tlo = 18213;1}3 sec™! =88.39sec™?
W, = Kz _ /22'49 sect =13.10sec™
M 0.131

while, assuming large displacements and large strains, the stiffness coefficients are calculated
according to Egs. (3-35) and (3-36):

j =1023.43kN/m

] =22.49kN/m

2
1+3N—°+8N—OL
4EA EA EA?

L 3
fZ
[1 + 4L2]

2 2
8L+2N—0+16N—°f—
4EA Lz EA EA L2

] =1024.45kN/m

] =22.51kN/m

and the corresponding natural frequencies:
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K K .
O =@ = [Rx0 _ (Byo 102445 (4 g8 44 et
X0 = Ty0 M M 0.131
K .
W, =422 = 22.51 sec! =13.11sec?
\'M Vo0.131

The difference between the two approaches of both stiffness coefficients and frequencies calculation
is insignificant. The variation of the natural frequency w,, calculated from Eq. (3-27), taking into
account Eq. (3-26), is plotted in Figure 3-15, in which it is evident that the increase of the deflection
results in increase of the stiffness and consequently the natural frequency. When the system exhibits
the maximum deflection Wmax=1.63m, the natural frequency is w,=16.27sec, being 24% larger than
the natural frequency at the unforced and undeformed state, w,,=13.10sec™.
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Figure 3-15: Variation of the natural frequency with respect to the deflection

3.2.6.4. Dynamic response

In order to investigate the dynamic response of the system, the equation of motion is solved using the
program MATLAB [3-30]. This program allows the user to solve many technical computing problems,
especially those with matrix and vector formulations. Typical uses include math and computation,
algorithm development, data acquisition, modelling, simulation, and prototyping, data analysis,
exploration, and visualisation, scientific and engineering graphics, application development including
graphical user interface building. With this program the time-history response of the system is
calculated, solving numerically the analytical equations of motion. In order to solve numerically
ordinary differential equations, it employs the Runge-Kutta integration method [3-31].

Firstly, an undamped system is analysed, in order to detect large-scale oscillations for different
loading frequencies. The cable material is treated as nonlinear with linear elastic tension branch
limited by the yield stress and zero compression branch. A harmonic load is applied on the central
node, equal to P,=PycosQt. The loading frequency is chosen to be equal to Q=w,=13.10sec™
(2.08Hz), aiming at fundamental resonance phenomena, while the load amplitude is Py=1.30kN,
which, after several trials, is proved to be the minimum load causing failure of the cables. The time-
history diagrams of the central node deflection and the tension of cable segment 3, which arrives first
at failure, are illustrated in Figure 3-16.
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Figure 3-16: Fundamental resonance with P,=(1.30kN)cos(w,ot). Time-history diagrams of (a) the central node
vertical displacement, (b) the tension of cable segment 3

The failure occurs at time 11.926sec and the analysis stops. At that time, the displacement at the
central node is 1.63m, equal to the maximum allowable deflection. The tension developed in cable
segments 3 and 4 is 123.44kN, which is slightly larger than the permissible tension, exceeding thus
the yield stress threshold and causing the termination of the analysis. The phase plane plot and the
response spectrum of the central node deflection are plotted in Figure 3-17. In these charts, it is
noted that the maximum (absolute) velocity of the central node is 21.11m/sec, while the main
frequency of the oscillation is equal to the loading frequency, being also the frequency of the system.
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Figure 3-17: Fundamental resonance with P,=(1.30kN)cos(w,gt), (a) phase plane plot of the central node motion,
(b) deflection response spectrum of the central node

The ratio of the maximum velocity over the maximum deflection, compared with the natural frequency
and the loading frequency, is:

Wrax 21.11m/sec -1
= =12.95sec™ =0.99w,, = Q -
W 1.63m 20 (3-59)

This information will be used in the next section.

Comparing the dynamic response of the cable net with the static one, analysed in section 3.2.6.2, it is
worth mentioning that the static load causing failure of the cables is 40.20kN, while the dynamic one
is only 1.30kN. Hence, the maximum dynamic load that this cable net can sustain is thirty times
smaller than the static one. Nevertheless, in nonlinear systems, the maximum steady-state response
occurs for Q=w+0, where w is the eigenfrequency and o is a non-zero frequency detuning. In order
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to find numerically which frequency detuning causes the maximum response, a parametric analysis is
required, changing the frequency of the load by small steps.

Next, a loading frequency Q=w,/3=4.37sec™ (0.69Hz) is selected, aiming at superharmonic resonant
conditions. The amplitude of the dynamic load that is proved to cause cable failure in this case is
equal to Py=19.97kN, which is half of the static one. The time-history diagrams of the central node
deflection and the tension of cable segment 1, which arrives at failure, are plotted in Figure 3-18.
Failure occurs at time 1.631sec and the analysis stops. At that time, the displacement at the central
node is 1.63m, while the tension of cable segments 1 and 2 is 123.32kN, almost equal to the
permissible tension. The phase plane plot and the response spectrum of the central node deflection
are illustrated in Figure 3-19. The central node oscillates with two dominant frequencies, one equal to
0.61Hz, being close to the loading frequency and one equal to 1.84Hz, which is close to the system’s
frequency.
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Figure 3-18: Superharmonic resonance with P,=(19.97kN)cos(0.33w,t). Time-history diagrams of (a) the central
node vertical displacement, (b) the tension of cable segment 1
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Figure 3-19: Superharmonic resonance with P,=(19.97kN)cos(0.33w,ot), (a) phase plane plot of the central node
motion, (b) deflection response spectrum of the central node

In this case, the maximum (absolute) velocity of the central node is 17.23m/sec. The ratio of the
maximum velocity over the maximum deflection, compared with the natural frequency and the loading
frequency, is:

W ax _17.23m/sec

Team - 1057 sec™! =0.80w, ~ 2.40Q (3-60)

w max
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Subsequently, aiming at subharmonic resonance, the loading frequency is chosen equal to
Q=3w,=39.30sec™ (6.25Hz). The amplitude of the dynamic load equals to the maximum static one,
Py=40.20kN, without causing cable failure. The time-history diagrams of the central node deflection
and the tension of cable segment 1 are plotted in Figure 3-20. The phase plane plot and the response
spectrum of the central node deflection are illustrated in Figure 3-21. In this case, the maximum
(absolute) velocity of the central node is 11.62m/sec and the maximum deflection is 0.36m. The ratio
of the maximum velocity over the maximum deflection, compared with the natural frequency and the
loading frequency, is:
Wmax  11.62m/sec

= =32.30sec! =2.46w,, = 0.82Q i
W ax 0.36m 20 (3-61)

The central node oscillates with a frequency (6.25Hz) equal to the loading frequency and another one
(2.05Hz), very close to the system’s frequency.
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Figure 3-20: Subharmonic resonance with P,=(40.20kN)cos(3w,et). Time-history diagrams of (a) the central node
vertical displacement, (b) the tension of cable segment 1
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Figure 3-21: Subharmonic resonance with P,=(40.20kN)cos(3w,t), (@) phase plane plot of the central node
motion, (b) deflection response spectrum of the central node

In these last two cases, although the loading frequency is away from the natural frequency, the
eigenmode is activated, due to the relation between these two frequencies. Hence, the system
vibrates not only with the loading frequency but also with the natural frequency, but this information
is not sufficient to confirm the superharmonic and subharmonic resonances. Occurrence of these
nonlinear resonances signifies large oscillation amplitudes, even though the loading frequency is away
from the eigenfrequency of the system, as well as sudden changes of the response amplitude for
small changes of the loading frequency. Especially in case of subharmonic resonance, the initial
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conditions play an important role along with the frequency detuning for specific load amplitude and
damping ratio. In order to include these parameters and to detect nonlinear phenomena, a damped
system is analysed next. The cable material is now assumed to be nonlinear with infinitely elastic
tension branch and zero compression branch, in order to detect nonlinear phenomena without cable
tensile failure, which leads to the analysis termination. A vertical dynamic load is applied on the
central node described as P=Py cosQt. Two damping ratios are chosen, equal to (=0.5%, being a
common value for simple cables [3-28] and (=2%, corresponding to the damping ratio for cable nets
[3-32]. The steady-state deflection wg; is calculated for a wide range of loading frequencies and the
response diagrams are plotted, either for zero initial conditions, or for initial deflection 1m and velocity
20m/sec. The parameter Ry is defined as the ratio of the steady-state deflection wg,, over the static
one Wg:

SS

R =
d
Wt

(3-62)

Firstly, the parameter R, is calculated for values of frequency ratio (Q/w,) between 0.80 and 1.20
increasing in steps of 0.01. A load amplitude equal to Py=1kN is considered, which applied statically
causes a deflection wg=0.045m. The variation of the parameter Ry with respect to the frequency ratio
is shown in Figure 3-22. The maximum value of the ratio Ry for damping ratio (=0.5% is 50.876
occurring for Q/w,=1.09, while for (=2% and Q/w,,=0.96 Ry becomes equal to 26.067, thus
indicating the importance of the dynamic nature of the response. The bending of the response curve
is noted as the frequency ratio increases, resulting in a sudden decrease of the steady-state response
amplitude, named as jump phenomenon. Moreover, for frequency ratios close to 1 two responses are
observed, one with small deflection amplitude, for zero initial conditions, and one with large amplitude
which is obtained taking into account the initial deflection and velocity. The dependence of the
response of the system on the initial conditions and the jump of the oscillation amplitude are
phenomena that occur only in nonlinear systems.

® zero initial conditions initial conditions

60 1 7=0.5% 60 1 =2%
40 40
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Q/O.)Zo Q/wzo

Figure 3-22: Steady-state deflection under fundamental resonance for Py=1kN

For frequency ratios (Q/w,,) between 0.25 and 0.60 the load amplitude is assumed to be equal to
Po=5kN, which, applied as a static load, causes a deflection equal to wg=0.022m. The variation of Ry
with respect to the ratio (Q/w,) is illustrated in Figure 3-23 for both values of damping ratio.
Considering (=0.5%, three peaks are observed, for frequency ratios 0.32, 0.48 and 0.56, while for
(=2%, only one peak of the response is noted for frequency ratio 0.48. These peaks of the response
diagram, for loading frequencies smaller than the natural frequency of the system, appear only in
nonlinear systems and indicate the occurrence of superharmonic resonances. As the damping
decreases, superharmonic resonances occur for more frequency ratios. On the other hand, for
frequency ratios away of the aforementioned values, the response amplitude of the central node does
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not depend on the damping ratio. In this case, the initial conditions do not influence the steady-state
response of the net.

37 (=0.5% 37 (=2%
2 1 . ¢ 2
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0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
Q/wy Q/wy

Figure 3-23: Steady-state deflection under superharmonic resonance for Py=5kN

For a loading amplitude equal to P,=15kN and a frequency ratio varying between 2.80 and 3.50, the
corresponding response diagrams are illustrated in Figure 3-24. For this load, the static deflection is
wg=0.76m. If zero initial conditions are considered, the oscillation amplitudes are very small for both
damping ratios. If the initial deflection and velocity are taken into consideration, large amplitudes are
noted for damping ratio {=0.5% and for frequency ratios close to 3. This means that subharmonic
resonance phenomena take place during the vibration of the cable net, resulting in sudden increase of
the deflection, delineating the intense nonlinear dynamic behaviour of the cable net.

® zero initial conditions initial conditions
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Figure 3-24: Steady-state deflection under subharmonic resonance for Py=15kN

It should be mentioned that subharmonic resonances occur for a specific load frequency, load
amplitude and initial conditions. A small change of the load frequency results in smaller oscillation
amplitudes than the ones corresponding to the nonlinear phenomena. Finding the exact loading
frequency for which the system exhibits the maximum response amplitude under fundamental,
superharmonic, or subharmonic resonance, requires a parametric analysis, for different load
amplitudes, initial conditions, damping ratios and a very small step of variation of loading frequency.
In what follows, an attempt to simplify the problem is presented, in order to provide analytical
solutions and important information about the conditions under which these nonlinear phenomena
occur.

3.3 A SDOF CABLE NET SYSTEM (SIMPLIFIED MODEL)

3.3.1 Forced vibration of the system — Non-resonant excitations

A single-degree-of-freedom system is assumed, similar to the one described before, allowing only for
vertical displacements. An external excitation P,(t)=PycosQt is applied on the central node, with a

Nonlinear dynamic response and design of cable nets



106 Chapter 3

loading frequency Q away from the only eigenfrequency w,, of the system at the unforced,
undeformed and prestressed equilibrium state. Substituting the expressions of the tension of the
cables (Eqg. (3-9)) and the prestressed, initial and deformed lengths of Egs. (3-2), (3-3), (3-5) - (3-8),
respectively, into the vertical components of the cable tensions (Egs. (3-13), (3-16), (3-19) and
(3-22)), the differential equation (3-51) becomes:

Mw +Cw +N, =P, (t) =
4EACF+w) | ABA(F-w) | 4w(EA +N,)

MW + CW — =P, (t) 3-63
(F + w)> (F - w)? 7o (3:63)
L [1+45"0 Ll+43— L1+4—
L L L2
A function of type:
1
9(2) = v 2" (3-64)

can be expanded in Taylor series [3-31], with respect to the variable z, around z,=0, as follows:

1 . 1 1)(m+2
9(z) = o l+z2)™=1-mz+ m(n;!+ ) ,2 _M(m+ 3)!(m+ )74 (3-65)

Taking into account that the sag-to-span ratio f/L is usually very small for actual cable nets, allowing
thus to neglect its third or higher powers, Eqg. (3-63), developed in Taylor series, becomes:

2
i+ o JEAC +w) (1 (Fw)? )
L L2
2 2
LAEAF-w) (S (F-w) +4w(EA+N0) [ f P )=
L 2 L 12
16EAW3  32EAF2w  8Now 16N, f2w (3-66)
Mw + Cw + L3W + 5 W, Ii) - 53 =P,(t) =
3 2 2
M + Oy o LOEAW™ | ABA g f” oMo Mo P20 b )
L3 L L2 EA EA 2

Expanding the expression of the stiffness K, of the undeformed system of Eq. (3-30) in Taylor series
with respect to the term f/L, according to Eq. (3-65), and neglecting terms of order (f/L)*, it reduces
to:

2 N N 2
[81:2+2°+80fzJ
4EA | L EA  EAL
K,o = .

L 3 =
f2
[1+4L2J
, , , (3-67)
= K,g _ABATGT oNo gNo Py 6F |
L L2 EA EA 2 L2

=K _4EA 8ﬁ+2N_0_4N_oi
207 12 “EA EA 2

Eq. (3-66) can be written as:
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16EAW?

Mw + Cw + K oW + B

16EA 5 Py
w> = —cos(Qt -
VE M () (3-68)

=P, (t) = W+%W+w§ow+
where a nonlinear cubic term appears with a coefficient depending on the modulus of elasticity of the
cable material, the cable cross-sectional area and the span of the cables. The ratio of the linear term
over the nonlinear term is defined as R:

2 2
aen |8l oNo _gNo F2 0 )y
R L2 EA EA |2

TEA 2 2

16EAW3 /L3 w

{zfz L No N fz}. 12 (3-69)
The ratio R is plotted in Figure 3-25 with respect to f/L, taking into consideration the maximum
permissible deflection shown in Figure 3-7 for yield stress 0,=1570MPa, Young modulus E=165GPa
and initial stress equal to 20% of the yield stress. As the sag-to-span ratio increases, the ratio R
increases as well, taking large values. Hence, as the sag-to-span ratio increases, and the system
becomes stiffer due to the large opposite curvatures, the contribution of the nonlinear term in the
dynamic motion of the net could be considered as very small with respect to the one of the linear
term, concluding that the system’s behaviour becomes quasi linear.

10000 -
8000 -
6000 -
4000 -
2000 -

0 T T T T 1
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Figure 3-25: Ratio R with respect to the sag-to-span ratio

For sag-to-span ratios between 1/35 and 1/10, the above ratio takes values between 1.6 and 57
(Figure 3-26). For common values of the ratio f/L, the nonlinear term of the displacement is smaller
than the linear term and its contribution could be presumed as considerable only for very shallow
cable nets. However, as will be shown further on, the effect of this small nonlinear term on the
system’s dynamic response is not negligible, even for sag-to-span ratios larger than 1/35, producing
large-scale phenomena, which do not occur for linear systems.
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Figure 3-26: Ratio R with respect to the sag-to-span ratio between f/L=1/35 and f/L=1/10

The ratio of the linear term over the velocity term is defined as RV:
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KZOW_ K, oW W,y W

RV = - _ Q0 W )
oW 2Mow 20 W (3-70)

The maximum damping ratio {, measured for cable nets, is 2% [3-32]. Taking into account the results
of the example in section 3.2.6.4, the minimum ratio of the deflection over the velocity can be
considered equal to 1/(2.46w,). In this case, the parameter RV is equal to:

1

RV=—
2.2.46-0.02

=10.16 (3-71)

The change of the parameter RV with respect to the ratio rw, defined as:
W
W,

'w =

(3-72)

for damping ratio (=2%, is plotted in Figure 3-27. It is noted that even for much larger values of the
ratio rw than the ones calculated in section 3.2.6.4, the ratio RV is larger than 1, which means that
the velocity term can be considered as small with respect to the linear term of the displacement.

60 7 =2%
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20 7 RV=2.52
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Figure 3-27: Ratio RV with respect to ratio rw for damping ratio {=2%
Nayfeh and Mook [3-25] thoroughly explored the equation:
W + 2epW + 03w + gaw> = K cos(Qt) (3-73)

known as the equation of motion referring to a forced damped Duffing oscillator, with p being
positive, and the coefficient of the nonlinear term a being either positive (hardening spring) or
negative (softening spring). Here the main features of this investigation are reported. The equation of
motion of the simple cable net, described by Eqg. (3-68), can take the form of Eq. (3-73), with positive
coefficient of the nonlinear term and become:

W + 26pW + 02w + gaw> = P cos(Qt) (3-74)
where:
C
2el = Mo 20w, (3-75)
cq _ 16EA 3-76
ML3 ( - )
Po
p=-0 -
; (3-77)
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Ko [4EA [_f2 _Ng  Ngf?
0, = gl 120 4N P ]
20 \/ ML { 2 EA TEA L2 (3-78)

The parameter € is assumed to be small and dimensionless, with €<1, defining the small scale of the
coefficients of the velocity and the cubic term in the equation of motion with respect to the one of the
linear term. The exact value of this parameter is not important, because the solution of the problem is
independent of €. It depends only on the parameters €u and €q, as defined in Egs. (3-75) and (3-76),
respectively, meaning that the parameter € never appears alone in the solution. For €=0 a linear,
undamped system is described by the equation of motion. In order to find a solution of nonlinear
equations of motions, several methods are used, named as perturbation techniques, such as
Lindstedt’s method, the method of multiple scales, the method of averaging, the method of harmonic
balance, etc. ([3-25], [3-27], [3-33], [3-34], [3-35]). In this case, the method of multiple scales is
applied. The main idea of this method is to consider the expansion representing the response to be a
function of multiple independent variables, called scales. The introduced independent variables will be
time intervals, referring to “slow” or “fast” vibrations, named as time scales. A “slow” vibration is
produced by an excitation having a frequency near the eigenfrequency of the system, while a “fast”
vibration is produced by a high frequency excitation with a time period smaller than the natural period
of the system. In linear systems the amplitude of “fast” vibrations is small; in nonlinear systems,
instead, the high frequency excitation alters the “slow properties” of a system, such as the natural
frequencies, the location and stability of equilibrium points and the response to resonant excitations,
having thus a significant effect on its dynamics at a time scale comparable to the natural time period
of the system. Hence, the time scales are defined as:

T,=et (3-79)

with n=0,1,2,..., To>T;>T,>..>T, and Ty=t being the “slow” time while T;, T, ... T,, being the
variables of the “fast” time. In order to understand the meaning of “slow” and “fast” vibrations, two
typical dynamic response diagrams are shown in Figure 3-28, where the “slow” and “fast” components
of the response are shown. In case the dynamic response of a system consists of “slow” and “fast”
components, the “fast” oscillation is embounded by a “slow” envelope.

w_ slow w_ slow
component - component

,AI\M AI\UA};HA\’IQJ\U/\ Vﬂ ,t WVAUAV(\VAUAUHU”U”VA f\Uf\VI\VAU U/\U/\f\/\“l\vf\ylxvﬂv |

———s

u u fast ) A w a fast
. component 4 component
@) (b)

Figure 3-28: “Slow” and “fast” oscillations: (a) dynamic response consisting of two different frequencies,
(b) dynamic response of a damped system

It is assumed that the solution of the equation of motion, described by Eq. (3-74), can be expressed
as:
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W(t,8)=W0(T0,T1,T2. . .)+€W1(T0,T1,T2. . .)+€2W2(T0,T1,T2. . .)+. o

(3-80)

For this investigation, the analysis will be carried out to O(g?), thus only the time scales T, and T; are
introduced. The solution is separated into “slow” components referring to the time T, and “fast”

components referring to the time T;.

W(t,€)=W0(T0,T1...)+EW1(T(),T1...)+... where T0=t, T1=€t, (3'81)
The time derivatives are expressed as:
d df, d dT; d
—=———+—=—+..=Djy +€D; +...
dt dt dT, dt dT, 0=
d2 (3-82)
e D3 +€DyD; + sZ(Df + £D0D2)+
where
o(e)
D =—=,k=0,1,... -
k(®) o, (3-83)
Substituting the series expression into Eq. (3-74) yields:
d2
F[wO(T(,,Tl,...) +8W; (To, Ty )+ +
+ Zsu%[wo(To,Tl,...) +eW(Ty, Ty,ee) + ]+
+ (1)50 [WO (TO 12 Tl ,...) + EWl (TO 7 Tl ,...) + ...]+ (3'84)
+€a[Wo (Tg, Tyyeer) + €W, (T, Typen) + ... =Pcos(Qt) =
= D3 (Wq + €Wy +...) +26DgD; (Wq +...) + 26D (Wg +.00) + v +
+ W2 (Wg +EW; +...) + QW3 +... = P cos(Qt)
Equating coefficients of like powers of €, one obtains:
O(%): D3w, +w2yw, = P cos(Qt) (3-85)
0(81): D(Z)Wl + (1)§0W1 = —2DOD1W0 - 2|JDOW0 - an (3-86)
The first equation has the following solution ([3-36] and [3-37]):
Wo(To, Tp) = A(T;)ed®= 4 A(T, )e =T 4 AeiTo 1 pe o 4 cc (3-87)
where A(T,) is an undetermined function for now and:
1 1
i) o
Substituting the expression of the solution, Eq. (3-86) becomes:
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D(%W1 + wgoW1 =

= [2jw,o(D;A + HA) + 30A%A + 6aAN Je ¥ To

— (2JQuA + 3aA® + 6aAAN)e T (3-89)
_ G{A3e3jw20T0 + A3e3jQTO + 3A2Aej(2wzo+Q)T0 + 3K2/\ej(9_2mZ°)T° n

+ 3N AeIP2+00)To | 3A2 IR0 00)To }+ cc

The first term, which has the exponent jw,o Ty, increases with time without bounds. Terms that grow
indefinitely with time are referred to as secular terms. In the above equation there are terms that can
be secular when the loading frequency is very small Q=0(€) or when there is a secondary resonance,
W~ (Mwy+nQ), with |[m|+|n|=3. In the case of non-resonant conditions, when the loading frequency
Q is away from 0, 3w,, Wy/3, the first term is the only secular term and it must be eliminated
because the exact solution remains bounded at all times ([3-38] and [3-39]), due to the damping and
the nonlinearity. Thus, we set:

2jw,o (DA + pA) + 30A%A + 60AN? =0 (3-90)
Assuming that the function A(T,) is expressed as:

a(Ty) - a(Ty) -
A(T;) = (21) e®(M) 3nd A(T,) = (zl)e iB(Ty) (3-91)

where a, B are real amplitude and phase of the displacement, respectively. If the above expressions
are substituted into Eq. (3-90), the following equation is obtained:

. ' _ 3 _
ijzo(% e® 4 J'B’%eJB + u%elﬁj + 30(3 e® +3gan’e® =0 =

3
= [jwzoa' —W,0B'a+ jw,gla + 30@} + 3aa/? Jejﬁ 0= (3-92)
a 3
= jw,pa’ — w,B'a + jw,oHa + 30(5) +3aaA? =0

Separating the real and imaginary parts gives the following set of differential equations:

(a): @' =-pa=a=age ™

3 2T, 2
(0): 2927 _ B+ 30aN2 0 = pr = | 20208 1 | 30A7 |
8('020 OF%)
3-93
3aA? 3aaze®™ 1 (3-93)
OF%) 80)20 (_2“)
3an? 3aaZe 2T
= B=Bg + T - 0
W50 16“‘-020

Substituting the above expressions, the response of the nonlinear system, defined by Eq. (3-87), is
expressed as:
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. N a _ - . .
w(t) = A(T;)el*0™ + Ae’M0 4 cc = 7°e o B(T)glonTo | A@To 4 cc =

3eaN? ¢ 3a
W50 16“('020

_ —ept
=age cos(mzot + (3-94)

age M LB, + O(Ez)] +
1
+ P{ﬁJ cos Qt + 0O(g)
Wy — R

where a; and By are the initial amplitude and phase of the displacement, respectively. Using the
Maclaurin series [3-31] for the exponential function e**=1-2uet, keeping only the first term, because
the parameter € and the damping coefficient y are very small, the above equation becomes:

3eaN’  3eqa}
(OF%) 8('020

_ 3a
w(t) = a,e ® cos| | W, + t— a2 +B, +0(e?) | +
(t)=a K 20 } Tonw,y 0 Bo +0(e7)

(3-95)

+ P{%) cos Qt + O(g)
w5 —Q

3.3.2 Forced vibration of the system — Fundamental resonance

In case of fundamental resonance the excitation is assumed to be weak, in order to prove that a weak
excitation produces large-scale oscillations. The parameter € is introduced again, defining the small
amplitude of the load:

Po=gpo, P=Po/M=gpo/M=¢p with p=0(1) (3-96)

The loading frequency is close to the eigenfrequency, Q=w,. A small detuning parameter o is
introduced to express the proximity of the loading frequency to w,q, such that:

Q=w,+£0 (3-97)
with 0=0(1). Hence, the equation of motion, based on Eq. (3-74), will be:

W + 2EpW + 02w + gaw?> = £p cos(w,,t + £0t) (3-98)
Expressing the solution as before:

W(t,€)=wo(To, T1)+ew(To, T1)+... (3-99)

where To=t, T;=¢t, ..., applying the method of multiple scales and collecting like-terms in €, one
obtains:

O(%): Diw, +wZw, =0 (3-100)

O(e!): Daw; + W2yW; = —2DyD;Wo — 2uDgWo — QW3 + %ej(wZ"T“*OTl) (3-101)
The solution of the Eqg. (3-100), is:

Wo(To, Ty) = A(Ty)e0 ™0 4+ A(T, )e @0 (3-102)

Substituting the above solution into Eq. (3-101), it becomes:
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D%W1 + 03§0W1 =

= -2jw,o (DA + UA)eijOTO _ G(A3e3jwz0T0 + 3A2e2i920To pg=3020To )+ Bej(mon0+0T1) —
2

(3-103)
- _(2jw20 (D1A +pA) + 30A%A + %ej‘ﬂl jej“’wTo —aA3euTo
To eliminate the first term, which is a secular term, requires that:
2,5 (D;A + PA) + 3aA%A — %ejﬂl -0 (3-104)
The function A(T,) is assumed to be expressed as:
A(Ty) = 2010 eBM) and A(Ty) = 201 e T (3-105)

where a, B are real amplitude and phase of the displacement, respectively. Substituting into Eq.
(3-104) and using the Euler formula [3-31] for the exponential function e*=cosx+jsinx, the following
equation is obtained:

! i 1 : 3 . -
ijzo(%elﬁ +J'I3';eJB +uge13j+3a(;j el —%eJ"Tl 0=

3
= (J"Dzoa' _("3203’a + jwzoua)ejB + 30(;} ejB —%ej‘ﬂl =0=>

3 (3-106)
= [J‘wzoa’ ~ W, oB'a+ jo,oHa + 30(3 —%el("TfB) ]ejﬁ =0=
a)
= jw,pa’ — ,oB'a + jo ,mHa + 3a(§j - %(cos(c;T1 —B) + jsin(aT; -B))=0
Separating the real and imaginary parts, a new set of differential equations can be provided:
(@): @' =-pa+ P sin(oT, —B)
2w,
a)’ P 303 p (3-107)
b): 3a = | —-aw,B —=cos(oT; -B)=0=af' =——- cos(aT; —
(: 30| 3|~ 20,0~ B cos(aT, ) =0 ' - 322 Pcos(oT, -p)
Setting:
y=0T:-B (3-108)
the above equations are transformed into an autonomous set of ordinary differential equations:
o p . o 3aa>  p
(@): @' =—-pa+ siny, (b): ay’' =ac - + cosy (3-109)
20, 8w,y 2w,
Steady-state motions require that:
a'=y'=0 (3-110)

and Egs. (3-109) become:
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3
P_siny = pa, (b): ag_298" ___P
0P 80‘)20 2('020

(a):

cosy (3-111)

The peak amplitude of the free oscillation term is given for siny=1:

P

ap = -112
P 2|-K-'~)ZO (3 )
and the corresponding value of the detuning o is calculated for cosy=0:
3aa? 3ap2
Op =—— P (3-113)

8w, 32p%wd

If the peak amplitude of the free oscillation is set to be equal to the maximum permissible deflection
Wmax, €Xpressed by Eqg. (3-48) and plotted in Figure 3-7, the maximum permissible dynamic load Py,
which causes the maximum deflection, can be calculated from Eq. (3-112), taking into account Eg.
(3-96). The ratio of the dynamic load P,, which causes the maximum deflection, over the
corresponding static one Py, illustrated in Figure 3-8, with respect to the sag-to-span ratio, for
damping ratios {=0.5% and (=2%, is shown in Figure 3-29. This ratio is very small for both damping
ratios. As the damping ratio { decreases, the maximum permissible dynamic load also decreases. As
the sag-to-span ratio becomes larger and the system becomes stiffer the maximum permissible
dynamic load increases.

0.2 7 Fundamental resonance

——(=2%

—=—7=0.5%

0.1 -

PO/Pmax

0.0 0.1 0.2 0.3 0.4 0.5
f/L

Figure 3-29: Variation of the ratio of the maximum dynamic load P, over the static one (Pmay), With respect to the
sag-to-span ratio, for the case of fundamental resonance

The frequency-amplitude relation for fundamental resonance is expressed as:

a0_3aa3 2+(ua)2— P’ = 0_3oa2 2+|.|2 a? = P’ 3-114
80,0 4w 8w, 402, (3-114)

The phase of the periodic solution is computed as:

2
siny = 2920 and tany - —%
p - 3aa (3-115)
8w,q

From the above formulae it can be noted that the phase depends not only on the loading frequency,
the damping and the frequency of the system, as in linear systems, but also on the response
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amplitude. If y=p=0, one obtains the amplitude-frequency relation for free oscillation of undamped,
unforced oscillator, which represents the backbone curve of the system:

2
a=0 or o—giao =O:>a=11/803% (3-116)
Z

If p,p#0 the frequency — response curves are obtained in the form:

2 2

3aa
0= + P2 (3-117)

8(-020 B 40.)5062

The backbone curve represents either the equilibrium state (a=0) or the free vibrations of the
undamped system about the equilibrium state (a#0, pu=p=0), while any other response curve
(a,d,p#0) represents perturbations from the unforced state. It should be noted that there exist
frequency ranges for which only one solution is possible and other frequency ranges where three
solutions exist. This occurs due to the bending of the response curve. In this case, the initial
conditions determine which of these three responses actually develops. Only two of them are stable
solutions and the third is an unstable one. The multiple co-existing solutions lead to jump phenomena
[3-40], creating nonlinear hysteresis loops. In linear systems, there are no hysteresis loops and the
response does not depend on the initial conditions. Hence, only one solution exists for a given loading
frequency. Typical frequency — response curves and phase diagrams for linear and nonlinear systems
are shown in Figure 3-30 and Figure 3-31, respectively. The definition of the hysteresis loop due to
the jump phenomenon is shown in Figure 3-32.

lal 1 la| 1

backbone curve
p=p=0

©) (b)

Figure 3-30: Fundamental resonance: Amplitude |a| vs. frequency detuning o for (a) linear system, (b) nonlinear
system
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= 6 .
0 o] o
@) (b)
Figure 3-31: Fundamental resonance: Phase y vs. frequency detuning o for (a) linear system, (b) nonlinear
system
lal 7 hysteresis Y| hysteresis
loop loop
jump
&
o
(a) (b)

Figure 3-32: Jump phenomenon (a) amplitude |a| vs. frequency detuning o, (b) phase y vs. frequency detuning o

The influence of the sag-to-span ratio on the response curve of the simple cable net is shown in
Figure 3-33a for three different ratios, f/L=1/10, f/L=1/20 and f/L=1/35 for the same damping ratio
and load amplitude. In this case, the cable span L, the Young modulus E, the cable diameter, the
concentrated mass of the central node and the initial strain are considered the same for all three sag-
to-span ratios, meaning that only the eigenfrequency changes (Eq. (3-78)) and not the coefficient ea
of the nonlinear term, expressed by Eq. (3-76). As the sag-to-span ratio increases, the eigenfrequency
increases, representing deeper and stiffer cable nets, the backbone curve tends to be linear and the
response curves approach the backbone, predicting a more linear behaviour. Keeping constant the
damping ratio, the load amplitude, the Young modulus, the sag-to-span ratio, equal to 1/20, the
concentrated mass and the initial strain and changing the cable span L and the cable diameter so that
the eigenfrequency remains the same and only the coefficient of the nonlinear term ea changes, the
diagrams of the response curves are illustrated in Figure 3-33b for three different cable spans,
L=50m, L=100m and L=200m. As the cable span increases, the coefficient ea decreases, reducing the
influence of the nonlinear term on the response of the net and leading to a more linear behaviour. For
values of the frequency detuning o away from zero, the response does not depend on the coefficient
€a, but only on the eigenfrequency.
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El lal 7 - 1/
f/L=1/20 L=100m
\
f/L=1/10 L=50m
\ L=200m—— /
f/L=1/35
0 [0} 0 o
(a) (b)

Figure 3-33: Fundamental resonance: Amplitude |a| vs. frequency detuning o for (a) different sag-to-span ratios
f/L, (b) different spans L

The response of the nonlinear system at steady state is obtained by Eqg. (3-99) taking into account
Egs. (3-102), (3-105) and (3-108):
w(t) = wg +O(g) = Ae’®»™ 1 O(e) = _a('zl'l) elP(MelnTo 1 O(e) =

=acos(w, Ty +0T; —y) + O(€) = acos(w,ot + €0t — y) + O(€) = (3-118)

=acos(Qt —y) + 0(g)

The phase y can be calculated from Eq. (3-115) and the amplitude of the oscillation a by Eq. (3-117).
The response has the same frequency with the excitation, which means that the term “fundamental
resonance” can be used.

3.3.3 Forced vibration of the system — Superharmonic resonance

Considering a loading frequency Q=w,o/3, a detuning parameter g, such that:
3Q=wy,+e0,  with 0=0(1) (3-119)

and taking into consideration that in Eq. (3-89) the term proportional to €% is another secular term,
we eliminate all secular terms by setting:

2j0,0 (DA + PA) + 30A%A + 6aAN? + aN3e® o = (3-120)
Setting:

a(Ty) ;5 ~ a(Ty) -
A(T,) = (zl)eJB(T1) and A(Ty) = (zl)e iB(Ty) (3-121)

and substituting into (3-120), the following equation is obtained:
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2jw,| S e® 1+ g 2e® 2 e |30 2| e 1 30an2e® + a0 =
?\ 2 2 2 2

3
= ijzoa' — W,oB'a + jwoHa + 30(3) +3aaN? Jejﬁ +aNe =0 =
2 (3-122)
3
= jw,pa’ — W,B'a + jw,oHa + 30@) +3aah® +

+aN3(cos(aT, —B) + jsin(aT, —B)) =0

Separating the real and imaginary parts of the above equation and setting y=0T;-B, a system of
differential equations is derived:

3

(@): @' = —pa- ah

siny (3-123)
z0
30a3 , 2 3
(b): 3 —aw,oB’'+30aN” +aN’ cosy =0 =
=alo-y')= 302° + 30a/° + on’ cosy =
80)20 (OF%) (0P (3-124)
, ( 3aA2J 3aa® oA}
=ay' =alo- - - cosy
Wy 8('020 W40

Steady-state motions require that a’=y'=0, and Eqgs. (3-123) and (3-124) become:

3

an’ .
(@): —pa= siny (3-125)
z0
b): [o- 30\’ 3aa’ s an’ cosy
. 0P 80)20 W4 (3-126)

The phase of the periodic solution is computed as:

M
2 2

o 3aA”  3aa (3-127)
QP 80)20

tany = -

The peak amplitude of the free oscillation term is calculated from Eq. (3-125), for siny=-1:

_aN
p

a. =
HW 4o

(3-128)

which depends on the cubic term coefficient a. The corresponding value of the frequency detuning o
is obtained by Eq. (3-126) for cosy=0:

o, =3[y, @A 3-129
Py 8ulws (3-129)

The frequency-amplitude relation for the superharmonic resonance is expressed as:
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W4 8‘020

2
3aA’  3aa’ 5, a?A® 30N>  3aa’ a’lne o,
o- +u° Ja =0= + + - (3-130)

) “172 .2
0-)20 (1)20 80)20 (J.)Zoa

A typical frequency — response curve for the case of superharmonic resonance is illustrated in Figure
3-34. When conditions for superharmonic resonance hold, for excitations of large amplitude and
loading frequency approximately equal to w,o/3, the amplitude of the oscillation does not decay to
zero, in spite of the presence of damping, in contrast to linear systems. In addition, a hardening
response of the system leads to the bending of the response curve, hysteresis loops and jump
phenomena.

lal

hysteresis
loop

jump

——

0 o

Figure 3-34: Superharmonic resonance: Amplitude |a| vs. frequency detuning ¢

The response of the nonlinear system at steady state, defined by Eq. (3-87), is expressed as:

w(t) = acos(w,t +Bg ) + P[%} cos Qt + O(g) =
Wy — 2

= W(t) = acos(w,ot + €0t —yg )+ P[Z;sz st = (-131)
Wz —

= w(t) = acos(3Qt -y, ) + P(%} cos Qt + O(€)

‘Dgo -

having a term with the same frequency as the excitation and a free oscillation term whose frequency
is exactly three times the frequency of the excitation. The amplitude of the oscillation a can be
calculated from Eq. (3-130). The maximum amplitude is equal to:

_an
(D%O - QZ HW 4o

maxw = a, + P[ + 2N (3-132)

where A is expressed by Eq. (3-88). Setting the maximum amplitude equal to the maximum
permissible deflection w.,, as defined by Eq. (3-48) and illustrated in Figure 3-7, Eq. (3-132)
becomes:

an’
IJ(Dzo

+ 2N = Way (3-133)

which has one real root and two non real complex conjugate roots for A. The real root is:
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G Ao,
0 = 5q G (3-134)
where
5 1/3
G = | patw,, [108wmax +12J 96U +081°Wmax ] (3-135)
The load amplitude, corresponding to A, according to Eq. (3-88), is:
Po = 2M-Aq - [0, - ©?) (3-136)
with
1 1 3an;, a’nd
Q== +0,)==|W, + 1+ 3-137
3 ( z0 p) 3 l: z0 (J.)ZO [ 8“2(,050 ( )

The ratio of the dynamic load Py, which causes the maximum deflection, over the corresponding static
one Pnay, illustrated in Figure 3-8, with respect to the sag-to-span ratio, for damping ratios (=0.5%
and (=2%, is shown in Figure 3-35.

4 Superharmonic resonance
——{(=0.5% ——(=2%
= 27
[a W
0 T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5
f/L

Figure 3-35: Variation of the ratio of the maximum permissible dynamic load Py over the maximum permissible
static load Py, with respect to the sag-to-span ratio, for the case of superharmonic resonance

In this case, the maximum permissible dynamic load, for sag/span ratios larger than f/L=0.08 for
(=2% and f/L=0.10 for {(=0.5%, is larger than the static one (Figure 3-36), meaning that only for
small sag-to-span ratios and for dynamic load amplitudes smaller but near the maximum permissible
static loads, the superharmonic resonance may cause cable failure. This means that for large sag-to-
span ratios, corresponding to very deep cable nets, static loading is more crucial than dynamic one
under superharmonic resonance.
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2 7 Superharmonic resonance

——(=0.5% ——0{=2%

0.00 0.02 0.04 0.06 0.08 0.10
f/L

Figure 3-36: Variation of the ratio of the maximum dynamic load P, over the maximum static load P,y with
respect to the sag-to-span ratio between the range of 0.03 and 0.10, for the case of superharmonic resonance

3.3.4 Forced vibration of the system — Subharmonic resonance
Considering now a loading frequency Q=3w,q and a detuning parameter g, such that:
Q=3w,+e0, with 0=0(1) (3-138)

el(@-20

in Eq. (3-89) the term proportional to =)o js another secular term, which can be written as

el(@0To+0T) _ gJ020TogdoT  Hence, eliminating all secular terms:

2jw,0 (D1 A + PA) + 3aA%A + 6aAN? + 3aA%Ae’ = 0 (3-139)
and setting:
a(Ty) — a(Ty)
ACT,) = (21) BT and A(T,) = (21) o-IB(T) (3-140)

Eqg. (3-139) gives the following expression:

4 . . . 3 . . — .
21'(0zo(%e”3 + J'B';GJB + ngjﬁj + 30(%} e® + 3can?e® 1+ 3aA%Ne =0 =
a\’ o 303° _ oig i
= [J'wzoa’ — w,oB'a+ jo,gpa + 30[Ej + 3aaN? ]eJB + Te*ZJB/\eJOTI -0=>
(3-141)

3
= jw,pa’ — W,oB'a+ jw,oHa + 30[%) +3aaA® +

; % A(cos(aT, — 3B) + jsin(aT, — 38)) = 0

Separating the real and imaginary parts and setting y=0T;-3p3, the following differential equations are
obtained:

3aa’A

z0

(a): @' =—pa- siny (3-142)

3aa’
8

2
(b): —aw,oB' + 3aaA® + 30: Acosy =0 = (3-143)
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=—(o-Y) = cosy =
3 ( V) 8w, W, 4w, Y
, 9aA’ | 9ada® 9aa’A
= ay'=ao- - - cosy
mzo 8(’320 4“)20

The steady-state motions correspond to a’=y’=0, and Eq. (3-142) and (3-143) become:

(@) _pa- 3aa’A siny, (b: | o - 9aN°  9aa’ o 9aa’A cosy (3-144)
4(’)20 ' W4 80)20 40')20
The frequency-amplitude relation for the subharmonic resonance is expressed as:
2
o 9aN°  9aa’ vou fa? - 81a%N? 24 3145
OF%) 80*)20 16(.030 ( ) )

Eg. (3-145) has a double zero solution, called trivial solution (a=0) and two non-zero ones, denoted
as nontrivial ones, defined as:

9aA’>  9a 2 81a%A?
o- - a’| +9u° = —a’
16wz

W50 8(‘)20
51\2 2 2 252
:{0_90/\ ] { 9a azj _2[0_90/\ J 9,2, g BN o
O 8w g W, ) 8wy 16wy (3-146)

9a )’ 81a2A2 9aA? ) 18a 9aA? )’
:( Ja"— S +|0- aZ+|o-— +9p2 =0=
80)20 16wy, 0P 8(1)20 Wz

—a’=c+tvc’-s

where

2

64w> 2 8

s = LZZO A 9u? | and c = [oﬂ—GAZJ (3-147)
81a W50 9a

One of the two nontrivial solutions is stable and the other one is unstable. For nontrivial solutions, it is

required that, ¢>0 and c?>>s. Thus, it must be satisfied that:

a) for a given o

63a
c?>s=0>

(3-148)
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b) for a given A

2 2 2 2
c? ZS:[M—NO—GAZJ 5 84wy | 90A +9u° | =
9a 81a? Wy

2 2 22 2
= 48w, A2 4 36A% > 64(0220 . 9aN . 9an . 64(1)220 2 =
a 81a W50 W, 9a (3-149)
2
3290 a2 36pt 5 [ 2890 p2  gape |, B0 2
9a 9a 9a?
2
=02 63 /\2+2w20”—
8w, a A2

The above conditions define a region in which subharmonic solutions appear. This region and a typical
frequency — response curve for the case of subharmonic resonance are illustrated in Figure 3-37.

A A la] -
subharmonic stable
solutions solution
63a A = l

4(‘)ZO|~-|

- unstable
nontrivial solution
solutions

jump

(o trivial solution a=0 o

(a (b)

Figure 3-37: Subharmonic resonance: (a) region of subharmonic solutions, (b) Amplitude |a]| vs. frequency
detuning o

The initial conditions define the response amplitude of the system. For the trivial solution a=0, the

steady-state response depends only on the external load:
w(t) =P _r cos Qt + O(g) 3-150
o2 (3-150)

z0 —

while for the non-trivial stable solution of a the response of the nonlinear system at steady state is:

w(t) = acos(w,ot + B )+ P{%) cos Qt + O(g) =
Wy — R

:w(t):acos(3wzot+€0t_Y°J+P 21 - |cos Qt + O(e) = (3-151)
3 sz_Q

:w(t):acos(Qt_Y°j+P 21 - |cos Qt + O(e)
3 sz_Q

having a term with the same frequency as the excitation and a free oscillation term whose frequency
is exactly one-third the frequency of the excitation. The existence of multiple solutions, depending on
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the initial conditions, renders the dynamic behaviour of the system unpredictable and in some cases
with catastrophic results.
3.3.5 Free vibration of the system
If y=p=0 Eq. (3-107) becomes:
a=0=a=3ag

3aa?2 3aa 3-152
8 = B= 0T 4B ( )
wzo 80)20

3
o{3) -0

where a, and B, are constants, defined by the initial conditions. Hence, the function A(T;), defined by
Eqg. (3-105), becomes:

A(Ty) = —e p{ gmaj T+ ]'Bo} and A(T,) = %GXD{—J' Ziaj T - J'Bo} (3-153)
For p=p=0, from Eq. (3-117):
3aa’
= 8w, (3-154)
thus:
Q-w,+€ 222‘2 (3-155)

and combining the previous results of Egs. (3-99), (3-102), (3-105), (3-153) and (3-155), one obtains
the periodic solution:

ETo +JBo + szoTol +

W(t e)—70 {
2
ag

(3-156)

+ %’exp{ €Ty —iBg — jszTol +0(g) =

20
w(t, €) = a, cos(Qt +Bg) + O(€)

3.3.6 Stability of the system

In order to investigate the stability of the system, we set a=ag+a; and y=yq+y; with |a;|<<]|ay| and
lyil<<|yol. Assuming that a;y;=0, siny;=y;, cosy;=1, Eqgs. (3-109) will be:

(a): @y +aj = —(ag +a;) + Z(E sin(vo + V) =

z0

= ap+a; =-H@y +a;)+ (sinyy +Y;COSYq) = (3-157)

z0

= aj =—-{a; +

Y1 COSYq
z0
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3a(a, +a,)° p
b): (y; ‘Y=0- cos
(b): (vo +VY1) 8w, 20,0(ag +ay) (Yo +VY1)
2
:>Y6+Y'1=0—3G(a0+2a0a1)+ p

COSYq4 — Y4 SiN
8w J( Yo —YiSinyg) =

a
2W,0a0| 1+ =
do

=>Yp+V1=0-

2
3a(@; +2303,) , P (1—a—1](cosy0—ylsiny0):

8w, 2w 03, ag
3aaya . a
oy =808 Py siny, -—P_cosy, =
1 4 2 1 0 2 0
W4 Wz0dp w087
., _ | 3aag p in
:>Y1——4 - 5 C0SYq a1—2 Y1SINYo
Wz  2w,ag 2090

Using Egs. (3-111), the above expressions become:

3aa3 o 9aa,
a): aj =—Ma; —|ayo - ,(b): yi = —- a; —
(@) aj Hay [ 0 80, ]Y1 (b): vi (ao szoj 1 —HYy

The above linear system of first order differential equations can be written as:

[ 3aa8]

) , —H -390 — 8w a

X) =[A1(X):[j}] - 20 ( lj
1

[ o 9aa0] Vi
—- M
a; 8w,

The homogeneous solutions can be determined as:

a;=AeM and y,=reM
which have to satisfy Eq. (3-160):
[AleM - A[IleM =0=
3aa;
—H-=A ~la,0-—~
N {311 -Aap [ 80,0 ] -0

dy  ap —)\} - 0 9aa,
3, 8wy,

The above system has non-trivial solutions if and only if det([A]-A[1])=0, thus:

3
—p-A —[aoo—zaao]
D20 ) _ 0= N _(ay +ay)\+det[A] =0 =
[ o 9aa0j
— _ _u_)\
ap 8wy
2 2
= N 4+ 2\u + p? +(0_3aa0 J[O_%ao]zo
80320 8("~)20

The above expression can be written as:

(3-158)

(3-159)

(3-160)

(3-161)

(3-162)

(3-163)
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M —rA+q=0 with A=r> —4q (3-164)

where:

3aa3 9aa?
r=(aj;+ax)=-24 and q =det[A]=p® +|0 -9 | g0 .
(a11t+ax)=-2y q [A]l=p +[ 80,0 J{ 80,0 (3-165)

If A; and A, are the eigenvalues of A, then Eqg. (3-164) can be written as:
N —tA+g=A=A)DA=A) =N —(A; + M)A+ A, (3-166)

Hence, r is the sum of the eigenvalues, q is the product and A the discriminant. The following criteria
can be set regarding critical points:

— Node: if g>0 and A>0

— Saddle: if g<0

— Centre: if r=0 and g>0

— Spiral: if r+0 and A<0

A point Ky is called stable critical point if all trajectories that at some instant are sufficiently close to K,

remain close to K; at all future times. It is called a stable and attractive critical point if it is stable and
every trajectory approaches Ky as t — o . It is called unstable if it is not stable. A critical point Kq is:

— Stable and attractive: if r<0 and g>0

— Stable: if r<0 and g>0
— Unstable: if r>0 or <0

according to the stability criteria for critical points ([3-31] and [3-40]). The above criteria are
summarised in the chart of Figure 3-38:

F

A0
/7 Unstable Nodes Degenerate  p=q
4 ;
£ Unstable
2
&=
[
—
=
=
o
I
—_ o
Unstable Spirals ]
e
= q
[
[
e
&
=
2
=
©
]
=
=
3 Degenerate
Stable| Lines
A
- s =0
Stable Hod
A 4 abe Todes ASD Stable Hodes

Figure 3-38: Stability chart (from [3-41])
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Provided that r=-2p, which means that it is always r<0 with A;+A,<0, in order to have stability, both
eigenvalues must have non-positive real parts, thus q=A;A,>0. Thus, the steady-state motions will be
unstable only if:

3aal 9aaj

2 0 0

= +|10— o - 0 -
ik ( 8(|)20 J[ 8(|)20 J ) (3-167)

For pu=0, the instability region is defined by two curves. The first one is the backbone curve,
expressed as:

0= 302; 3-168
B0 (3-168)
and the second one is defined as:
o= 9aa; 3-169
- 8w, (3-169)
The unstable solutions are for values of frequency detuning o:
3aa} o 9aa] 3170
8w, 8w, (3-170)
In this case, the diagram of the steady-state response is illustrated in Figure 3-39.
lal instability lal -
region p=0
\ unstable
stab_le ' solution
solution
0 o 0 o
(a) (b)

Figure 3-39: (a) Instability region, (b) Stable and unstable solutions without damping

For pu#0, the instability region is defined again by two curves. The first one is expressed as:

6aa? 3022 )’
o=—394 [—OJ —p? (3-171)
8w, 8w,

while the second one is:
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6aa3 3aa3 ’ 5
O=——|——| - 3-172
80)20 [8(‘)20 ] " ( )

Unstable solutions appear for values of frequency detuning o:

6aa?2 3022 )’ 6aa? 3022 )’
—0 == —p? <o« —2 4 || =2 —p? (3-173)
80-)20 80320 8“)10 80320

In this case, the diagram of the steady-state response is illustrated in Figure 3-40, in which it is shown
how the damping influences the instability region, by restraining it.

El lal -
instability
,H#=0
region PH
bl \ unstable
sta € : solution
solution

(a) (b)

Figure 3-40: (a) Instability region, (b) Stable and unstable solutions with damping

3.3.7 Example of SDOF cable net

3.3.7.1. Eigenfrequency

In order to quantify the above conclusions, the same example described in section 3.2.6 is used. The
stiffness coefficient K, calculated according to Eq. (3-67), is:

2 2
Km:ﬂ.(sf_+2N_o No f

- — | =22.51kN/m
L L2 EA EA LZ} /

and the corresponding natural frequency:

W, = JKLO _ 2320 _43195ec
M 0.131

The coefficient of the nonlinear cubic term of the equation of motion of Eq. (3-76) is equal to:

ea=20FA _ 15 66m2 sec? (3-174)

VIERE
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3.3.7.2. Fundamental resonance

Three loading amplitudes are considered, equal to Po=0.1kN, 0.3kN and 0.5kN. These loads are small
with respect to the load that causes tensile failure of the cables of an undamped system in
fundamental resonant conditions, equal to 1.30kN, as shown in section 3.2.6.4. The frequency-
amplitude relation for the fundamental resonance (Q=w,y), calculated from Eq. (3-114), and the
phase of the periodic solution, computed according to Eq. (3-115), are plotted for two damping ratios,
equal to {=0.5% or u=0.066 (Figure 3-41) and (=2% or €u=0.264 (Figure 3-42), which are common
values for cable structures. In these diagrams it can be noted that as the damping ratio decreases and
the loading amplitude increases, not only the steady-state amplitude increases, but also the bending
of the response curve. In addition, the phase y depends on the loading amplitude, something that

does not occur in linear systems.
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Figure 3-41: Fundamental resonance for damping ratio {=0.5% (a) amplitude |a| vs. frequency detuning o,
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Figure 3-42: Fundamental resonance for damping ratio (=2% (a) amplitude |a| vs. frequency detuning o,

(b) phase y vs. frequency detuning €o

Neglecting the nonlinear cubic term of the equation of motion, the corresponding frequency-amplitude
diagrams of the equation of motion describing a linear system, are shown in Figure 3-43, while the
phase of the periodic solution with respect of the frequency detuning is plotted in Figure 3-44, which
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does not depend on the load amplitude. Comparing the two groups of diagrams, one can mention
that, for large values of damping ratios, the nonlinear response of the cable net approaches the linear
one.
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Figure 3-43: Fundamental resonance for the linear system: Amplitude |a| vs. frequency detuning o,
(a) for damping ratio =0.5%, (b) for damping ratio (=2%
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Figure 3-44: Fundamental resonance for the linear system: phase y vs. frequency detuning o

If a damping ratio equal to (=0.5% and a loading amplitude Py=0.5kN are considered, for a frequency
detuning equal to £0=0.5sec?, according to Eq. (3-117), one unstable steady-state response
amplitude due to the cubic term is calculated as a=1.02m as well as two stable ones, a=0.31m
(denoted as stable 1) and a=1.28m (denoted as stable 2). Considering instead zero frequency
detuning (e0=0.0sec), the steady-state response amplitude is equal to a=0.72m. The phase of the
periodic solution for the stable solutions is y=0.11n for e5=0.0sec, y=0.20n for stable solution 1 and
y=0.95n for stable solution 2 (Figure 3-45).
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Figure 3-45: Fundamental resonance for damping ratio (=0.5% and loading amplitude Py=0.5kN (a) amplitude
|a] vs. frequency detuning €0, (b) phase y vs. frequency detuning o

The solution of the equation of motion for the case of fundamental resonance is expressed by Eq.
(3-118), where the maximum steady-state amplitude of the vertical displacement can be calculated

for the above cases, as:

£0=0.5sec’?, a=0.31m (stable 1) (3-175)
£0=0.5sec’’, a=1.28m (stable 2) (3-176)
€0=0.0sec?, a=0.72m (3-177)

The time-history diagram of the steady-state vertical displacement, for both stable solutions with
frequency detuning 0=0.5sec’’, is shown in Figure 3-46 and for zero frequency detuning in Figure
3-47.
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Figure 3-46: Fundamental resonance: Time-history diagram of the steady-state response for frequency detuning
€0=0.5sec’!, damping ratio {=0.5% and loading amplitude P,=0.5kN: (a) stable solution 1, (b) stable solution 2
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Figure 3-47: Fundamental resonance: Time-history diagram of the steady-state response for zero frequency
detuning (£0=0.0sec), damping ratio =0.5% and loading amplitude Py=0.5kN

The minimum values of the steady-state displacements for these three stable solutions can be
obtained by solving numerically the equation of motion, described by Eq. (3-74), using MATLAB. At
the end of the calculation, the system vibrates with the steady-state amplitudes. In Figure 3-48 the
time-history diagram of the central node vertical displacement is illustrated, for frequency detuning
£0=0.5sec’’, damping ratio =0.5% and loading amplitude P,=0.5kN. For the stable solution 1, zero
initial conditions are taken into account, while the stable solution 2 is realised considering initial
velocity 20m/sec. In Figure 3-49, the time-history diagram of the vertical displacement is plotted, for
zero frequency detuning, damping ratio (=0.5%, loading amplitude Py=0.5kN and zero initial
conditions.
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Figure 3-48: Fundamental resonance: Time-history diagram of the central node displacement for frequency
detuning 0=0.5sec™, damping ratio =0.5% and loading amplitude P,=0.5kN for (a) zero initial conditions
(stable solution 1), (b) initial velocity 20m/sec (stable solution 2)
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Figure 3-49: Fundamental resonance: Time-history diagram of the central node displacement for zero frequency
detuning (eo=0.0sec!), damping ratio =0.5% and loading amplitude P,=0.5kN
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The dependence of the response amplitude on the initial conditions, the bending of the response
curve and the jump phenomena, confirmed analytically and numerically, prove that the simple cable
net, when subjected to a harmonic load with frequency close to the natural frequency of the system,
exhibits an intense nonlinear dynamic behaviour.

3.3.7.3. Superharmonic resonance

For damping ratio equal to (=0.5% (gu=0.066) and loading amplitudes P,=8kN, 10kN and 12kN, the
frequency-amplitude relation for the superharmonic resonance (Q=w,y/3) calculated from Eq. (3-130)
is shown in Figure 3-50. These loads are smaller than the one causing failure of the cables of an
undamped system in superharmonic resonant conditions, equal to 19.97kN as shown in section
3.2.6.4 and much smaller than the maximum static load, which is equal to 40.20kN as shown in
section 3.2.6.2. It can be noted that, in case the frequency detuning is small with respect to the
frequency of the system, only large loads, close to the breaking loads, can produce superharmonic
resonance with large response amplitudes. In addition, the larger the load amplitude, the more the
response curve bends.
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Figure 3-50: Superharmonic resonance for damping ratio (=0.5%: (a) amplitude |a| vs. frequency detuning €g,
(b) phase y vs. frequency detuning o

For loading amplitude P,=12kN and zero frequency detuning (0=0.0sec), the steady-state response
amplitude due to the cubic term, is equal to a=0.095m and the phase y=0.08n, while for frequency
detuning £0=0.20sec* a=0.25m and y=0.23n (Figure 3-51).
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Figure 3-51: Superharmonic resonance for (=0.5% and Py=12kN: (a) amplitude |a| vs. frequency detuning o,
(b) phase y vs. frequency detuning €0

The solution of the equation of motion for the case of superharmonic resonance is obtained by Eq.
(3-131), where P=Py/M=91.60m/sec’ and the maximum steady-state amplitude of the vertical
displacement can be calculated as:

€0=0.0sec?, a=0.095m, Q=(w,+£0)/3=(13.19+0.0)/3=4.40sec’’

maxw =a+ _P =0.095 + 91.60(;j =0.69m
w2 - Q2 13.19% - 4.40°
(3-178)
€0=0.20sec?, a=0.25m, Q=(w,+£0)/3=(13.19+0.20)/3=4.46sec’
maxw =a+ P =0.25+ 91.60(;J =0.84m
w2, - Q2 13.192 - 4.46°

The time-history diagram of the steady-state vertical displacement, calculated from Eq. (3-131) is
plotted in Figure 3-52.
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Figure 3-52: Superharmonic resonance: Time-history diagram of the steady-state response for damping ratio
{=0.5%, loading amplitude Po=12kN and (a) zero frequency detuning (5=0.0sec?), (b) €6=0.20sec™*

This steady-state amplitude of the central node deflection is also obtained by solving numerically the
equation of motion using MATLAB. The time-history diagrams of the central node vertical
displacement are illustrated in Figure 3-53 for both frequency detuning values. Although a difference
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is observed between the calculated steady-state amplitudes according to Eq. (3-178) and the ones of
Figure 3-53, arising at 19% for €0=0.0sec’ and at 15% for €0=0.20sec”, the superharmonic
resonance is verified by the significant increase of the response amplitude for this small increase of
the loading frequency.

1.2 1.2 -
0.8 0.8
04 04+
E oo E 00
% 04 = 04
-0.8 -0.8

1.2 4 : : : : . 1.2 4 : : : : .

0 10 20 30 40 50 0 10 20 30 40 50

t (sec) t (sec)
@) (b)

Figure 3-53: Superharmonic resonance: Time-history diagram of the central node displacement for damping ratio
7=0.5%, loading amplitude Po=12kN and (a) zero frequency detuning (0=0.0sec?), (b) 0=0.20sec™*

3.3.7.4. Subharmonic resonance

In case Q~3w,q, for damping ratio equal to (=0.5% (gp=0.066) and (=2% (eu=0.264), the region of
the subharmonic solutions, defined by Eq. (3-148) or (3-149), is shown in Figure 3-54 by means of
the amplitude A and the amplitude a. As the damping ratio increases, the subharmonic region moves
towards larger values of the frequency detuning €o. For larger values of damping ratios, the minimum
load amplitude required for subharmonic conditions is larger, considering the frequency detuning €0
constant. For the case of Q=3w,, (€0=0.0sec™), no subharmonic solutions can be detected.
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Figure 3-54: Subharmonic resonance with (=0.5% and (=2%: (a) response amplitude A vs. frequency detuning
€0, (b) response amplitude a vs. frequency detuning o

Figure 3-55a illustrates the curve that defines the region of the subharmonic solutions, by means of
the load amplitude P, that corresponds to the amplitude A of Figure 3-54a, according to Eq. (3-88)
and taking into account Eq. (3-77). In Figure 3-55b the load Py is plotted with respect to the response
amplitude a. It is worth mentioning that according to the chart of Figure 3-55b, in case a subharmonic
resonance occurs, smaller load amplitudes cause larger response amplitudes. This occurs because,
based on Figure 3-55a, as the load decreases a larger frequency detuning is required in order to have
subharmonic solutions (Figure 3-54b). In addition, as the damping ratio increases the frequency
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detuning that can cause subharmonic resonance increases for the same load amplitude (Figure
3-55a).
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Figure 3-55: Subharmonic resonance with (=0.5% and (=2%: (a) load amplitude P, vs. frequency detuning o,
(b) load amplitude Py vs. response amplitude a

Considering a loading amplitude Py=35kN, damping ratio {=0.5% and zero frequency detuning
(e0=0.0sec?), the steady-state response amplitude due to the cubic term is equal to a=0.0m, as
shown in Figure 3-56a. For frequency detuning larger than eo=1.10sec, instead, there are
subharmonic solutions. For example, for eo=1.40sec’’ there are two stable solutions, a trivial one
(a=0.0m) and a non-trivial one which is calculated equal to a=1.13m (Egs. (3-146) and (3-147)), as
shown also in Figure 3-56b. In this case, the initial conditions determine which of the two stable
solutions describe the actual response of the system.
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Figure 3-56: Subharmonic resonance with {=0.5%: (a) load amplitude P, vs. frequency detuning €g, (b) response
amplitude a vs. frequency detuning €0

The solution of the equation of motion in case of trivial solution is expressed by Eq. (3-150), while for
the case of subharmonic resonance in Eq. (3-151), with P=Py/M=267.18m/sec?, w,=13.19sec®. Thus,
for zero frequency detuning (Q=3w,=39.57sec™), when no subharmonic resonance can occur, the
maximum amplitude is calculated as:
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o]
Wy —Q

maxw = 0.19m

maxXw =

267.18m/ sec? . 1 ==
(13.19sec1)? — (39.57sec?)

(3-179)

For frequency detuning eo=1.4sec™, the loading frequency is Q=3w,+£0=40.97sec?, and the trivial
solution results in maximum oscillation amplitude:

maxw:P% =1267.18m/ sec? - 21 — =
w5 — R (13.19sec™)“ —(40.97sec™) (3-180)
max w = 0.18m
while the non-trivial solution with a=1.13m results in maximum oscillation amplitude:
maxw:a+P{ 5 2J:1.13m+0.18m:1.31m (3-181)
w5 — R

The time-history diagrams of the total steady-state vertical displacement are illustrated in Figure 3-57
for zero frequency detuning (e0=0.0sec™) and for frequency detuning equal to eo=1.40sec, taking
also into account the component of the response due to the external load. The maximum response
amplitude in the first diagram is equal to 0.19m and in the second 1.13m. Hence, a 3.5% increase of
the loading frequency may produce an oscillation of 6 times larger response amplitude. These steady-
state amplitudes of the central node deflection are also obtained by solving numerically the equation
of motion, using MATLAB. The time-history diagram of the displacement for zero frequency detuning
is shown in Figure 3-58. In Figure 3-59 two diagrams of the system’s response are plotted for
frequency detuning eo=1.4sec™. In the first diagram zero initial conditions are assumed and the
steady-state response amplitude due to the cubic term is equal to the trivial solution a=0.0m. In the
second chart, an initial deflection 0.80m and an initial velocity 10m/sec are assumed, in order to have
the non-trivial solution. In this case the response amplitude is much larger. This investigation proves
that the initial conditions influence significantly the response of the system. Changing the initial
conditions subharmonic resonance may or may not occur for the specific frequency detuning and load
amplitude. The exact initial conditions that can cause subharmonic resonances are not specified by
the analytical solutions. They can be found only after several trials. The analytical solutions can only
predict the possibility for the subharmonic resonance to take place.
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Figure 3-57: Subharmonic resonance: Time-history diagram of the steady-state response, damping ratio {=0.5%
loading amplitude Py=35kN and (a) zero frequency detuning (e5=0.0sec), (b) e0=1.40sec™
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Figure 3-58: Subharmonic resonance: Time-history diagram of the central node displacement for zero frequency
detuning (ea=0.0sec’!), damping ratio =0.5%, loading amplitude Po=35kN
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Figure 3-59: Subharmonic resonance: Time-history diagram of the central node displacement for frequency
detuning eo=1.4sec’!, damping ratio {=0.5%, loading amplitude P,=35kN (a) zero initial conditions, (b) initial
displacement 0.8m and velocity 10m/sec

3.4 COMPARISON OF THE TWO MODELS

In this section the dynamic behaviour of the exact model of section 3.2, is compared with the
simplified one of section 3.3. The numerical example already used for both models will be studied
again in order to evaluate the accuracy of the assumed simplifications. It should be mentioned that
the analytical solutions of the simplified model do not take into account an eventual cable slackening.
This means that either the loads causing the nonlinear phenomena or the loading frequencies may be
different for the exact model, with respect to the ones for the simplified model.

3.4.1 Eigenfrequencies

As calculated in section 3.2.6.3 and in section 3.3.7.1, the stiffness coefficient K, and the
corresponding natural frequency for the two models are tabulated in Table 3-1. The difference for
both magnitudes is negligible.

Table 3-1: Stiffness coefficient and natural frequencies

Exact Model Simplified Model Difference
Stiffness coefficient K,o (kN/m) 22.49 22.51 0.09%
Frequency w,q (rad/sec) 13.10 13.19 0.70%

3.4.2 Cable failure

In section 3.2.6.4 the dynamic load amplitude that causes cable failure is calculated for the exact
model, solving numerically the equation of motion expressed by Eq. (3-51). Given that the analytical
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solutions of the simplified model, do not consider cable slackening, and solving numerically the
analytical equation of motion of Eq. (3-74), the corresponding load amplitudes are calculated for three
loading frequencies. The results for both models are tabulated in Table 3-2 and compared. The
difference of the maximum load amplitude between the two models is considered as very small.
Regarding the case with Q=3w,,, the maximum load is considered equal to the maximum static one,
without causing cable failure.

Table 3-2: Maximum load amplitudes

(Q=wy) (2=0.33wy) (Q=3wy)
Exact Model 1.30kN 19.97kN (40.20kN)
Simplified Model 1.37kN 20.54kN (40.20kN)
Difference 5% 3% no failure

3.4.3 Fundamental resonance

The response diagrams described by the analytical solutions for the simplified model provide insightful
information about the loading frequency for which the cable net exhibits the maximum steady-state
amplitude, whether jump phenomena are expected, and dependence on the initial conditions. In
Figure 3-60 the diagrams of Figure 3-22 are compared with the corresponding ones describing the
response of the simplified model under fundamental resonance, calculated from Eq. (3-117), taking
into consideration load amplitude Py=1kN (ep=114.50m/sec?) and damping ratio {=0.5% (eu=0.066)
or (=2% (gn=0.264).
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Figure 3-60: Steady-state deflection response factor Ry, with respect to the frequencies ratio for the exact and
the simplified model under fundamental resonance for P;=1kN

It is noted that the simplified model can predict with satisfactory accuracy the maximum steady-state
amplitude, the slope of the response curve and the dependence on the initial conditions, but the
diagrams of the exact model are shifted towards smaller frequency ratios. This occurs because during
the oscillation the large amplitudes result in cable slackening and the stiffness of the system
decreases. As a consequence, the natural frequency of the system decreases and thus the
fundamental resonance occurs for smaller frequencies. The difference in the frequency ratio arises at
7% for both damping ratios, which is considered as sufficiently small. For frequency ratios smaller
than 0.91 and larger than 1.07, for which no cable slackening occurs for this load amplitude, no
difference between the responses of the two models is observed.

3.4.4 Superharmonic resonance

In Figure 3-61 the diagrams of Figure 3-23 are compared with the corresponding ones describing the
response of the simplified model under superharmonic resonance, calculated from Eq. (3-130). In
case of damping ratio equal to {=0.5%, the exact model oscillates with large amplitude when the
frequency ratio is 0.32, causing cable slackening, while the corresponding solution of the simplified
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model shows that the frequency ratio for the superharmonic resonance is 0.33, but the oscillation
amplitude is not significant. For frequency ratios different from 0.32, the two responses are in good
agreement except from the frequency ratios close to 0.50, indicating an order-two superharmonic
resonance, which cannot be detected from the simplified model having only one cubic nonlinear term.
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Figure 3-61: Steady-state deflection response factor Ry, with respect to the frequencies ratio for the exact and
the simplified model under superharmonic resonance for Py=5kN

3.4.5 Subharmonic resonance

The investigation of the simplified model in section 3.3.7.4 showed that, for load amplitude Py=35kN,
frequency detuning eo=1.40sec™, initial deflection 0.80m and initial velocity 10m/sec, subharmonic
resonance occurs. Retaining the same parameters, the steady-state response of the exact model is
small, but keeping the same load amplitude and frequency detuning and changing only the initial
deflection to 1.00m and the initial velocity to 16m/sec, subharmonic resonance takes place for the
exact model too and the central node oscillates with large amplitudes, as illustrated in Figure 3-62,
while for zero initial conditions the response amplitude is very small. It is worth mentioning that the
deflection of the central node of Figure 3-62b is much larger than the maximum permissible one,
which is equal to 1.63m. This response is calculated assuming an infinitely linear material in order to
detect this nonlinear resonance without cable failure. If a maximum permissible cable stress is
assumed instead, due to the initial conditions, which cause large response at the beginning of the
calculation, the cable stress arrives at the yield stress within the first second and the analysis stops.
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Figure 3-62: Exact model under subharmonic resonance with {=0.5%: Time-history diagram of the central node
displacement for frequency detuning eo=1.40sec®, damping ratio {=0.5%, loading amplitude P;=35kN (a) zero
initial conditions, (b) initial displacement 1.0m and velocity 16m/sec

Thus, the simplified model can predict with sufficient accuracy the occurrence of subharmonic
resonances regarding the frequency detuning and the load amplitude, but not the initial conditions
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that can cause such phenomena, nor the possibility for the phenomenon to take place regarding the
maximum permissible stress of the cables. In some cases the subharmonic resonance is impossible to
evolve before cable failure, because, for small initial conditions, subharmonic solutions require large
load amplitude, while for small load amplitudes large initial conditions are necessary. Such large loads
or initial deflections, even if applied statically, lead to cable tensile failure.

3.5 SUMMARY AND CONCLUSIONS

The simplest cable net is considered, consisting of two crossing cables. The analytical equations of
motion for the central free node are derived for all three translational degrees of freedom. The three
natural frequencies are also calculated for the unforced, undeformed system. The maximum
permissible deflection is calculated, setting the maximum permissible cable stress equal to the yield
stress of the material. The equation of motion of a nonlinear system can be solved numerically for
specific load amplitude, loading frequency and initial conditions. Nonlinear phenomena, such as
subharmonic and superharmonic resonances, dependence on the initial conditions and bending of the
response curves, producing unstable solutions and leading to jump phenomena and hysteresis loops,
can be detected by a large number of numerical analyses, for different values of loading frequency
and amplitude, as well as initial conditions that are changed in very small steps. This is proved to be a
time consuming procedure.

This cable net is further investigated, assuming only the vertical displacement, thus constituting a
single-degree-of-freedom system. The exact equation of motion is simplified by neglecting small
terms, leading to a single-degree-of-freedom system with a cubic nonlinear term, similar to a Duffing
oscillator. The analytical formulae for steady-state responses in different resonant cases are obtained
for this system and the corresponding diagrams are plotted. Many features of nonlinear systems
dynamic behaviour are detected for the cable net and its nonlinear behaviour, delineated by the
analytical solution, is also verified by solving numerically the simplified equation of motion.

The numerical solutions of the exact cable net and the analytical ones of the simplified model are
compared by means of a numerical example. The analytical solution of the Duffing oscillator does not
include an eventual cable slackening. As a result, if one of the two cables of the exact model becomes
slack, small differences are noted between the two models. These differences are focused on the
exact loading frequency and amplitude or the initial conditions that are required for a nonlinear
phenomenon to evolve. In addition, the analytical solution of the Duffing equation, having only a cubic
term, cannot predict the order-two superharmonic resonances, which are proved to occur for the
exact model. Nevertheless, the response diagrams, described by these analytical solutions, provide
useful information about the loading frequency for which the cable net exhibits the maximum steady-
state amplitude, whether jump phenomena or dependence on the initial conditions are expected.

The analytical solutions describe only the steady-state response, while cable failure may occur during
the transient one. However, the information provided by the simplified model can be used to further
investigate the response of the exact model during the transient response conducting numerical
analyses.

Part of this work has been accepted for publication [3-42].
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4 VALIDATION OF FINITE ELEMENT SOFTWARE

4.1 INTRODUCTION

As already discussed, suspended cable structures, subjected to either static or dynamic transverse
loads, usually experience large displacements with respect to their span, belonging thus to the family
of geometrically nonlinear structures. Their response cannot be calculated on the basis of their
undeformed geometry, since their stiffness depends on the deformed state, increasing when the
deflection increases. The internal forces do not vary linearly with load and the principle of
superposition cannot be applied. It is thus necessary to perform nonlinear analyses, considering large
displacements and taking into account the deformed geometry at every load step. In addition, as
cables cannot sustain any compression, their material must be treated and modelled as nonlinear,
having only tension branch.

In the previous chapter, analytical expressions for simple cable nets have been derived, describing
their static equilibrium and dynamic equations of motion. A single-degree-of-freedom cable net model
was thoroughly explored, detecting nonlinear phenomena, such as nonlinear resonances and
instability regions, confirming the intense geometric nonlinearity of the system. However, in this
investigation, an eventual cable slackening was not taken into account and many simplifications were
made in order to overcome the difficulty of complex mathematics. Obtaining analytical solutions for
three dimensional cable structures of many degrees of freedom, turns out to be practically impossible,
due to their complex nonlinearity. Consequently, the investigation of the cable networks’ dynamic
response, performed in the following chapters, will be based on results of numerical analyses.

The scope of this chapter is to compare the results of the finite element software that will be used
further on, with those derived from analytical solutions or results obtained from the literature, thus
confirming its appropriateness and accuracy. The comparison is carried out for a simple suspended
cable and for the simplest cable net with two cables, regarding the natural frequencies and the static
and dynamic nonlinear response under resonant conditions, in terms of nodal deflection and cable
tension variation diagrams. The cables are modelled to sustain only tension, taking thus into
consideration an eventual cable slackening.
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4.2 PRESENTATION AND ASSUMPTIONS OF THE FINITE ELEMENT SOFTWARE

The finite element analysis software that will be used for this work is ADINA [4-1], which can perform
linear and nonlinear analyses of structures, including effects of material nonlinearities and large
deformations. It offers versatile and generally applicable finite elements for solids, trusses, beams,
pipes, plates, shells and gaps. Material models for metals, soils and rocks, plastics, rubber, fabrics,
wood, ceramics and concrete are available. It also offers the option to consider the mass matrix as
lumped or consistent. It can include element birth or death, initial strains or stresses and restart
analysis in order to consider a deformed state from a previous analysis as an initial condition for the
subsequent one. It provides the possibility for linear or nonlinear static or dynamic analyses,
calculation of frequencies, modes, and modal participation factors, mode superposition, linearised
buckling, collapse analysis. The results can be plotted in graphs, or listed in tables. Response spectra
and Fourier analyses with amplitude — frequency diagrams or power spectral density are also
available, following a time-history analysis. Videos or snapshots of the deformed state can also be
provided.

The following assumptions are adopted in the analyses with ADINA ([4-2] and [4-3]):

— The cables are modelled as truss elements with initial strain, introducing thus the initial pretension.

— The cross-sectional area of the element is assumed to remain unchanged.

— The cable material can be considered in some specific cases as linear, with the same Young
modulus for the compression and the tension branch, or in most cases as nonlinear, having null
compression branch and being linear elastic regarding the tension branch with a constant modulus
of elasticity. In most of the examples analysed in this chapter, the Young modulus is equal to
E=165MPa and the maximum cable stress is considered equal to the vyield stress 1570MPa,
corresponding to a strain equal to 0.009515.

— The mass matrix can be calculated as lumped or consistent. The lumped mass matrix is formed by
dividing the elements mass among its nodes and the element has no rotational mass.

— The assumption of large displacements — small strains is adopted for nonlinear static or dynamic
analysis.

— In all cases, the unstressed length of the cable segments is not taken into account and the form-
finding procedure is not included. The geometry and stiffness of the equilibrium state under
prestressing are considered as initial state, and the initial length of the cable elements is the one of
the given geometry.

— The damping, if considered, is introduced as Rayleigh damping. For a SDOF system, with only one
eigenfrequency the coefficients ay and a; are calculated as:

0p=2(w and a;=0 (4-1)

— The nonlinear static analysis is performed using the Full Newton iteration method [4-4], in which a
new stiffness matrix is always formed at the beginning of each new load step and iteration, taking
into consideration large displacements.

— The eigenvalue problem for calculating the natural frequencies and modes is solved by linear modal
analysis. If the structure is nonlinear and is preloaded or prestressed, the analysis is performed in
two runs. In the first run, the preload is applied (gravity loads, initial strains, etc.) in a nonlinear
static analysis. This run can contain one or more solution steps. In the second run, the analysis
restarts from the last solution of the first run, in order to perform a frequency or time-history
analysis based on the stiffness and mass matrix corresponding to the time of solution start; in this
case the time of solution start is the time corresponding to the restart analysis. Therefore, the
stiffness and mass matrices include all geometric and material nonlinearities corresponding to the
end of the nonlinear static analysis.
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— The Composite method [4-5], based on Newmark’s method [4-6], is used as the time integration
method for solving nonlinear dynamic problems in time domain analysis, which is recommended for
nonlinear systems. In the composite method, the displacements, velocities, and accelerations are
solved at a time t + 0.5At.

The results of this program regarding the natural frequencies of the system are compared with the
ones obtained by MAPLE [4-7], using the analytical solutions provided in chapter 3 and solving the
eigenvalue problem. The nonlinear dynamic results of ADINA are compared with the ones obtained by
MATLAB [4-8]. The assumption that the cable cannot sustain any compression is realised by setting
equal to zero the tension of the cables whenever it becomes negative, nullifying thus their stiffness.
ADINA results will be denoted as “numerical” while MAPLE and MATLAB results as “analytical”.

ADINA considers as initial geometry the one at the state in which it calculates the eigenfrequencies.
If, for example the system is prestressed, the length of the cable segments at the equilibrium state
under pretension Sy is considered to be the initial length of the segment. In addition, small strains are
taken into account. Thus, the cable tension for each deformed segment is calculated as:

N, =N, + EA[SiS_—SN

J where i=1,2,3,4 (4-2)
N

and the linearised stiffnesses, at the equilibrium state under pretension, will be:
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The difference is calculated between these expressions of eigenfrequencies with the ones obtained in
the chapter 3, taking into consideration large displacements and small strains, defined as:
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Thus, for initial cable stress 20% of the vyield stress and E=165GPa, the difference between the
numerical results and the analytical solution, expressed in the previous chapter assuming small
strains, arises at maximum 0.09% for all three eigenfrequencies, independently of the sag-to-span
ratio, as plotted in Figure 4-1. For a sag-to-span ratio equal to f/L=1/20 and initial cable stress varying
between 10% and 35% of the yield stress, the difference is also small, as shown in Figure 4-2. Thus,

(4-7)

(4-8)

the numerical calculation of the eigenfrequencies, can be considered as sufficiently accurate.
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Figure 4-1: Difference of the eigenfrequencies: (a) wyo and wy, (b) w,, for initial cable stress 20%0,
(s: small strains, n: numerical calculation)
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Figure 4-2: Difference of the eigenfrequencies: (a) wyo and wyo, (b) w,o, for sag-to-span ratio f/L=1/20
(s: small strains, n: numerical calculation)
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4.3 NUMERICAL EXAMPLE

4.3.1 Geometry

A cable net is used as an example, as described in chapter 3, consisting of two cables having diameter
D=10mm, cross-sectional area A=7.85-10°m? and Young modulus E=165000MPa. The initial strain of
the cables is £,6=0.001, which is interpreted as an initial pretension Ng=EAgy=12.959kN. The span of
the cables is L=50.00m and their sag f=2.50m. The distributed mass of the cables is
m=7.85kN/m*sec?, while an additional concentrated mass is applied on the central node, equal to
M.=0.1t=0.1kN'sec’>*m™. The masses are considered as lumped, so that the total mass at the central
node is equal to M=m*4S,/2'A+M.=0.131kN'sec’>*m™.

4.3.2 Static response

A concentrated vertical static load is applied on the central node, towards +z, equal to P=40kN. The
numerical results are compared with the analytical ones, regarding the deflection and the cable
tension of two characteristic segments. The material is treated as nonlinear. The load — displacement
curve is plotted in Figure 4-3 and the cable tension variation of segments 1 and 3, with respect to the
central node deflection in Figure 4-4.

Figure 4-3: Load — displacement curve for the static load P=40kN
(numerically (N), analytically considering small strains (ASS) or large strains (ALS))
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Figure 4-4: Cable tension variation with respect to the central node deflection (a) segment 1, (b) segment 3
(numerically (N), analytically considering small strains (ASS) or large strains (ALS))

It is obvious that the system’s response is nonlinear due to the geometrically nonlinear behaviour of
the cables and the loosening of the cable segments 3 and 4. The numerical solution, which takes into
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account large displacements and small strains is compared with the analytical one, considering large
displacements and either small or large strains. All results are in very good agreement.

4.3.3 Eigenfrequencies

The eigenfrequencies are calculated analytically, considering large displacements - small or large
strains and numerically, taking into consideration only large displacement — small strains. The natural
frequencies are tabulated in Table 4-1, while the difference between numerical and analytical
solutions is listed in Table 4-2 and it is considered as insignificant.

Table 4-1: Calculated natural frequencies: numerically (N), analytically considering small strains (ASS) or large
strains (ALS)

MODE Frequency (sec’) Frequency (Hz) Period (sec)

(N) (ASS) | (ALS) (N) (ASS) | (ALS) (N) | (ASS) | (ALS)
1 13.10 | 13.10 | 13.11 2.08 2.09 2.09 0.48 | 0.48 0.48
2 88.35 | 88.39 | 88.44 | 14.06 | 14.07 | 14.07 | 0.06 | 0.07 0.07
3 88.35 | 88.39 | 88.44 | 14.06 | 14.07 | 14.07 | 0.06 | 0.07 0.07

Table 4-2: Difference between the calculated natural frequencies: numerically (N), analytically considering small
strains (ASS) or large strains (ALS)

MODE Frequency (sec’?)
(ASS-N)/ASS | (ALS-N)/ALS
1 0% 0%
2 0% 0.1%
3 0% 0.1%

4.3.4 Dynamic response without damping

Subsequently, a vertical load is applied on the central node, varying with time as P=Py cosQt, with
load amplitude Py=1kN. The loading frequency equal to Q=w, is assigned, where w,o=13.10sec’. The
response of the system is calculated numerically, as well as analytically, and presented by means of
the time-history diagram of the deflection w of the central node, the corresponding phase plane plot,
and the time-history of the cable tension of segments 1 and 3. Large displacements and small strains
are considered for both numerical and analytical solutions, but for the former the initial length of the
cables is assumed equal to the unstretched length Sy and the cable tension is described by Eq. (3-9)
while for the latter the initial length of the cables is considered to be equal to the prestressed length
Sy, and the cable tension at each step is expressed by Eq. (4-2).

The integration time step has been varied for both approaches, in order to compare and evaluate the
accuracy of the results. Thus, the response diagrams are plotted for three different time steps, with
respect to the loading period T,=0.48sec being equal to the system’s period Ts, which are
At;=T,/10=0.05sec (Figure 4-5), At,~T,/50=0.01sec (Figure 4-6), and At;=T,/100=0.005sec (Figure
4-7). In Table 4-3 the maximum deflection of the central node, the maximum tension of the above
cable segments and the difference between the two analyses are tabulated. It can be noted that the
maximum magnitudes calculated analytically do not depend on the time step, while for the numerical
analysis the time step At; gives wrong results with a difference of 20-22% with respect to the ones
obtained analytically, while the other two analyses with time steps At, and At; provide results with
differences of 0.9-1.1% and 0-0.4%, respectively, which can be both considered as satisfactory.
Between the first and the second analysis the time step is decreasing 5 times and the accuracy is
increasing significantly by 21 times. Between the second and the third analysis the time step is
decreasing only by 2 times, and the difference between the analytical and the numerical solution is
decreasing to one third. It is doubtful whether the additional gain in accuracy between At, and At;
justifies the increase in computational time. Nevertheless, the third time step is chosen for the
numerical analysis, when the loading frequency is close to the eigenfrequency of the system.
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Figure 4-5: Dynamic response for P=(1kN)cos(w,ot) and At;=0.05sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3. Small strains are considered for the analytical solution.
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Figure 4-6: Dynamic response for P=(1kN)cos(w,et) and At,=0.01sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3. Small strains are considered for the analytical solution.
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Figure 4-7: Dynamic response for P=(1kN)cos(w,t) and At;=0.005sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3. Small strains are considered for the analytical solution.

Table 4-3: Maximum deflection and cable tension for P=(1kN)cos(w,gt)

Procedure At;=0.05sec At,=0.01sec At;=0.005sec
w tension of w tension of w tension of
(m) segment (kN) (m) segment (kN) (m) segment (kN)
1 3 1 3 1 3

analytical (A) 0.92 69.10 69.31 0.93 69.32 69.57 0.93 69.36 | 69.59
numerical (N) 0.72 55.20 55.09 0.92 68.71 68.73 0.93 69.09 | 69.27
(A-N)/A 22% 20% 21% 1.1% 1% 0.9% 0% 0.4% 0.4%

Choosing the appropriate time step depends not only on the accuracy of the results, but also on the
computational time needed. In order to have more accuracy in the results, the computational time
becomes extremely high. The difference between the two assumptions regarding the calculation of
the cable tension at each step does not alter significantly the results.

Keeping only the third time step, At;=0.005sec, and the load amplitude P;=1kN, the assumption of
“large displacements — large strains” is now adopted for the analytical approach and the cable tension
is expressed by Eq. (3-10). The analytical results are compared again with the corresponding
numerical ones, plotted in Figure 4-8 and tabulated in Table 4-4. Comparing the charts of Figure 4-8
with those of Figure 4-7, no significant difference is observed. The small difference between the two
analyses is also shown in Table 4-4 for the maximum response, by means of nodal displacement and
cable tension. It is increased with respect to the corresponding one of Table 4-3 for the same time
step, but it is considered again very small. Based on these observations, the assumption of small
strains will be adopted further on in the analytical solution, in order to compare the results with the
ones obtained by the numerical analysis, which uses by default the assumption of “large displacement
— small strains”.
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Figure 4-8: Dynamic response for P=(1kN)cos(w,t) and At3=0.005sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3. Large strains are considered for the analytical solution.

Table 4-4: Maximum deflection and cable tension for P=(1kN)cos(w,ot), considering large strains for the analytical

solution
Procedure At;=0.005sec
w (m) tension of segment (kN)
1 3
analytical (A) 0.95 71.32 71.31
numerical (N) 0.93 69.09 69.27
(A-N)/A 2% 3% 3%

Next, the loading amplitude equals to Py=1kN and a loading frequency smaller than the system’s
eigenfrequency is selected, Q=w,/3=4.37rad/sec. The time step chosen, with respect to the loading
period T =1.44sec and the system’s period Ts=0.48sec, is At=T /300=Ts/100=0.005sec. In the charts
of Figure 4-9, the comparison of the results between the analytical and numerical analyses is shown.
In Table 4-5 the maximum deflection of the central node, the maximum tension of the cable segments
1 and 3 and the difference between the two analyses are tabulated, which is null.
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Figure 4-9: Dynamic response for P=(1.0kN)cos(w,ot/3) and At=0.005sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3

Table 4-5: Maximum deflection and cable tension for P=(1.0kN)cos(w,t/3)

Procedure At=0.005sec
w (m) tension of segment (kN)
1 3
analytical (A) 0.08 17.00 17.00
numerical (N) 0.08 17.02 17.02
(A-N)/A 0 % -0.1% -0.1%

From the above results it is obvious that the specific load amplitude results in small amplitudes of the
displacement of the central node and the cable tension. If a dynamic load with larger amplitude is
taken into consideration, such as P=(10kN)cos(w,t/3), the results for time step At=0.005sec are
shown in the charts of Figure 4-10 and in Table 4-6. Even for the larger load amplitude the difference
between the numerical and the analytical results is very small. This means that the appropriate time
step depends on the system’s period and not on the loading amplitude.
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Figure 4-10: Dynamic response for P=(10kN)cos(w,t/3) and At=0.005sec, (a) central node deflection time-
history diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment
1, (d) tension time-history diagram of segment 3

Table 4-6: Maximum deflection and cable tension for P=(10kN)cos(w,ot/3)

Procedure At=0.005sec
w (m) tension of segment (kN)
1 3
analytical (A) 1.16 86.00 86.00
numerical (N) 1.16 85.91 85.98
(A-N)/A 0 % 0.1% 0 %

Subsequently, a loading frequency larger than the eigenfrequency is assumed, namely
Q=3w,=39.30rad/sec, while the amplitude of the load remains equal to 10kN. The time step chosen,
with respect to the loading period T, =0.16sec and the system’s period Ts=0.48sec, is
At=3T,/100=Ts/100=0.005sec. In the charts of Figure 4-11, the comparison of the results between
the analytical and numerical analyses is plotted. The difference is larger than the previous cases,
especially regarding the phase plane plot of the central node movement. Thus, a smaller time step is
chosen, equal to At=T,/100~Ts/300=0.0015. The results are plotted in Figure 4-12 and listed in Table
4-7, proving that this time step is more appropriate.
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Figure 4-11: Dynamic response for P=(10kN)cos(3w,ot) and At=0.005sec, (a) central node deflection time-history
diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment 1,
(d) tension time-history diagram of segment 3
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Figure 4-12: Dynamic response for P=(10kN)cos(3w,t) and At=0.0015sec, (a) central node deflection time-
history diagram, (b) phase plane plot of the central node movement, (c) tension time-history diagram of segment
1, (d) tension time-history diagram of segment 3
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Table 4-7: Maximum deflection and cable tension for P=(10kN)cos(3w,t)

Procedure At=0.0015sec
w (m) tension of segment (kN)
1 1 3
analytical (A) 0.09 17.52 17.52
numerical (N) 0.09 17.55 17.55
(A-N)/A 0 % -0.2% -0.2%

4.3.5 Dynamic response with damping

Adding damping in the system, the numerical results are compared with the analytical ones, using the
same assumptions of section 4.3.4 regarding the loading frequencies. The time step remains equal to
At=0.005sec. Two damping ratios are considered {=0.5% and (=2%. For w,=13.10sec’, the
Rayleigh damping coefficients a, and a; are calculated as:

a) (=0.5%, ap,=2(w=0.131 and a;=0
(4-9)
b) (=2%, ay=2(w=0.524 and a;=0

Thus, for Py=1kN and Q=w,o, the response of the system is plotted for damping ratio {=0.5% (Figure
4-13) and (=2% (Figure 4-14). The maximum deflection of the central node and the maximum cable
tension of segments 1 and 3 are tabulated in Table 4-8. Again, very small difference is observed
between the analytical and the numerical solutions, for both damping ratios.
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Figure 4-13: Dynamic response for P=(1kN)cos(w,ot), damping ratio {=0.5% and At=0.005sec, (a) central node
deflection time-history diagram, (b) phase plane plot of the central node movement, (c) tension time-history
diagram of segment 1, (d) tension time-history diagram of segment 3
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Figure 4-14: Dynamic response for P=(1kN)cos(w,t), damping ratio {=2% and At=0.005sec, (a) central node
deflection time-history diagram, (b) phase plane plot of the central node movement, (c) tension time-history

diagram of segment 1, (d) tension time-history diagram of segment 3

Table 4-8: Maximum deflection and cable tension for P=(1kN)cos(w,ot) and damping ratios (=0.5% and (=2%

Procedure At=0.005sec
=0.5% =2%
w (m) tension of segment (kN) w (m) tension of segment (kN)
1 3 1 3
analytical (A) 0.82 61.58 61.47 0.61 48.16 48.17
numerical (N) 0.81 61.38 61.29 0.61 48.07 48.07
(A-N)/A 1% 0.3% 0.3% 0% 0.2% 0.1%

For damping ratio (=0.5%, loading amplitude Py=10kN, loading frequency equal to Q=w,o/3 and time
step At=0.005sec, the response of the system is illustrated in the charts of Figure 4-15, while the
maximum response is listed in Table 4-9. The results do not show important differences between the

analytical and the numerical procedures.
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Figure 4-15: Dynamic response for P=(10kN)cos(w,t/3), damping ratio {=0.5% and At=0.005sec, (a) central
node deflection time-history diagram, (b) phase plane plot of the central node movement, (c) tension time-history
diagram of segment 1, (d) tension time-history diagram of segment 3

Table 4-9: Maximum deflection and cable tension for P=(10kN)cos(w,ot/3) and damping ratio {=0.5%

Procedure At=0.005sec
w (m) tension of segment (kN)
1 3
analytical (A) 1.01 74.97 75.10
numerical (N) 1.01 75.00 75.19
(A-N)/A 0% 0% -0.1%

Keeping constant the loading amplitude and the damping ratio, while the loading frequency takes the
value Q=3wz0, the response of the net calculated by the two procedures for time step At=0.0015sec
is plotted in Figure 4-16 and the maximum magnitudes of the response are listed in Table 4-10. The
difference between the numerical and the analytical results is insignificant.
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Figure 4-16: Dynamic response for P=(10kN)cos(3w,t), damping ratio {=0.5% and At=0.0015sec, (a) central
node deflection time-history diagram, (b) phase plane plot of the central node movement, (c) tension time-history
diagram of segment 1, (d) tension time-history diagram of segment 3

Table 4-10: Maximum deflection and cable tension for P=(10kN)cos(3w,t) and damping ratio (=0.5%

Procedure At=0.0015sec
w (m) tension of segment (kN)
1 3
analytical (A) 0.09 17.41 17.42
numerical (N) 0.09 17.52 17.54
(A-N)/A 0% -0.6% -0.7%

4.3.6 Dynamic response under resonance

As shown in chapter 3, the maximum steady-state response for load amplitude Py=1kN and damping
ratio (=0.5% is observed for frequency ratio Q/w,,=1.09, considering initial deflection 1m and initial
velocity 20m/sec, while for zero initial conditions the oscillation amplitude is small. The same problem
is solved numerically, considering infinitely linear material regarding the tension branch. In Figure
4-17 the response for zero initial conditions is illustrated, while in Figure 4-18 the corresponding
diagrams are plotted taking into account initial conditions. Aiming at superharmonic resonance, a
numerical analysis is performed for loading amplitude Py=5kN, damping ratio (=0.5% and frequency
ratio Q/w,=0.32. The numerical results, compared with the analytical ones, are illustrated in Figure
4-19. Finally, as proved in the previous chapter, subharmonic resonance occurs for =0.5%, Py=15kN,
Q/w,=3.09 and initial conditions by means of deflection 1m and velocity 20m/sec. The numerical
results for these assumptions are shown in Figure 4-20. In all cases the results obtained by the two
approaches are compared, showing very good agreement.
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Figure 4-17: Dynamic response for P=(1kN)cos(1.09w,ot), damping ratio {=0.5%, At=0.004sec and zero initial
conditions: (a) central node deflection time-history diagram, (b) phase plane plot of the central node movement,
(c) tension time-history diagram of segment 1, (d) tension time-history diagram of segment 3

4.0 ===analytical —— numerical
2.0 >0
E 00 g
3 =
-2.0 E
2 -3 3
_4.0 T T T T 1
0 5 10 15 20 -50
t (sec) w (m)
(@) (b)
210
= 140
<
Z 70
0
0 5 10 15 20
(© (d)

Figure 4-18: Dynamic response for P=(1kN)cos(1.09w,qt), damping ratio (=0.5%, At=0.004sec and initial
conditions: (a) central node deflection time-history diagram, (b) phase plane plot of the central node movement,
(c) tension time-history diagram of segment 1, (d) tension time-history diagram of segment 3
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Figure 4-19: Dynamic response for P=(5kN)cos(0.32w,gt), damping ratio (=0.5%, At=0.004sec: (a) central node
deflection time-history diagram, (b) phase plane plot of the central node movement, (c) tension time-history
diagram of segment 1, (d) tension time-history diagram of segment 3
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Figure 4-20: Dynamic response for P=(15kN)cos(3.09w,qt), damping ratio {=0.5%, At=0.0015sec and initial
conditions: (a) central node deflection time-history diagram, (b) phase plane plot of the central node movement,
(c) tension time-history diagram of segment 1, (d) tension time-history diagram of segment 3
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4.4 CONCLUSIONS

The finite element analysis software ADINA, which is chosen to be used for this work, gives results
with minor differences compared with the analytical ones regarding the eigenfrequencies and the
dynamic response to a harmonic load. The damping ratio introduced as Rayleigh damping, the
nonlinear material, the distributed cable masses assumed as lumped and the initial conditions are
proved to be taken into account correctly. Assuming small strains but large displacements, for
common values of Young modulus of the cable material and for the permissible limits of cable
stresses, the numerical solution does not differ substantially from the analytical one that takes into
consideration large displacements and strains. Hence, the assumption of small strains adopted by the
finite element software, gives sufficiently accurate results, for the allowable maximum values of the
cable stresses. In addition, assuming as the initial length of the cables, the one under pretension and
not the unstretched one, the results do not differ significantly. Concerning time-history analysis, the
time step is an important parameter for the accuracy of the system’s response. From the cases
analysed in this chapter, the appropriate time step for accurate results is proved to be dependent on
the system’s period, but not on the loading amplitude. In order to achieve a compromise between the
computational time required and a satisfactory accuracy of the results, the time step T.,,/100 is
chosen, where T» is the smaller period between the system'’s period Ts and the loading period T,.
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5 EIGENFREQUENCIES AND EIGENMODES OF
SADDLE-FORM CABLE NETS

5.1 INTRODUCTION

As shown in the previous chapters, the nonlinearity of cable structures may produce intense nonlinear
phenomena, such as nonlinear resonances, bending of the response curve, hysteresis loops and jump
phenomena. The natural frequencies of the cable system, although calculated by a modal analysis,
which is a linear procedure, play an important role in the nonlinear dynamic behaviour, because they
are used to define nonlinear resonances. The relation between the eigenfrequencies defines eventual
internal resonances, which lead to a continuous exchange of energy among the corresponding
vibration modes, even in free vibrations. The relation between the loading frequency and the natural
frequencies defines fundamental, superharmonic and subharmonic resonances for a forced vibration.
All these phenomena, related to the linear natural frequencies as well as the loading frequency,
render the dynamic response of a nonlinear system unpredictable [5-1].

Many researchers have focused their interest on the vibration modes and natural frequencies of
individual cables, starting from Pugsley [5-2] who gave semi-empirical formulae for the three in-plane
frequencies of a suspended sagged chain. Gambhir and Batchelor [5-3] explored parametrically the
influence of the cable mass, the sag, the span, and the vertical distance of the cable ends, on the
natural frequencies of a sagged inclined cable. Irvine and Caughey [5-4] introduced an important
parameter for simple cables. This parameter, named A?, collects the geometrical and mechanical
characteristics of a sagged suspended cable, defines crossover points, at which modal transition and
internal resonances occur between the first symmetric and the first antisymmetric in-plane modes,
and governs the symmetric in-plane modes. When this parameter is very large, the cable may be
considered as inextensible, and when it is very small, the cable profile approaches that of a taut
string. This parameter is defined as:

2
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where mgA is the cable weight per unit length, E is the elastic modulus of the cable material, A is the
cable cross-sectional area, L is the cable span, H is the horizontal component of the tension, and L. is
approximately equal to the cable length, defined as:

f 2
Le = L{l + 8([) } (5-2)

where f is the sag. Assuming that for small sag-to-span ratios, LxL. and taking into account the
expression of the horizontal component of tension, constant along the cable, which is given from the
static equilibrium as:

mgAL?

H = -

8f (5-3)

the above expression of Eq. (5-1) becomes:
2
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In their study Irvine and Caughey considered the cable as extensible, with a sag-to-span ratio up to
1/8 and they compared their results with experimental ones. They verified that the first symmetric
mode has a natural frequency smaller than the one of the first antisymmetric mode for A><4n?. These
two frequencies become equal when A°=4n?, corresponding to a crossover point, while for larger
values of this parameter the first antisymmetric mode becomes the first mode of the system, having
the smallest natural frequency. The authors also reported that the shape of the cable’s first symmetric
mode changes with respect to this parameter. Thus, for A><4n?, the vertical component of this mode
has no internal nodes with zero displacements, for A>=4n° the vertical component is tangential to the
profile at the supports, while for A>>4n?, two internal nodes with zero displacements appear (Figure
5-1).

N<dn? =42 N>4n?
Figure 5-1: Profile of the deformed cable for the first symmetric mode

The parameter A> was used by other researchers for further investigation of simple sagged cables
([5-5], [5-6], [5-7]), or inclined cables ([5-8], [5-9]). For the latter, instead of crossover points,
avoidance points were detected, meaning that, while in frequency crossover two natural frequencies
become close, in frequency avoidance they always remain apart and never coincide.

Regarding multi-degree-of-freedom cable networks, in [5-10] the authors presented a finite element
method for the analysis of prestressed cable networks, based on Hamilton’s principle and modelling
the cables with curved elements. The fundamental frequency was calculated and compared with the
results of other methods, as well as with experimental data, showing good agreement. In [5-11] they
studied the natural frequencies of 3D saddle-form cable nets with respect to various parameters, such
as the cable cross-sectional area, the initial pretension, the sag-to-span ratio, and the surface
curvature. In [5-12] a transfer matrix method was presented in order to carry out vibration analyses
of orthogonal cable nets without initial sag. They showed that the frequencies of the net are
independent of the number of cables in each direction. A computational scheme for calculating the
eigenvalues and eigenvectors of cable nets was presented in [5-13].
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In [5-14] the influence of the boundary ring on the static response of the cable net was proved to be
significant. Talvik [5-15] mentioned that, if the flexibility of the contour ring of a cable network is
taken into consideration, the first vibration mode involves mostly the contour ring, while the next four
modes are determined only by cable net deformations. Seeley et al. [5-16] investigated the
eigenfrequencies and eigenmodes of a concave cable network with a circular plan view, consisting of
circular and radial cables. The sag of the net was obtained by the static loading and the range of sag-
to-span ratio was between 1/9 and 1/15. They noticed that only the higher order frequencies depend
on the extensibility of the network, expressed by a parameter in terms of the elastic modulus of the
cable material, the cable cross-sectional area, the number of radial cables, the diameter of the
network and the uniformly distributed dead load. They derived an approximate formula of the
fundamental circular frequency of the net, involving only the sag and the sag-to-span ratio,
concluding that the first natural frequency of the concave cable net is close to the average of the
uncoupled in-plane and out-plane fundamental frequencies of an individual cable with the same
sag/span ratio. Buchholdt [5-17] mentioned that cable sags between 4% and 6% of the span results
in satisfactory structural behaviour, if the level of pretension is high enough so that no cable
slackening occurs under any combination of loading. He also suggested that in order to calculate with
accuracy the eigenfrequencies of a cable roof, the deformed state under permanent loads and the
wind load produced by the mean wind velocity should be taken into account. He reported measured
frequencies of a saddle-shaped net roof, with a circular plan of 125m diameter, between 0.74Hz and
1.12Hz for the first seven modes.

In this chapter the dynamic behaviour of saddle-form cable networks is analysed, regarding the
natural frequencies and vibration modes. The cable ends are considered either as fixed or anchored to
a boundary ring. This ring is usually made of prestressed concrete, having a closed box cross-section.
It is much stiffer than the cable net, but not stiff enough to neglect its elastic deformability, which
influences significantly the net's behaviour, as proved in [5-18], during the early stages of this work.

5.2 MODELLING ISSUES AND ASSUMPTIONS

The model adopted is a three-dimensional symmetric cable net, having the geometry of a hyperbolic
paraboloid surface and a circular plan view of diameter L. The network consists of N cables in each
direction, arranged in a quadratic grid. The sag of the longest main and secondary cables is equal to f,
which is also considered as the sag of the roof. In Figure 5-2 the geometry of the cable net is defined.
In this Figure, an auxiliary coordinate system X'y’ is also shown, which will be used further on. All
cables have a circular cross-section with diameter D and area A and their material is assumed
infinitely linearly elastic with Young modulus E. They are simulated by truss elements that can sustain
only tension. Each part of a cable between two adjacent net intersection points is modelled with one
straight truss element, with no flexural stiffness. The initial cable pretension is No, which is introduced
as initial strain in all cables, equal to €,=N¢/EA. The cable mass density is equal to m and an additional
concentrated nodal mass M may also be considered. A lumped mass matrix is used for the analysis. All
three translational degrees of freedom are considered as free for all internal nodes of the net. For the
net with rigid supports, the cable ends are modelled as pinned (Figure 5-3).
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Figure 5-2: Geometry of the cable net with rigid supports

Figure 5-3: Model of the cable net with fixed ends

Without loss of generality, the edge ring, if considered, has a square box cross-section of width b, wall
thickness b/10, with cross-sectional area A;, moment of inertia I;, unit weight p, and elastic modulus E;
(Figure 5-4). The z-displacement of the ring’s nodes is restrained. The displacement in the x-direction
is not permitted for the two nodes of the ring with coordinate x=0, and, respectively, the y-
displacement is not permitted for the two ring nodes with coordinate y=0, in order to avoid rigid body
motion. Thus, the radial deformation of the ring is allowed, but not the overall rotation about the z
global axis. The local y-axes of the beams modelling the boundary ring are oriented towards the
central node of the net. The model of this cable net is shown in Figure 5-5.
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Figure 5-4: Geometry of the cable net with flexible edge ring
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Figure 5-5: Model of the cable net with the boundary ring

The net is uniformly prestressed. Linear modal analyses are performed to calculate the eigenmodes
and eigenfrequencies. It should be mentioned that the concentrated nodal masses, whenever they are
taken into account, are applied only on the free nodes of the cable net and not on the ring nodes,
because the ring’s mass is already much larger and any additional mass is considered as negligible.
For the calculation of the natural frequencies of the system, the geometry and stiffness of the state
under prestressing are considered, as will be explained further on. All analyses have been carried out

with the finite element software ADINA ([5-19] and [5-20]).

5.3 INITIAL STATE UNDER PRETENSION

Two typical cable nets are studied in the state of pretension, without a boundary ring. In these cable
nets, there are 25 cables in each direction, their diameter in plan view is L=100m, the material of the
cables has an elastic modulus E=165GPa and the cable mass density is equal to 10.0kN/m*:sec?. The
cables have a diameter D=50mm. The initial pretension is assumed to be equal to 500kN for all cable
segments, introduced as initial strain. The sag-to-span ratio for the first cable net is equal to 1/20
(Figure 5-6) while for the second one it is 1/10 (Figure 5-7). In this case, the first four natural

frequencies are tabulated in Table 5-1 for both nets.
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Figure 5-6: Cable tension for the cable net with f/L=1/20, considering initial pretension No=500kN
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Figure 5-7: Cable tension for the cable net with f/L=1/10, considering initial pretension Ng=500kN

Table 5-1: Eigenfrequencies of the nets considering a uniform cable tension

f/L=1/20  f/L=1/10
wq[sec’!] 11.57 11.22
w,[sec] 12.32 13.80
ws[sec] 12.32 13.80
w4[sec] 13.23 15.82

A nonlinear static analysis is performed next, considering only the pretension, in ten steps. The
change of pretension, which corresponds to each cable segment when all nodes are in equilibrium, is
illustrated in Figure 5-8 for the first cable net and in Figure 5-9 for the second one. This analysis is

considered as equivalent to the stage of form-

finding.
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Figure 5-8: Cable tension at the static equilibrium state for the cable net with f/L=1/20
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Figure 5-9: Cable tension at the static equilibrium state for the cable net with f/L=1/10

It is worth mentioning that the equilibrium is obtained already from the first step of the analysis, as
shown in Figure 5-10. The maximum tensions are 508kN and 554kN and the minimum ones 497kN
and 485kN for the two cable nets with f/L=1/20 and f/L=1/10, respectively. It is noted that as the
curvature increases, the tension variation along the cable also increases.
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Figure 5-10: Maximum and minimum cable tension for the cable net with f/L=1/20 and f/L=1/10
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The level of pretension variance is compared with results obtained with the finite element software
EASY [5-21], which is a program for the integrated analysis and design of lightweight surface
structures. The cable tension distribution for the net with f/L=1/20 is shown in Figure 5-11 and for
f/L=1/10 in Figure 5-12, as calculated with EASY at the stage of form-finding.
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Figure 5-11: (a) Schematic diagram of cable tensions after form-finding obtained with EASY for the cable net with
f/L=1/20, (b) detail A, (c) detail B, (d) detail C, (e) detail D, (f) detail E
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Figure 5-12: (a) Schematic diagram of cable tensions after form-finding obtained with EASY for the cable net with
f/L=1/10, (b) detail A, (c) detail B, (d) detail C, (e) detail D, (f) detail E

Assuming a horizontal component of pretension equal to the minimum cable tension calculated by
ADINA, that is 497kN for f/L=1/20 and 485kN for f/L=1/10, the form-finding obtained with EASY
results in a maximum cable tension equal to 507kN and 523kN, respectively. For the cable net with
f/L=1/20 the difference between the results of ADINA and EASY is almost 0.2%, while for the second

Nonlinear dynamic response and design of cable nets
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cable net with f/L=1/10, the difference arises to 6%. However, the difference is considered as small in
both cases.

The new cable tensions, after equilibrium is obtained, are inserted in the ADINA model and the
deformed state under pretension is considered as the initial state in order to calculate again the
eigenfrequencies of the two cable nets. In this case the natural frequencies are tabulated in Table 5-2.
Comparing them with the ones of Table 5-1, it is observed that the difference is larger for the deep
cable net, but can be considered as negligible, for both cable networks. Hence, for simplicity, in what
follows, a uniform strain will be inserted in all cable segments for the first step of the analysis.

Table 5-2: Eigenfrequencies of the nets considering the cable tension at the static equilibrium state

f/L=1/20 | f/L=1/10
w; [sec!] 11.57 11.21
o, [sec] 12.31 13.77
w; [sec!] 12.31 13.77
w4 [sect] 13.22 15.78

5.4 CABLE NET WITH RIGID SUPPORTS

5.4.1 The vibration modes

In order to investigate the vibration modes of a cable net with rigid supports, parametric analyses
were performed for a large number of cable net models with different geometrical and mechanical
characteristics, regarding the number of cables in each direction N, the projected diameter L, the sag-
to-span ratio f/L, the initial pretension N,, the elastic modulus of the cable material E, the cable mass
density m, the nodal concentrated mass M, the cable diameter D and thus the cross-sectional area A.

The cable net’s eigenmodes can be distinguished in symmetric and antisymmetric ones. The former
ones consist of symmetric vertical components and antisymmetric horizontal components with respect
to both horizontal axes x and y, while the latter ones consist of antisymmetric vertical components
and symmetric horizontal components with reference to one, or to both horizontal axes. In this work,
the first four modes are thoroughly studied, which are (i) the first symmetric mode of the net,
denoted as 1S, (ii) the first antisymmetric modes with respect to x’ or y' axis (Figure 5-2),
respectively, which, due to the symmetry of the model, are similar, with equal eigenfrequencies and
thus are treated as one mode, denoted, both of them, as 1A and finally (iii) the first antisymmetric
mode with respect to both horizontal axes, which is denoted as 2A. In Figure 5-13 the z-eigenvector
of the first four modes are shown, indicating the z-displacements of the net nodes, as well as the axes
of symmetry, while in Figure 5-14 the deformed structure according to these four modes is illustrated.
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Figure 5-13: Z-eigenvectors of the first four vibration modes of a cable net with rigid supports,
a) mode 1S, b) and ¢) modes 1A, d) mode 2A
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Figure 5-14: The first four vibration modes of a cable net with rigid supports

Looking into the eigenmodes and eigenfrequencies of the cable nets, frequency crossovers and modal
transitions, similar to those occurred for the simple suspended cable, were also observed, meaning
that the eigenmodes do not appear necessarily in a specific sequence. To describe these phenomena,
a parameter A? is herein introduced for cable nets, similar to that for a simple cable, which is
expressed as:

2
2 _(F) EA i
)\_(Lj No 2)

Nonlinear dynamic response and design of cable nets



176 Chapter 5

where Ny is the mean value of the pretension of all cables. Small values of this parameter are noted
for shallow cable nets, or deep cable nets with low levels of pretension. Accounting for realistic
structures, with the Young modulus taking values between 140GPa and 170GPa, the initial cable
stress varying between 0.10 and 0.35 of the yield stress, with a yield stress 1570MPa or 1670MPa,
considering the two most common categories of steel for cables 1570/1770MPa and 1670/1860MPa,
respectively, the minimum and maximum values of parameter A> with respect to the sag-to-span ratio
are shown in Figure 5-15.

O min value @ max value
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Figure 5-15: Variation of the parameter A? with respect to sag/span ratio f/L

The modes of the cable net are found to depend on the parameter A, in a similar manner as for the
simple cable. More specifically:

a) For A*<0.80 the first eigenmode of the system is mode 1S, while the second and third eigenmodes
are modes 1A. The fourth eigenmode is mode 2A. Mode 1S has a natural frequency smaller than the
one of modes 1A, which in turn, is smaller than the frequency of mode 2A, that is w;s<w;p<w,a. For
M\?=0.80 the first three eigenmodes have equal natural frequencies, which means w;s=w;a, accounting
for the first crossover point. The first four eigenmodes have the sequence shown in Figure 5-16.

1% eigenmode (15)

2™ aigenmode (1A) 31 ggenmede (1A) 4% agenmoda (28)
S eyt T

e e e Y

Figure 5-16: The first four eigenmodes of a cable net with rigid supports for A><0.80

b) For 0.80<A°<0.98 the natural frequencies of the first two eigenmodes, which are modes 1A, are
equal and smaller than that of mode 1S, which is the third cable net eigenmode, followed by mode
2A. This means wia<w;s<w,a. For A*=0.98 the natural frequencies of the 3™ eigenmode — which is
mode 1S - and the fourth eigenmode — which is mode 2A — are equal, that is w;s=w,s (second
crossover point). The sequence of the first four eigenmodes is shown in Figure 5-17.

1% mgenmode (14) M ygenimods (14) 2 somimode (1 4"

Bgenmods (24)

Figure 5-17: The first four eigenmodes of a cable net with rigid supports for 0.80<A?*<0.98
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c) For 0.98<A*<1.17 (Figure 5-18) a transition between the 3™ and 4" eigenmodes occurs. Thus,
mode 1S becomes the 4™ cable net eigenmode, while modes 1A remain the first two eigenmodes.
This means wia<w,a<w;s. For A>=1.17 the natural frequencies of the 1%, 2" and 3™ eigenmodes are
equal, that is wia=wya (third crossover point).

1% aigenmode (14) 2™ mannrode (1A) 3" siganmode (24) A" sgenimode (15)

-

Figure 5-18: The first four eigenmodes of a cable net with rigid supports for 0.98<A\?<1.17

d) For 1.17<A? (Figure 5-19) a transition between the 3" and the first two eigenmodes occurs. Mode
2A becomes the first mode of the system, modes 1A become second and third, while 1S remains the
fourth mode. This means Wy <wia<Wis.

1% aigenmode (2A) 2™ aigenmode (1A) 1'% o germode (1A) 4™ @germode (15)

s

Figure 5-19: The first four eigenmodes of a cable net with rigid supports for 1.17<A?

The above limits of A refer to the first four eigenmodes of a cable net with rigid supports. Transitions
among higher modes also occur for different values of A°.

The shape of the first symmetric mode changes with respect to parameter A\?, as also occurs for
simple suspended cables. Thus, for small values, smaller than 1.17, the vertical component of this
mode has no internal nodes with zero displacements (Figure 5-20), for values near 1.17 the vertical
modal component is tangential to the horizontal plane at the cable ends (Figure 5-21), while for large
values, larger than 1.17, internal nodes with zero displacements are observed (Figure 5-22).
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Figure 5-20: First symmetric mode of a cable net with rigid supports for A>=0.70 (<<1.17),
a) perspective view, b) Z-eigenvector
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Figure 5-21: First symmetric mode of a cable net with rigid supports for A*=1.17,

a) perspective view, b) Z-eigenvector
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Figure 5-22: First symmetric mode of a cable net with rigid supports for A>=2.60 (>>1.17),

a) perspective view, b) Z-eigenvector

5.4.2 The natural frequencies

In this section parametric analyses are presented for the ten characteristic cases of Table 5-3, in order
to illustrate the relation between the natural frequencies and the characteristics of the cable net, and
especially parameter A. Keeping the characteristics of Table 5-3 constant and varying the cable cross-
sectional area between 10mm and 80mm, parameter A* changes. The 1S, 1A and 2A modes are

considered again.

Table 5-3: Characteristic cases for eigenfrequency investigation

Doctoral Thesis of Isabella Vassilopoulou

Cases

1 2 3 4 5 6 7 8 9 10

N 25 25 25 25 25 25 25 35 25 11

L [m] 100 100 100 100 100 100 50 50 100 100
f/L 1/20 1/20 1/35 1/35 1/20 1/20 1/20 1/20 1/20 1/20

No [kN] 400 600 400 400 400 400 400 400 400 400

E [GPa] 165 165 165 165 165 148.5 165 165 165 165

m [kN'sec’ m™] 10 10 8 10 8 9 10 10 0 0
M [KN'sec>m ] 0 0 0 0 0 0 0 0 | 05 | 05
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The analysis results are shown in the charts of Figure 5-23, where the parameter A* is plotted on the

horizontal axis and the normalised frequency w/./(g/L) on the vertical axis for the ten cable nets of
Table 5-3, where g is the gravitational constant, considered equal to 10m/sec?.
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Figure 5-23: Normalised natural frequencies of a cable net with rigid supports vs. A>
From the charts some important remarks can be elicited:

— As N increases resulting in a stiffer net, the natural frequencies decrease when distributed mass is
considered (cases 1-8).

— If %, m, E, L and f/L are kept constant, changing the level of pretension does not alter the natural
frequencies (cases 1, 2).

— Keeping A%, m, E, Ny and L constant, the natural frequencies decrease as the sag-to-span ratio f/L
decreases (cases 1, 4 and 3, 5).
— Keeping A%, m, E, N and f/L constant, the natural frequencies increase as L decreases (cases 1, 7).

— On the other hand, if A%, Ny and f/L remain constant, the natural frequencies increase with respect
to 1/\/5 (cases 1, 5).
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— Moreover, if A>, No and f/L remain constant, the natural frequencies do not change if the ratio
J(E/m) remains the same (cases 1, 6).

— When only the cable mass density m is taken into consideration and no concentrated mass M is
considered, the number of cables in each direction has no effect on the natural frequencies and
eigenmodes (cases 7, 8). Considering concentrated nodal masses M instead, the number of cables
in each direction influences the frequencies significantly (cases 9, 10). In the latter case the
eigenfrequencies increase with respect to 1/ IN+1.

— If only concentrated mass M is considered, but no cable mass density m, changing the cable cross-
sectional area, the frequencies of modes 1S and 1A increase, but the one of mode 2A does not
change (cases 9, 10).

— Finally, the frequency crossovers occur at the same values of the parameter A? for all cable nets, as
mentioned before.

5.4.3 Empirical formulae

In order to quantify the above observations and to elicit empirical formulae, which can be used to
estimate the eigenfrequencies of the net, almost six hundred runs have been performed for the cable
nets with geometrical and mechanical characteristics listed in Table 5-4. Considering cases that
approximate realistic structures, the cable diameter was chosen in such a way as to keep the
pretension level between 10% and 35% of the steel yield stress, taking into account the steel
categories St 1570/1770 and St 1670/1860. Thus, the initial cable stress, introduced by the initial
strain, meaning the pretension, is calculated between 0.10°1570MPa=157MPa and
0.35°1670MPa=585MPa.

Table 5-4: Characteristics of the cable nets with rigid supports

N | L[m] f/L No[kN] | E[GPa] | D[mm] | m [kN'sec>m™] M [kN-sec’>*m™]
25 100 1/10-1/20-1/35 400 165 30-55 10 0-0.5-1
25 100 1/10-1/20-1/35 600 165 37-69 10 0-0.5-1
25 100 1/10-1/20-1/35 800 165 42-80 10 0-0.5-1
25 100 1/10-1/20-1/35 400 165 30-55 8 0-0.5-1
25 100 1/10-1/20-1/35 600 165 37-69 8 0-0.5-1
25 100 1/10-1/20-1/35 800 165 42-80 8 0-0.5-1
25 100 1/20 400 165 30-55 0 0.5-1
25 100 1/20 600 165 37-69 0 0.5-1
25 100 1/20 800 165 42-80 0 0.5-1
19 100 1/20 400 165 30-55 0-8 0-0.5-1
19 100 1/20 600 165 37-69 0-8 0-0.5-1
19 100 1/20 800 165 42-80 0-8 0-0.5-1
11 100 1/20 400 165 30-55 0-8 0-0.5-1
11 100 1/20 600 165 37-69 0-8 0-0.5-1
11 100 1/20 800 165 42-80 0-8 0-0.5-1
25 100 1/20 400 150 30-55 10 0-0.5-1
25 100 1/20 600 150 37-69 10 0-0.5-1
25 100 1/20 800 150 42-80 10 0-0.5-1
25 50 1/20 400 165 30-55 10 0-0.5-1
25 50 1/20 600 165 37-69 10 0-0.5-1
25 50 1/20 800 165 42-80 10 0-0.5-1
25 200 1/20 600 165 37-67 10 0-0.5-1
25 200 1/20 800 165 42-80 10 0-0.5-1
25 200 1/20 1000 165 47-90 10 0-0.5-1

A new non-dimensional parameter B is introduced, in order to include all the above information in one
chart. This parameter represents the non-dimensional cable net frequencies.
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(5-6)

In the charts of Figure 5-24, plotting on the horizontal axis the parameter A*> and on the vertical one
the parameter B for each one of the frequencies of the net, it is noted that each natural frequency
follows the same curve for all cable nets.
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Figure 5-24: Parameter B for the 1S, 1A and 2A modes of a cable net with rigid supports vs. A?

Based on the results of the modal analyses, it is possible to produce approximate mathematical
formulae estimating the natural frequencies of the cable nets. According to the above charts, there is
a relation between the two non-dimensional parameters B and A?, for each of the three modes, which
can be expressed as follows:

B =1=
n
M(N + 1)
= ——| | —_— 5 =1=
No (L 50EA ( f
I\ (5-7)
S50EA ;
o f o {NO(L”
JRPSSLIDNY P S N
L mAL+M(N2+1) EALf

where the subscript e denotes that this is an empirical expression of the eigenfrequencies, n=n;s=3
for mode 1S, n=n;,=2.5 for modes 1A and n=n,,=2 for mode 2A. Thus, Eq. (5-7) becomes, for the
three modes, respectively:

50EA

f L No (L)
Wise = ILCESY {EA[fj (5-8)
2
S0EA :
Ogpe =1 L 2{'\]0 (Lj } (5-9)
e =7 |7y 12 E=xl 7 -
Ly a, MO | EALT
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50N,

L
Wope = (| 7 v (5-10)
AL + M(N2+ 1)

In order to compare the numerical results with the ones provided by these formulae, the above charts
are shown again in Figure 5-25, including the curves represented by Egs. (5-8) — (5-10).
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Figure 5-25: Parameter B vs. A? (studied cases and empirical formulae)

The accuracy of the empirical formulae is also illustrated in Figure 5-26, where w;, and w;. are the
net’'s frequencies calculated by numerical methods and by Egs. (5-8) — (5-10), respectively and i
stands for 1S, 1A or 2A. The results are considered as satisfactory.
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Figure 5-26: Empirical formulae for natural frequencies vs. numerical data

The error of the above formulae is calculated for all the results obtained from the parametric modal
analyses performed, as the ratio (w;n-w;c)/w;in. The charts of Figure 5-27 show the mean absolute
value of the error for different values of the non-dimensional parameter A%,
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Figure 5-27: Error of the empirical formulae for natural frequencies with respect to A2

The error of the formula providing the frequency of the first symmetric mode (1S), arises at 16% for
very low values of the parameter A>. These values of A’ correspond to the shallowest cable net, with a
sag/span ratio equal to 1/35 and to the highest levels of initial stress, up to 35% of the yield stress
1670MPa, considering a cable diameter 30mm for pretension 400kN, 37mm for 600kN and 42mm for
800kN. These cable diameters are very small for such spans, so these low values of the parameter A\
do not represent actual designs. The error of the same formula for values of A? larger than 0.4, arises
at maximum 10%, which is considered as satisfactory for preliminary design. The error of the
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formulae giving the frequencies of the antisymmetric modes 1A and 2A is very small, not more than
5% for the former and 2.5% for the latter.

5.5 BOUNDARY RING

5.5.1 The natural mode

In order to extend the above investigation into the natural frequencies of a cable net anchored to a
deformable edge ring, at first, the ring itself is analysed, without the cables. Conducting a parametric
linear modal analysis, the fundamental frequency of such a structure is calculated, considering
different geometrical and mechanical characteristics, regarding the projected diameter, the sag/span
ratio, the elastic modulus of the ring” material, the geometry of its cross-section and its unit weight.
The first vibration mode is characterised by an in-plane breathing motion of the ring (Figure 5-28).

— deformed
undeformed

"~
>

Figure 5-28: Ring’s first vibration mode (in-plane mode)

5.5.2 The fundamental natural frequency

More than two hundred cases have been taken into consideration for the parametric analysis, in which
the ring modulus of elasticity E; varies between 30GPa, 34GPa, 37GPa and 39GPa, accounting for the
concrete categories B25, B35, B45 and B55, respectively, according to DIN codes. The ring’s cross-
section has the shape of a square box, as shown in Figure 5-4, with width b taking the values
b=5.00m, b=6.50m, b=8.00m or b=10.00m for the models with diameter L=100m, and, respectively
b=8.00m, b=10.0m, b=12.00m or b=14.00m for the models with diameter L=200m, while for the
model with diameter L=50m the width b varies with values b=2.00m, b=3.50m, b=5.00m or
b=7.00m. In all cases, the unit weight of the ring p, takes the values 25kN/m?*, 35kN/m?> or 45kN/m?,
considering eventual electromechanical equipment. The geometrical and mechanical characteristics of
the considered cases are listed in Table 5-5.

Table 5-5: Characteristics of the edge ring

L{m] | f/L | E[GPa] | b[m] p: [kN/m’]
100 | 1/20 | 30-39 5-10 25-45
100 | 1/35 | 30-39 5-10 25-45
100 | 1/15 | 30-39 5-10 25-45
100 | 1/10 | 30-39 5-10 25-45
200 | 1/20 | 30-39 8-14 25-45
50 1/20 | 30-39 2-7 25-45

The calculated fundamental frequencies for all the above cases are plotted in Figure 5-29 where on
the vertical axis the non-dimensional eigenfrequency w, / J(g/L) is represented and on the horizontal

axis the non-dimensional parameter y, defined as:
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Figure 5-29: Normalised fundamental frequency of the ring without cables vs. non-dimensional parameter y

From the above chart, one can conclude that the relation between the non-dimensional natural
frequency of the edge ring without cables and the parameter vy is the same for all cases. In [5-22] the

expression of the natural frequency for any mode of vibration is provided, concerning the flexural
vibration of a plane circular ring:

o - | Elg i2(1-i%)? _4 | Elg i2(1-i%)?
" \VpAR* 241 p ALY 241

When i=1, w,=0 and the ring moves as a rigid body. For i=2, the ring performs the fundamental
mode of flexural vibration and Eq. (5-12) becomes:

(5-12)

ErIrg

w, =10.73 -
r prArL4 (5 13)

When i=3, the calculated frequency corresponds to the ring’s second mode, which is the first
antisymmetric vibration mode, being 2.8 times larger than the first eigenfrequency of the ring. This

mode is not taken into account, because it cannot influence the vibration of the net, as will be shown
next.

Although, the above formula refers to a plane ring, it can also be used for the boundary ring of a
hyperbolic paraboloid roof. The error of the above formula is calculated for all results obtained from
the parametric modal analyses performed for each case, as the ratio (w-Wre)/®m, Where w,, and wye
are the ring’s frequency calculated by numerical methods and by Eq. (5-13), respectively. The chart of
Figure 5-30 shows the absolute value of the error for different values of the sag-to-span ratio. The
error is very small for the shallow rings of small sag/span ratios, but as the ratio increases and the
ring becomes deeper, with large curvatures, the error increases.
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Figure 5-30: Error of the empirical formula for the fundamental frequency of the ring with respect to the sag-to-
span ratio

5.5.3 Empirical formula

In order to calibrate this error, an improved formula is proposed for the estimation of the frequency of
the ring’s mode, considering also the sag-to-span ratio, as follows:

Elg
w, =10.731.04 - f /L) |—/—= -
r o AL (5-14)
In order to compare the numerical results with the ones estimated by the empirical formula, the chart
of Figure 5-29 is plotted again in Figure 5-31, including the curve represented by Eqg. (5-14).
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Figure 5-31: Normalised fundamental frequency of the ring vs. y (studied cases and empirical formula)

The error of this improved formula with respect to the ratio (wi-wre)/w is illustrated in Figure 5-32,
where w,, and w, are the ring’s frequency calculated by numerical methods and by Eg. (5-14),
respectively, which shows that the mean absolute value of the error for all sag-span ratios is not more

than 1%. The accuracy of the improved empirical formula is also illustrated in Figure 5-33, and is
considered as sufficient for all practical purposes.
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Figure 5-32: Error of the improved empirical formula for the fundamental frequency of the ring with respect to
the sag-to-span ratio
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Figure 5-33: Formula for the ring’s fundamental frequency vs. numerical data

5.6 CABLE NET WITH BOUNDARY RING

5.6.1 The natural modes

Continuing the investigation of cable networks regarding their natural frequencies, both components
of the suspended roof are now considered, namely the cable net and the deformable edge ring. The
remark of Talvik [5-15] is verified. He noticed that in case the flexibility of the boundary ring is taken
into account, among the first natural modes there are the ones concerning the cable net, modes 1S,
1A and 2A as described before, but there is also the in-plane mode of the ring, which produces a
symmetric vertical vibration of the cable net. These modes are shown in Figure 5-34.
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about x and v (2A)

. M o
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Figure 5-34: First five eigenmodes of the cable net with the flexible edge ring
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For illustration purposes, two cable nets are considered with geometrical characteristics L=50m,
f/L=1/20, cable characteristics No=100kN, D=30mm, m=10kN-sec*m™, E=165GPa, and ring
characteristics E,=39GPa, p,=25kN/m?, while the width b of the square box takes the values b=2.00m,
for the first one, representing a flexible ring and b=5.00m, for the second one, representing a stiffer
ring. The two models are illustrated in Figure 5-35 and Figure 5-36, respectively.

(a) (b)

Figure 5-35: The cable net with ring cross-section width b=2.00m (a) plan view, (b) perspective view

(a) (b)
Figure 5-36: The cable net with ring cross-section width b=5.00m (a) plan view, (b) perspective view

For the first structure, the first mode of the combined system is the ring in-plane mode and the
vibration modes of the net follow (Figure 5-37), while for the second one, the ring in-plane mode is
the eighth mode of the system and the net modes appear as the first ones (Figure 5-38).
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Figure 5-37: The first eight eigenmodes of the cable net with ring cross-section width b=2.00m
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Figure 5-38: The first eight eigenmodes of the cable net with ring cross-section width b=5.00m

Hence, for common values of the ring’s stiffness and cable net stiffness in terms of pretension and
cable cross-sectional area, the ring’s in-plane mode is the first eigenmode of the system and the
corresponding frequency can be estimated by Eq. (5-14), with negligible influence of the cable net. In
this case, the following four eigenmodes are the same vibration modes of the cable net analysed in
section 5.4.1 with negligible influence of the ring, and their frequencies can be expressed by Egs.
(5-8) — (5-10) with small errors. For high values of the ring’s stiffness, its in-plane mode becomes of
higher order, while the corresponding eigenfrequency still follows the law of Eq. (5-14). In this case
the first four modes of the system are the vibration modes of the net studied previously, with
frequencies that still follow Egs. (5-8) — (5-10). Between these first four modes and the ring’s one,
other vibration modes appear, most of them higher order net’s modes, but also hybrid ones, involving
the ring and the net into the vibration.

For intermediate values of the ring’s stiffness, the symmetric vibration of the net and the in-plane one
of the ring are not distinct; it is not possible to distinguish which mode represents a pure vibration of
the net involving also the ring and which one is mainly a vibration of the ring that produces a
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symmetric oscillation to the net. Consequently, in what follows, the 1 symmetric mode of the system
is investigated, whether this is produced mainly due to a net symmetric vibration or a ring in-plane
one. The corresponding frequency will be named as wss.

5.6.2 The natural frequencies

For the sake of simplicity, the frequencies of a sample of cable nets are calculated and discussed, with
characteristics listed in Table 5-6. Parametric analyses are performed in order to evaluate the
contribution of the edge ring deformability to the net’s vibration modes, by varying the ring stiffness
EI. and the ring mass p/A.. The frequencies of this system are compared with those of the cable net
with rigid supports. In Table 5-7 the parameter A* and the numerically calculated eigenfrequencies are
listed for each net with rigid supports, which will be used to compare them with the corresponding
ones of the combined system.

Table 5-6: Characteristics of the cable nets with the flexible edge ring

Cases

1 2 3 4 5 6 7 8 9 10

N 25 25 25 25 25 25 25 35 25 11

L [m] 100 100 100 100 100 100 50 50 100 100
f/L 1/20 | 1/20 [ 1/20 1/20 1/35 1/20 1/20 | 1/20 | 1/20 | 1/20

D [mm] 40 40 60 60 40 63.2 40 40 40 40

Ng [kN] 400 600 600 600 400 600 400 400 400 400

E [GPa] 165 165 165 165 165 148.5 165 165 165 165

m [kN-sec’*m™] 10 10 10 8 10 9 10 10 0 0
M [kN'sec>*m™] 0 0 0 0 0 0 0 0 0.5 0.5

Table 5-7: Eigenfrequencies of cable nets with rigid supports
Cases

1 2 3 4 5 6 7 8 9 10
N 1.30 0.86 1.94 1.94 0.42 1.94 1.30 1.30 1.30 1.30

wg[sec’] 14.01 | 15.85 | 12.54 | 14.02 9.98 12.54 | 28.02 | 28.05 6.16 9.00
wa[sec?] 13.21 | 15.02 | 11.61 | 12.90 11.16 11.61 | 26.41 | 26.42 5.81 8.48
woa[sec’] 12.94 [ 15.22 | 10.57 | 11.81 13.01 10.57 | 25.88 | 25.87 5.70 8.25

Keeping the ring unit weight constant and equal to 25kN/m?, the ring’s effect on the system’s
frequency of the first symmetric mode (w;ss) is studied, by varying the elastic modulus E; and the ring
cross-section width b as in section 5.5.2, accounting for realistic values of the ring’s stiffness and
cross-sectional area. The charts of Figure 5-39 show the variation of the non-dimensional first four
natural frequencies of the system (including the double 1A frequency) with respect to the ring
stiffness represented by the non-dimensional parameter y, defined in Eq. (5-11). In these charts, wia,
w, are the frequencies of 1A and 2A modes of the net, respectively, while wyss is the frequency of the
first symmetric mode of the system.

The change of the combined system’s non-dimensional frequency w;ss of the first symmetric mode
with respect to the ring stiffness is shown in the charts of Figure 5-40. In these charts, the
frequencies of three systems are compared, the ring without the cables, the cable net without the ring
(supported rigidly) and the cable net with the ring. In Figure 5-41 the change of the ratio of the
wiss/wss, With respect to the ratio w,/w;s is depicted. In these two Figures, w; is the frequency of the
ring without the cables, as calculated from Eq. (5-14), w;s is the frequency of the first symmetric
mode for the cable net with rigid supports, and w;ss is the frequency of the first symmetric mode of
the cable net with the elastic ring, both calculated numerically.

Nonlinear dynamic response and design of cable nets
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Figure 5-39: Normalised natural frequencies of the cable net with ring vs. y
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Figure 5-40: Normalised natural frequencies vs. y of the combined system and its separated components
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Figure 5-41: Change of the frequency of the combined system, with respect to the ratio of the frequencies of the
separated components

For all cases, as the mass of the ring increases, the frequency wiss, decreases, as expected. As a
representative example, the variation of the non-dimensional frequency w;ss of the system with
respect to the mass of the ring is shown in Figure 5-42, for the first case of Table 5-6. Keeping the
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elastic modulus E;, and the cross-section width b constant and equal to 37GPa and 5.00m,
respectively, the ring unit weight p; varies between 25kN/m>~50kN/m?>.
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Figure 5-42: Normalised natural frequency w;ss vs. p/A;

From the above charts some important conclusions can be drawn:

As the stiffness of the ring increases the frequency w;ss increases.

If m, E, L, f/L and the stiffness of the ring are kept constant, an increase of the level of pretension
increases slightly the frequency w;ss (cases 1, 2).

Keeping m, E, No, L, f/L and the ring stiffness constant, the frequency w;ss increases as the cable
diameter D increases (cases 2, 3).

Moreover, if A, Ng and /L remain constant, for the same levels of the ring’s stiffness, the frequency
w;ss does not change, if the ratio /(E/m) remains the same (cases 3, 6).

Keeping m, E, Ny, L and the ring stiffness constant, the frequency w;ss slightly decreases as the
sag-to-span ratio f/L decreases (cases 1, 5).

For the same levels of the ring’s stiffness and keeping f/L, Ny, E, m constant, the frequency wiss
increases as L decreases (cases 1, 7)

On the other hand, if the ring stiffness, E, No, L, and f/L remain constant, the frequency wiss
increases slightly as the cable mass density m decreases (cases 3, 4).

If only the cable mass density is taken into account, the frequency w;ss does not depend on the
number of cables in each direction (cases 7, 8), but when concentrated nodal masses are
considered instead, this frequency is influenced by the number of cables (cases 9, 10).

The frequency wsss, for low levels of the ring’s stiffness, is the frequency of the in-plane mode of
the ring and can be calculated using Eq. (5-13), but as the stiffness increases the frequency
diverges from the curve of the above equation and tends to become equal to w;s of the net with
rigid supports (Figure 5-40 and Figure 5-41).

The frequency of mode 2A (w,a) remains unchanged in presence of the edge ring (Figure 5-39).
The frequency of modes 1A (w;a) does not change more than 3.4% due to the deformability of the
edge ring (Figure 5-39). This is the case because, for realistic values of ring flexural stiffness and
cable axial stiffness, the antisymmetric vibration mode of the boundary ring is always much larger
than the first four frequencies of the cable net. Thus, it cannot influence significantly the
antisymmetric vibration mode of the net.

If the stiffness of the ring is kept constant, and the mass of the edge ring increases, the frequency
w;ss decreases (Figure 5-42).
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5.6.3 Empirical formulae

Based on the aforementioned results, and on the charts of Figure 5-40 and those of Figure 5-41, it
can be concluded that the first symmetric mode of a cable net with a flexible boundary ring, depends
on the ratio of the stiffness of the ring and that of the cable net. If the ring is flexible enough with
respect to the cable net, the first symmetric mode is the in-plane mode of the ring. On the other
hand, when the ring is much stiffer than the cable net, it behaves as a rigid support to the cables, and
its vibration mode is one of the higher order modes, while the first symmetric mode of the system is
the one of the cable net. The stiffness ratio of the two components of such a system is expressed as
the ratio of the natural frequencies of the two independent systems and constitutes the criterion that
indicates whether the first symmetric mode of the system will be the in-plane mode of the ring or the
first symmetric mode of the net.

In order to find an approximate empirical formula calculating the frequency of the first symmetric
mode of the combined system, more than one thousand cases were considered, combining the
characteristics of the ring listed in Table 5-8, with those of the cable nets tabulated in Table 5-9.

Table 5-8: Characteristics of the edge ring

L [m] f/L E; [GPa] b [m] pr [kN/m’]

100 1/20 30-39 5-8 25-35

100 1/35 30-39 5-8 25-35

100 1/10 30-39 5-8 25-35

200 1/20 30-39 10-12 25-35

50 1/20 30-39 3.5-5 25-35

Table 5-9: Characteristics of the cable nets with edge ring
N [ L[m] f/L Ng [kN] | E[GPa] | D[mm] | m [kN'sec**m™] M [kN*sec’>*m™]
25 100 1/10-1/20-1/35 400 165 30-50 0-10 0-0.5-1.0
25 100 1/10-1/20-1/35 600 165 40-60 0-10 0-0.5-1.0
25 100 1/10-1/20-1/35 800 165 50-80 0-10 0-0.5-1.0
19 100 1/20 400 165 30-50 0-10 0-0.5-1.0
19 100 1/20 600 165 40-60 0-10 0-0.5-1.0
19 100 1/20 800 165 50-80 0-10 0-0.5-1.0
25 100 1/20 400 165 30-50 8 0-0.5-1.0
25 100 1/20 600 165 40-60 8 0-0.5-1.0
25 100 1/20 800 165 50-80 8 0-0.5-1.0
25 100 1/20 400 150 30-50 0-10 0-0.5-1.0
25 100 1/20 600 150 40-60 0-10 0-0.5-1.0
25 100 1/20 800 150 50-80 0-10 0-0.5-1.0
25 50 1/20 400 165 30-50 0-10 0-0.5-1.0
25 50 1/20 600 165 40-60 0-10 0-0.5-1.0
25 50 1/20 800 165 50-80 0-10 0-0.5-1.0
25 200 1/20 600 165 37-67 10 0-0.5-1.0
25 200 1/20 800 165 42-80 10 0-0.5-1.0
25 200 1/20 1000 165 47-90 10 0-0.5-1.0

In the chart of Figure 5-43, plotting on the horizontal axis the ratio w,/w;s, and on the vertical one the
ratio w;ss/w;s, where again w;, is the frequency of the ring without the cables, as calculated from Eqg.
(5-14) and w;s is the frequency of the first symmetric mode for the cable net with rigid supports, a
large dispersion can be noticed, when the ratio w,/w;s takes values between 1 and 3, which means
that any empirical formula assessing the frequency w;ss will present large values of error.
Nevertheless, it can be noticed that if the ring’s frequency w; is less than, approximately, 65% of w;s,
then the first natural frequency of the combined system is close to the ring’s frequency and the first
symmetric mode of the system is the in-plane mode of the ring. As the ring becomes stiffer and its
frequency increases, the combined system’s first natural frequency approaches asymptotically the
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frequency (w;s) of the cable net with rigid supports and the first symmetric mode of the system is the
symmetric mode of the net.

w1ss /wis

W/ W1s

Figure 5-43: Change of the ratio w;ss/w1s with respect to the ratio w,/w;s (numerical data)

Hence, if the ring’s frequency w,, according to Eq. (5-14) is computed less than approximately 65% of
w;s, estimated by Eqg. (5-8), then the frequency w;ss of the first symmetric mode of the cable net with
edge ring can be evaluated from this equation. If, on the other hand, it results to more than 65% of
w;s,, the frequency w;ss depends on the value of w;s. This can be expressed as follows:

if 0,<0.65 wys, then w;ss = w, =10.73(1.04 — f /L) ErIrg4
pAL

, (5-15)
if 0:20.65 w;s, then wsg = wls[1—0.35 (0.65 %] }

W,

In order to evaluate the accuracy of the empirical formula calculating the frequency of the first
symmetric mode of the combined system, a comparison of the numerical results with the ones of Eq.
(5-15) is shown in Figure 5-44, which includes the chart of Figure 5-43 and the plot of the curve of
the empirical formula.
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Figure 5-44: Change of the ratio w;ss/w;s with respect to the ratio w,/w;s (numerical data and empirical formula)

The error of the above formula is calculated for all results obtained from the parametric modal
analyses performed, as the ratio (w;ssn-Wisse)/Wissn, Where wiss, and wss e are the ring’s frequency
calculated by numerical methods and by Eq. (5-15), respectively. Figure 5-45 illustrates the mean
absolute value of the calculated error by the empirical formula, with respect to the ratio w,/w;s, which
represents the ratio of the stiffnesses for the two separated components. As already mentioned, the
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maximum error is observed for values of this ratio between 0.65 and 2.0, arising at 13% for stiffness
ratios between 1-0 and 1.5.
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r / W15

Figure 5-45: Error of the empirical formula for the natural frequency w;ss with respect to the ratio of the
frequencies for the two separated systems

The chart of Figure 5-46 shows the mean absolute value of the error for the three sag-span ratios
considered, in which it is shown that the error becomes smaller as this ratio increases, with maximum
error for the shallowest net with f/L=1/35, equal to 18%. In Figure 5-47 the mean absolute value of
the error is again calculated with respect to the concentrated nodal mass. The formula results in more
accurate results if only distributed mass is considered along the cables. The concentrated mass
instead influences more the vibration of the ring. In Figure 5-48 it is shown that the error is larger for
small values of the non-dimensional parameter A?, because, as shown in section 5.4.3, the error of the
empirical formula for the symmetric mode of the cable net with rigid supports presents also larger
error for small values of this parameter. Finally the error of the empirical formula for the frequency
wss is larger for very small values of this frequency, between 2.0sec’ and 5.0sec’, as shown in
Figure 5-49.

error wiss
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00/0 T T 1
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Figure 5-46: Error of the empirical formula for the natural frequency w;ss with respect to the sag-to-span ratio
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Figure 5-47: Error of the empirical formula for the natural frequency w;ss with respect to the concentrated nodal

mass M
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Figure 5-48: Error of the empirical formula for the natural frequency w;ss with respect to A?
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Figure 5-49: Error of the empirical formula for the natural frequency w;ss with respect to the numerically

calculated natural frequency wiss

The accuracy of the empirical formulae is also shown in Figure 5-50. In any case, it is considered as
satisfactory for preliminary design purposes. Since the presence of the edge ring does not influence
significantly the frequencies of the net’s antisymmetric vibration modes, the empirical formulae of Egs.
(5-9) and (5-10) can also be used for the case of a cable net with cables anchored to a deformable

edge ring.
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Figure 5-50: Empirical formula for natural frequency w;ss vs. numerical data

5.7 CONCLUSIONS

Symmetric saddle-shaped cable nets, having rigid supports, have been thoroughly investigated
regarding the first natural frequencies and vibration modes. Many similarities with a simple suspended
cable have been observed. The appearance sequence of the modes can be predicted by a non-
dimensional parameter N> for cable nets, similar to the one referring to simple suspended cables.
Crossover points, at which modal transition occurs, depend also on this parameter. Semi-empirical
formulae are proposed, which can assess the first four eigenfrequencies of such a structure, with
satisfactory results.

If the cable ends are considered as flexible, taking into consideration the deformability of the contour
ring, the dynamic response of the system, regarding its frequencies and modes, becomes more
complicated. The existence of the ring negligibly influences the antisymmetric modes of the cable net,
but an in-plane mode of the ring produces a symmetric vertical oscillation of the net, influencing
significantly the motion of the net. Exploring this system, it was concluded that in some cases, two
symmetric modes appear among the first five vibration modes of the system, but in some others,
there is only one symmetric mode among the first eigenmodes. This depends on the stiffness of the
ring with respect to the one of the cable net. Another semi-empirical formula is proposed for
estimating the frequency of the system’s 1% symmetric mode, either produced by the symmetric
vibration of the net, involving the ring, or by the in-plane mode of the ring, involving also the net.

The knowledge of the natural frequencies of a nonlinear system and the relations between them
provides the designer with important information about the eventual occurrence of internal
resonances. It is possible to use the proposed formulae to calculate the natural frequencies of a cable
net, with either rigid or flexible supports, at a preliminary design stage of analysis, in order to design
the structure, aiming at avoiding internal resonances between the first vibration modes, which may
lead to oscillations of large amplitude, provoking also an unpredictable dynamic response, with a
continuous exchange of energy between the modes involved in resonance.

Part of the work developed in this chapter has been presented in [5-23], [5-24] and published in
[5-25].
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6 INVESTIGATION OF A MDOF CABLE NET
USING AN EQUIVALENT SDOF CABLE NET

6.1 INTRODUCTION

Nonlinear phenomena, such as superharmonic or subharmonic resonances, bending of the response
curve and jump phenomena, instability regions, as well as response amplitudes dependent on the
initial conditions, can be detected in simple models by exploring their equation of motion. In a multi-
degree-of-freedom system, for which no analytical solutions can be found, the only way to plot a
response curve, which can show if the above phenomena may occur, is by conducting a large number
of nonlinear time-history analyses, for different closely spaced load amplitudes and frequencies.

The idea of solving an equivalent SDOF system to estimate the dynamic response of a complex
structure has been adopted by many researchers ([6-1] — [6-8]). This method is based on equating
the energy of the real structure to the one of the SDOF system. Ensuring equal displacements and
velocities in both systems, the kinematic similarity is maintained. This approach has the advantage
that the equation of motion for a SDOF oscillator can be solved analytically. Hence, it is possible to
determine the range of the parameters that influence the dynamic response of the system. On the
other hand, using this method, it is impossible to assess the overall response of the MDOF system,
because the simulation is obtained only in the main direction of motion, neglecting the other two
dimensions of the large structure.

Another method of reducing the dimensions of a large-scale event, using a smaller one with similar
characteristics, is a method based on the Buckingham Pi theorem [6-9]. This theorem states that if an
equation involves a number of variables and n fundamental measurement units, then the equation can
be expressed in terms of n fewer arguments that are non-dimensional ratios of the original variables.
The concept is based on the notion that an equation must be dimensionally homogeneous, that is, its
solution must be invariant to any change in the system of measurement units employed. This
technique has been adopted to design small-scale experiments in order to simulate with accuracy
large-scale phenomena.

This theorem was adopted by Gero ([6-10], [6-11]). He presented a method to estimate the static
behaviour of a large cable net, referred to as prototype, using charts that describe the behaviour of a
smaller one, referred to as model, by means of the maximum deflection and cable tension. The
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transformation of the large structure to the smaller one was obtained by similarity relations. The
proposed method was restricted to nets with fixed cable edges. The two networks should have similar
geometries, with the same sag-to-span ratio, so that their corresponding quantities could also be
similar.

During the first steps of this work, the preliminary design method developed by Gero was extended to
elastically supported cable network structures, by taking into consideration the characteristics of the
edge ring, and more specifically its flexural stiffness EI. ([6-12] - [6-14]). Thus, the ring was no
longer considered as rigid, but elastically deformable, accounting for more realistic boundary
conditions for the cables. Additional charts and similarity relations were provided for the preliminary
design of the edge ring, including the sag-to-span ratio of the net as a variable in the transformation
relations. This method was further developed for the case of dynamic response [6-15], providing
additional similarity relations for the mass and the natural frequency of the system, for the case of
fixed cable ends.

In this chapter, this preliminary design method transforms a MDOF cable net into an equivalent SDOF
cable net, in order to solve the equation of motion, as described in chapter 3 and thus have the
possibility to detect nonlinear phenomena and estimate the nonlinear dynamic response of the large
structure. The analytical solution, depicting the steady-state amplitude of the equivalent SDOF model,
is compared with the steady-state response of the MDOF system, obtained numerically, evaluating the
accuracy of the method.

6.2 SIMILARITY RELATIONS

The relations that are used in this work for the transformation of the large cable net, called prototype,
to the smaller one, called model, are based on the ones provided in [6-15], for a cable net with fixed
cable ends and are the following:

2 2
E L N, +1 fn /L .
(Po)m = (Py) —mJ(—m [ P ] m__m : nodal load amplitude (6-1)
" "LEp \Lp ) (N +1 \/fp/LID

N, +1) f, /L
D =D, L P p /Lo : cable diameter (6-2)
Lo WINg +1 )\ /L0
2 2
N, +1Y f, /L
An =A, Lm | 2 o /Ly : cable cross-sectional area (6-3)
L, ) \Np +1 ) i /L0
2 2
N, +1Y f, /L
(EA), = (EA), En [ Ltm P p /Lo : cable axial stiffness (6-4)
E, | Lp | (N +1 )\ Fon /L1
E YL VN, +1
p . . g .
(Ng)m = (NO)p(ﬁ][ﬁ] [Nm +1J : cable initial pretension (6-5)
E L 2 N, +1
N =Ng | =2 || =™ P : cable tension -
cm C,D{ Ep J[Lp ] {Nm + 1} (6 6)
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2 2
P =Pp| =2 | — | | M : cable unit weight (6-7)
" p(Ep Lo ) o /L,
E YL YN, +1)
M, =M= f=m|_P : nodal mass -
m p[Ep J{Lp ][Nm+1] (6-8)
L, I f, /L _ ) _
Wam =Wgp {ﬁ}[ f: /L: ] : nodal dynamic deflection (6-9)
W =W, bm : nodal static deflection (6-10)
p
W=, : natural frequency (6-11)

where N is the number of cables per direction, L is the maximum length of the cables, meaning the
diameter of the circular plan view, f/L is the sag-to-span ratio, E the elastic modulus of the cables,
while the subscripts m and p refer to the model and the prototype, respectively. Two more relations
are added, describing the loading frequency and the damping ratio:

Qn=9, : loading frequency (6-12)

n=0 : damping ratio (6-13)

6.3 PROTOTYPE AND MODEL

6.3.1 Assumptions

Two large cable nets are used as prototypes, having a diameter L,=100m and sag-to-span ratios
equal to f,/L,=1/35 (f,=2.857m) and f,/L,=1/20 (f,=5.00m), while the number of cables in each
direction is N,=25 (Figure 6-1).

fo

= -fp —-

-—Lp= 100m ——=
Np=25 cables

a) plan view xvz=-fp Xt
| z
b) section at y =0
fp y
-~ ,=100m —=
N,=25 cables

c) section at x =0

Figure 6-1: Geometry of the prototype
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The Young modulus is assumed equal to E,=165GPa. The unit weight of the cables is taken equal to
pp=100kN/m3. For the nonlinear dynamic analyses of the prototype that are conducted, in order to
compare the numerical results of the large structure with the analytical ones of the small structure,
harmonic loads, expressed as Pp(t)=(Po),cosQ,t, are exerted vertically on every node of the net,
having the same amplitude and time variation. The oscillation of the central node of the net will
describe the response of the net.

Rayleigh damping [6-16] is introduced, being mass-proportional and stiffness-proportional, expressed
as:

[Cl=ac[M]+ay[K] (6-14)

where [C] is the damping matrix, [M] is the mass matrix of the system and [K] is the stiffness matrix
corresponding to zero initial displacements. If two modes i and j have the same damping ratio {, the
coefficients ag and a; can be calculated as:

z 20;0;
Qy=¢—— -
0 W, + W, (6-15)
a, =C 2
0w+ (6-16)

In this investigation the damping ratio is considered equal for the first symmetric mode (1S) and for
the first antisymmetric mode with respect to both horizontal axes (2A). Two alternative values of this
ratio are assumed, (,=2% and (,=0.5%.

The parameter A, which characterises the dynamic response of the cable net, controls the sequence
of the vibration modes, as well as the shape of the first symmetric mode of the system, as reported in
chapter 5. For A’<1.17, the vertical component of this mode has no internal nodes with zero
displacements, for A>=1.17 the vertical modal component is tangential to the profile at the cable ends,
while for A>>1.17, two internal nodes with zero displacements are observed, on each horizontal axis.

This parameter is expressed as:

2
f\" EA
G L i
(Lj N, (6-17)

Taking into account E=165GPa and initial cable stress equal to 0.100,, with yield stress 1570MPa, the
chart of Figure 6-2 shows that for sag-to-span ratio equal or larger than 1/30, this parameter is equal
or larger than 1.17, respectively, meaning that internal nodes with zero displacements appear in the
first symmetric mode. For levels of pretension higher than 0.200,, the parameter A is larger than
1.17, for sag-to-span ratios equal or larger than 1/20, while for deeper cable nets this parameter is
larger than this limit for initial cable stress between 0.100, and 0.350,. The same limits exist if a larger
yield stress is assumed equal to 1670MPa, but in general, the parameter A’ takes slightly smaller
values (Figure 6-3). It will be shown than this limit influences the accuracy of the proposed method.
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initial cable stress 00.100y 00.20cy B 0.30cy ®0.350y

11 —
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N 6
< 5 _— —
4
3 —
2 ]
1 | | 1
0 [ — : | I_— : | o : - : t
1/35 1/30 1/25 1/20 1/15 1/10
f/L
Figure 6-2: Variation of the parameter A? with respect to the sag-to-span ratio
(E=165GPa, 0,=1570MPa)
initial cable stress 00.10cy 00.200y @ 0.30cy m 0.350y
11
10 —
9
8
7
- 6
= 5
p —
3
2 — ] 1
1 1
o | Fn | [T | | (0 t
1/35 1/30 1/25 1/20 1/15 1/10

f/L

Figure 6-3: Variation of the parameter A? with respect to the sag-to-span ratio
(E=165GPa, 0,=1670MPa)

The model utilised as the equivalent SDOF system is similar to the one described in chapter 3,
consisting of two crossing cables (N,=1), with a concentrated mass at the central node M,. In order
to minimise the scaling error, each model has the same sag-to-span ratio f./L,, cable span L, and
Young modulus E;, with the corresponding prototype (Figure 6-4a). A harmonic load, expressed as
P(t)=(Po)mcosnt, is exerted vertically on the central node (Figure 6-4b).
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3 (OJ-Lm Izlfm )

50m

Ss

/2

4 (Lmlzrof'fm) 1 (DIOIO) 2 ('Lmlzrox'fm)
X 9

5, M. 5,
Lmf2=50m Lmf2=50m

54

Lrf2=50m

145 OLn/2,f)

b
@ (b)
Figure 6-4: (a) Geometry of the model, (b) Load for the model

The similarity relations, expressed by Egs. (6-1)-(6-13), are reduced to the following:

N, +1)
(Po)m = (Po)p[Np—J : nodal load amplitude (6-18)
m+1
D, =D Np +1 cable diamete
= : i r -
™ TPYIN, +1 (6-19)
A A Np +1 bl tional
= : cable cross-sectional area -
" PN +1 (6-20)
(EA) = (EA),| 2 ble axial sif
= L : cable axial stiffness -
m PIN, +1 (6-21)
Np +1 . .
(No)m = (Ng)p N o1 : cable initial pretension (6-22)
m+1
Np +1 ) .

Nem =Ne,p N1 : cable tension (6-23)
Mo_m [ Netl 2 dal 6-24
= _P - : nodal mass -
mOPINg +1 (628
W m=Wq,p : nodal dynamic deflection (6-25)
Win=W, : nodal static deflection (6-26)
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W= : natural frequency (6-27)
Qn=0,=Q : loading frequency (6-28)
Gn=0=C : damping ratio (6-29)

6.3.2 Analytical solution for the model

The main expressions of the SDOF model, describing the dynamic response in resonant conditions,
are reported and summarised here, based on the theory presented in chapter 3.

6.3.2.1 Equation of motion

The equation of motion of the SDOF cable net is:
W+ 2epW + 02w + gaw> = P, cos(Qt) (6-30)

where the eigenfrequency is expressed as:

2 2
m = 4(EA)m . 8fi+2 (NO)m —4 (NO)m fi (6'31)
MinLm L2, (EA)n  (EA)L LG
and
(PO )m
Pm = W (6-32)
ey = (o, (6-33)
16(EA),,
g@a=——>3" -
ML, (6-34)
6.3.2.2 Fundamental resonance
For fundamental resonant conditions, the steady-state response is:
w(t) = acos(Qt - y) + 0O(g) (6-35)
The loading frequency is expressed as:
Q=wnteo (6-36)

where €0 is the detuning, which, for a given amplitude of the response, is calculated by the following
equation:

302 , | p? ) 3eda’ | | (ep)? 2
o= + —-H° > €0 = + -(€ -37
8o | 4wla® H 8o | 402a? (ep) (6-37)

Taking into account Egs. (6-33) and (6-34) and substituting ep with:

(Po)
ep = Pm = |\5)| m (6'38)
m
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Eq. (6-37) can be rewritten as:
6a> (EA Py)2
o= %= );“ * (20);“ 7~ (o)’ (6-39)
Wn ML, 4M oA
The peak amplitude of the free oscillation term is:
a, - P __¢P __(Po)m 6-40
P Qg 2eH0g  2M, L0 (6-40)
and the corresponding value of the detuning o:
3ap’ 3ea(ep)’  _ 3(Po)m EA)m
o] =——— =€ = = 6-41
Pk ™ 3212003, Pk T (2w, 2M3 2wl L3, (6-41)
The backbone curve of the system is described by:
3aa? 3eaa’ 6a’ (EA),,
0= = €0 = =>€&0=—-- 3 (6-42)
8w, 8w, On ML
The unstable solutions are for values of frequency detuning o:
2 22 2 22
6aa 3aa P 6aa 3aa 2
- -M° <0< + —J° =
8w, 8w, 8w, 8w,
2 2
6eaa’ 3eda’ 5 6eaa’ 3eda’ 5 (6-43)
- —(ep)” <0< + —(eg)* =
8w, 8w, 8w, 8w,
2B —B% — (w,,)? < €0 < 2B +B% - (lw,)>
where
6aZ (EA)
B= —3’“ (6-44)
memLm
6.3.2.3  Superharmonic resonance
For superharmonic resonant conditions, the steady-state response is:
w(t) = acos(3Qt -y, )+ Po)m . 1 - |cos Qt + O(e) (6-45)
Mm Wy — Q
The loading frequency is expressed as:
3Q=wmn+€0 (6-46)

For a given amplitude of the free oscillation term a, the frequency detuning is calculated by:
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3aA> 3aa®  |a’A®
= + e v
w, 8w, wha

2 2 2 A6
380:380/\ +3saa +\/(z—:a) A

Wn 8('om (J.)rzna2

2 2
oo 98N (EA), 6% (EA),

- (W)’ =

Wm MmL?n W IVImL?;n

where

NP1
2Ivlm (.l)zm —QZ

A (16(EA),, )
i\/wfnaz [ M, L ] —((wy)?

The peak amplitude of the free oscillation term is expressed as:

aN®  eaN’  16(EA),

A3

Qpeak = = =

Ho, g, M L3 w?

and the corresponding value of the detuning €o:

OF%)

3aA? a’A? 3ea/?
Opeak = 1+ = €0peak = 1+

8u2w?,

Wm

(ea)?A? -
8(en)’ wp,

2
_ 48(EA)m (PO)m 1
€0peak = 3 2 2 ’
OnMul, | 2Mn |0, - Q

L1 (166 ) [Eodn( 1 )
82w | ML My 0f, -Q?

6.3.2.4 Subharmonic resonance

In case of subharmonic resonance, the loading frequency is expressed as:

Q=3wn+€0

For a given detuning €0, subharmonic solutions with non-trivial amplitudes exist only if:

2 2
E_ 0—2—63 <90 2 9 9 g3
4("-)20|-I H H

_ [(e0)® 63a ., &0
(gp)z 40.)m£l.| €

(€0)° o3 256N (EA)y _ €0 | (e0)

(e0)*
(en)?

-63

Zwm (Cwn)? S wh ML, Qo

((wm)?

where A is defined by Eq. (6-48), while for a given A subharmonic solutions exist if:

(6-47)

(6-48)

(6-49)

(6-50)

(6-51)

(6-52)
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2 2
o> 63a A2+ 20, B o> 63ea A+ 20, (gn) N
8w, a A2 8w, €a  A?
L1260 (ER), MG o) (6-53)
Oy ML 8EA), A2
with amplitude calculated by:
8w 8w > 6402 9an2 )’
a’?=|0—M_6A° |+ |[0—M 6N | -—/—M||g-— +9p? | =
9a 9a 81a? W
8w 8w > 6402 9gan? )’
=|eo—™ _6A? |+ [[eo—™ —6A% | — m_|leg— +9(ep)? | =
9a 9¢a 81(ea)? O
(6-54)
3
a2 - ECM—6A2 +
18(EA).,

2
o WML, en| M2 LS w2, o 9N 16(EA)m
Wm MmL?;n

2
2
18(EA), 24N || o j #3(on)

In case no subharmonic resonant conditions exist, the response at steady state depends only on the
external load:

_ (PO)m 1
w(t) = M Lw%_QZJcosQHO(s) (6-55)

while, for the non-trivial stable solution of response amplitude, the response of the nonlinear system
at steady state is:

Qt-vy (Po)m 1
w(t)=acos( 3 °j+ I\?Im (mz QZJcoth+O(E) (6-56)

6.4 EXAMPLE 1: CABLE NET WITH SAG-SPAN RATIO f/L=1/35

For this example, the cable diameter is assumed equal to D,=50mm, with cross-sectional area
Ap=0.00196m2. The concentrated mass on every node is equal to:
_ 2Apppl,  2.0.00196m? -100kN/m? -100m

B = =0.151kNsec’ m™ )
" giNy +1) 10m /sec?(25+1) (6-57)

The pretension is (No),=600kN, corresponding to approximately 20% of the yield stress, which is
considered equal to 1570MPa.

6.4.1 Transformation of the prototype to the model

The equivalent SDOF model for the cable net with sag-to-span ratio f,/L,=1/35, has the following
characteristics:
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N, +1 26
D, =D P =0.05m || == | =0.18m _
m =Yp [Nm+1] (2) (6-58)
N, +1 26
A, = P =0.00196m? - == = 0.0255m? _
m P(Nm +1] 2 (6-59)
Np +1 5 5
(EA)m = (EA), N1 165000000kN /m~ - 0.0255m“ = 4211697.6kN (6-60)
m
Np +1 26
(No)m = (Ng), N1 = 600kN = 7800kN (6-61)
2 2
N, +1
M :Mp( P J =0.151kNsec’ m™ -(éj = 25.52kNsec’ m™ (6-62)
N, +1 2
6.4.2 Analytical solution for the SDOF model
6.4.2.1 Maximum static deflection
The maximum cable tension is calculated as:
Nemax,m=Am0y=0.0255m*157000kN/m*=40035kN (6-63)
The maximum permissible deflection is defined as:
W maxm| = [fn = JF2 - Q‘ = ‘2.857m ~/(2.857m)? +38.517m? | = 3.975m (6-64)
where
B 2
o
Q=|1-——— 24— -[(Lm /2) +f§]:»
L. Mo
(EA)
- 2 (6-65)
[ 1570000kN/m* 1}
2
Q- |1 165000000kN/m [a0om /2 + (2.857m)? | = ~38.517m?

., 7800KN 2
4211697.6kN

6.4.2.2 Maximum static load

Based on the theory of chapter 3 regarding the static analysis of the simple cable net, the load that

causes the maximum permissible deflection is equal to:

Pax,m=10939kN

(6-66)
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The diagram of the applied load with respect to the deflection of the central node is depicted in Figure
6-5:

12000 -

8000 ~

Pm (kN)

4000 -

O T T T 1
0 1 2 3 4
W, (M)

Figure 6-5: Load — displacement curve

6.4.2.3 Eigenfrequency of the model
The eigenfrequency of the SDOF model is calculated from Eq. (6-31):

m

= % 8£+2(N0)m_4(N0)mi =
Mulm | L2, (A  (EA)m L2

4.4211697.6 (_2.8572 7800 7800 2.857° (6-67)
W, = 18 2 4 =

25.52-100 1002 C4211697.6 4211697.6 1002

o, =8.22sec!

6.4.2.4 Fundamental resonance for damping ratio (=2%

The maximum amplitude of the steady-state response, defined by Eq. (6-40), cannot be larger than
the maximum permissible deflection. Thus, the threshold of the load amplitude can be calculated:

2
apeak < Wmax,m = (Po)m,peak < 2Mma‘)mwmax,m =

6-68
(Po)mpeak <2-25.52kNsec’ m™ -0.02-(8.22sec™)? - 3.975m = 274.17kN (6-68)
which corresponds to load amplitude for the MDOF cable net:
N +1) 2
+
(Po)p,peak = (Po)m, k(m—j =274.17kN - (—] = 1.62kN (6-69)
p,pea m,peal Np + 1 26

Taking into consideration that during the transient response the deflection of the net cannot exceed
the maximum permissible one, a smaller load amplitude is chosen for the prototype equal to
(Po)p=1.30kN, corresponding to a nodal load for the SDOF model, equal to:

Podm = (Py)o| 2L " 130k (25)” - 210700 ;
oJm =Wolo\ N 1) T 'ETJ— : (6-70)
For this load amplitude the maximum amplitude of the steady-state response is:

Podm 219.70kN
2M, w2, 2-25.52kNsec’ m™.0.02-(8.22sec!)?

Apeak = =3.185m (6-71)

and the corresponding value of the detuning o:

Doctoral Thesis of Isabella Vassilopoulou N.T.U.A. 2011



Investigation of a MDOF Cable Net using an Equivalent SDOF Cable Net 215

3(Py)m (EA),
€0peak =35 5,3
ZMmC mem
3.(219.70kN)? - 4211697.6kN /m?
2-(25.52kNsec? m™)3 .0.022 - (8.22sec!)® - (100m)?

(6-72)
=1.22sec!

€0 peak =

Hence, the peak steady-state response amplitude occurs for loading frequency:
Q=wn+£0=8.22sec+1.22sec'=9.44sec=1.15wy, (6-73)

The response curve is based on Eq. (6-39):

2 P 2
€0 = 6a . (EA);n 4 (20);1 5 _(Cwm)z =
Wy ML \4M2wia
_ 6a* 4211697.6kN .
8.22sec! 25.52kNsec’m™ - (100m)3

2
. (219.7kN) ~(0.02-8.22sec1)? =
4.(25.52kNsec> m™1)2(8.22sec )2 - a2

t30)

(6-74)

€0 = {0.12a2 + 0'—27—0.027]5ec1

a

while the frequency ratio is calculated as:

Q wy+E&o

on on 79

The backbone curve of the system is calculated according to Eq. (6-42):

6a’ (EA)m 6.4211697.6kN - a2 S
€0 = . = = 0_12a (Sec ) _
W, ML, 8.22sec!.25.52kNsec’m™ - (100m)> (6-76)

The instability region is defined by the expression (6-43) taking into consideration Egs. (6-44) and

(6-76):
2B - B2 - ({w,,)? <€0 < 2B +B% - ({w,)? =
2B - /B2 - (0.02-8.22sec 1) < €0 < 2B + /B2 - (0.02-8.22sec 1) = (6-77)
2B - /B2 — (0.1644 sec 1)2 < €0 < 2B + B2 — (0.1644 sec )

where

_6a’(EA), 6-4211697.6kN - a’
oM L3 8.22sect 25.52kNsec? m~ - (100m)3

B =0.12a(sec?) (6-78)

The amplitude of the steady-state response with respect to the ratio of the loading frequency over the
eigenfrequency is plotted in Figure 6-6. The bending of the curve indicates the intense nonlinearity of
the system. This bending means that jump phenomena are expected to characterise the response of
the prototype, multiple response amplitudes dependent on the initial conditions, existence of unstable
solutions, while the maximum steady-state amplitude is predicted for frequency ratio larger than 1.
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—— SDOF response
= SDOF backbone
------- SDOF instability curve

Amplitude |a|] (m)
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Qlwm

Figure 6-6: Fundamental resonance: response curve of the SDOF model for (=2% and load amplitude
(Pg)m=219.7kN

6.4.2.5 Superharmonic resonance for damping ratio (=2%

In case of superharmonic resonant conditions, the peak amplitude of the free oscillation term is
expressed by Eq. (6-49):

_16(EA), A
VNN 679)
16 - 4211697.6kN A
Apeak = =(1.954 - A*)(m)

25.52kNsec? m~! - (100m)® 0.02-(8.22sec 1)?

Assuming that the maximum steady-state amplitude must not exceed the maximum permissible
deflection:

a+2A =(1.954-A> + 2A)(m) = 3.975m (6-80)
leads to the solution of A satisfying Eq. (6-80):

_ &G 4gpw,  €G-ML3  4lwh

" "6ea &G  6-16(EA), €G

_ 20.14sec>m" -25.52kNsec’® m ' - (100m)®  4-0.02-(8.22sec ")’ - (6-81)
6-16-4211697.6kN 20.14sec 2 m™

AO
Ao =1.003m

where:
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- 1/3
2 96gpw,, + 8leaw?
G - | EH(ED) wm[IOSWmaX - 12J HOm max,m } =
e3 ' €a
5 1/3
16(EA
(w2 (16EA) 2 967w?, +81- M(Lgm Waxm (6-82)
G=| 1| ——T | [108W 1 +12 m_m =
e | M L3 ' 16(EA),,
_ Mol
€G =20.14sec?>m!
Considering that the loading frequency is equal to:
Q=w,/3=8.22/3=2.74sec™ (6-83)

the threshold of the load amplitude can be obtained from Eq. (6-48), taking into account the
expression of Eq. (6-81):
(PO)m,peak = 2IVIm/\O(("~)2m _QZ) =
(Po)mpeak = 2-25.52kNsec® m™ -1.003m - ((8.225ec’1)2 -(2.74 sec’l)z):> (6-84)
(Po)mpeak = 3074.70kN

which corresponds to load amplitude for the MDOF cable net:

N, +1
(PO )p,peak = (PO )m,peak {ﬁ

2 2
] :3074.70kN-(%j =18.19kN (6-85)

A smaller load amplitude is chosen for the prototype equal to (Pg),=14kN, corresponding to a nodal
load for the SDOF model, equal to:

Po)m = (Po)y| 2+ 2 k(28 ~ 2366k0 6-86
odm =Codol y —7 ) = (?j— (6-86)
meaning:
A= (PO)m 1 N
Z’Mm (L)En_Q_Z
2366kN 1 (6-87)
= . :>
2.25.52kNsec’m™ . (8.22sec!)? —(2.74sec)?
A =0.772m

The amplitude of the free oscillation term for this nodal load is:

apeak = (1.954 - A*)(m) =1.954m 2 - (0.772m)* = 0.90m (6-88)

occurring for frequency detuning:
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0M, L3, 82w | M, L3

48 -4211697.6kN

2
€0 peak = —48(EA)m N {1 + 1 {16(EA)m J . /\4] =

€0, = -(0.772m)? -
Peak 8 22sec . 25.52kNsec? mt - (100m)>
2
114 1 16 - 4211697.6kN (0.772m)* | >
8.0.022% - (8.22sec 1)* { 25.52kNsec? m™* - (100m)?

€0 peak = 0.67seC ™

The maximum steady-state amplitude is:

Winaxsuperm = @+ 2A = (1.954 - A% + 2A)(m) = 0.90m + 2-0.772m = 2.44m

The diagram of the steady-state response is defined by Eq. (6-47):

2
2 2 6
5. 48N (EA), 62’ (EA), | /2\ . 16(EA),, @) -
Oy ML on ML oia MnL3,
oo 48-(0.772m)* 4211697.6kN .
(8.22sec™!)  25.52kNsec’m™ - (100m)3
6a> 4211697.6kN

+ . +
(8.22sec™) 25.52kNsec®m - (100m)3

. J (0.772m)° ( 16 - 4211697.6kN

2
2
~10.02.(8.22sec V)| =
(8.22sec)?a? | 25.52kNsec? m‘l-(100m)3] [ ]

0.022
%)

g0 = 0.574sec !+ 0.12a(sec ) + \/ (sec™?)-0.027(sec?)

(6-89)

(6-90)

(6-91)

and the frequency detuning is calculated for a given response amplitude. The total response

amplitude is:
W, =a+2A (6-92)
where A this time is calculated as:
A= Po)m 1 A= 2366kN . 1 -
2-Mp 03 -Q° 2-25.52kNsec’m™ . (8.22sec)? - Q?
5 (6-93)
_ 46.36m/sec
(8.22sec )2 - @?
with
W, +&0
Q=—"5— (6-94)
The response diagram is plotted in Figure 6-7.
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Figure 6-7: Superharmonic resonance: response curve of the SDOF model for {=2% and load amplitude
(Po)m=2366kN
6.4.2.6  Subharmonic resonance for damping ratio (=2%
Subharmonic solutions, with non-trivial amplitudes of the free oscillation term, exist only if:
o> 126A°  (EA)m . Mulsn  GPom
Oy M3 8EA), A
1262 4211697.6kN

3

€0 > . > 3 +
8.22sec! 25.52kNsec?m™ - (100m) (6-95)
25.52kNsec® m™ - (100m)® 0.02° - (8.22sec*)’ -
8-4211697.6kN N2
€0 > 2.53A\?(sec ) + 0'/1268 (sect)
for a given value of A. The load amplitude is calculated from Eq. (6-48):
(Po)m = 2MnA(@3 - Q2) = 51.04kNsec? m ™ - A-[(8.22sec )2 - Q2 (6-96)
where
Q=3w,+£0=24.66seC’ +£0 (6-97)

for a frequency detuning satisfying inequality (6-95), while the amplitude of the oscillation is obtained
by Eq. (6-54):

2 — €0 memL?Fn —6/\2 +
18(EA).,
0. M L3 2 @2 9A2 16(EA),. |
go—M_M-m _gAZ | _ _ - 2 EU—_'—3m +9(C00m)2 = (6-98)
16EA), 2 | on Mol
MZLS,

a’=c++c’-D-E

where

Nonlinear dynamic response and design of cable nets



220 Chapter 6

8.22sec!.25.52kNsec? m~t - (100m)3 5 o
=€0- —6A? = (2.77¢0 — 6A _
€= 18-4211697.6kN (2.77e0 )(m?) (6-99)

_ (8.22sec™)? . (25.52kNsec? m™ - (100m)>

2
. ) =7.66m* sec? (6-100)
324 - (4211697.6kN)

D

2 2
E-leg-— N . 16-4211697.6kN +9.(0.02-8.22sec?)? =
8.22sec? 25.52kNsec?>m™ - (100m)3 (6-101)
—E-= [(sc —2.89N? )2 + 0.24}(sec‘2)
Thus, Eq. (6-98) becomes:
a’ = (2.77e0 —-6A*)(m?) +
(6-102)

; \/ (2.7720 -~ 6n2)m?)[ - 7.66- {(so ~2.89M2 + 0.24}(m4)

Figure 6-8 illustrates the curve that defines the region of the subharmonic solutions, by means of A
and (Po)m with respect to the frequency ratio and to the response amplitude, according to Eqg. (6-102).
In Figure 6-9 the same charts are plotted for values of load amplitude up to the maximum permissible
static one. In Figure 6-10 the response amplitude is plotted with respect to the frequency ratio and
the loading amplitude. In Figure 6-11 the response amplitude is again plotted for values up to the
maximum permissible one. It is noted that in Figure 6-9a the amplitude A is much smaller with respect
to the one of the free oscillation term, shown in Figure 6-11a, confirming that subharmonic
resonances can suddenly develop vibrations with very large amplitudes leading to catastrophic results.
The frequency ratios that could cause subharmonic resonance without cable failure are between 3.18
and 3.70 (Figure 6-11a), resulting in oscillation amplitudes larger than 1.77m (Figure 6-11), while the
load amplitude should be larger than 4732kN (Figure 6-9b and Figure 6-11b), corresponding to 28kN
for the prototype.
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Figure 6-8: Subharmonic resonance of the SDOF model for {=2%: (a) A vs. frequency ratio, (b) (Pg)m Vs.
frequency ratio
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Figure 6-9: Subharmonic resonance of the SDOF model for (=2% for loads up to the maximum permissible static
one: (a) A vs. frequency ratio, (b) (Py)m Vvs. frequency ratio
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Figure 6-10: Subharmonic resonance of the SDOF model for (=2%: (a) response amplitude vs. frequency ratio,
b) load amplitude (Pg), vs. response amplitude
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Figure 6-11: Subharmonic resonance of the SDOF model for (=2% for loads up to the maximum permissible
static one: (a) response amplitude vs. frequency ratio, (b) load amplitude (Po)., vs. response amplitude

A parametric analysis, changing the load amplitude, the frequency ratio and the initial deflection,
keeping the initial velocity of the central node equal to 16m/sec, shows that as the load amplitude
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increases, the minimum initial deflection and the frequency ratio that can cause subharmonic

resonance decrease (Figure 6-12).
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Figure 6-12: Subharmonic resonant conditions for the SDOF model with {=2%: (a) (Po)m Vs. frequency ratio,
b) initial deflection vs. frequency ratio

If, for example, the load amplitude is equal to (Py),=10140kN, which corresponds to a load amplitude
(Po),=60kN for the MDOF prototype, the minimum initial deflection required in order to have a
subharmonic resonance is 1.06m with a loading frequency equal to Q=3.26w,, assuming an initial
velocity equal to 16m/sec. The time-history diagrams of the central node deflection, for these initial
conditions and for zero initial conditions, are shown in Figure 6-13.
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Figure 6-13: Time-history diagrams of the central node deflection for Q/w,=3.26 and (Py),,=10140kN: (a) with
zero initial conditions, (b) with initial displacement and velocity

If the load amplitude is equal to (Py)m=9464kN, corresponding to 56kN for the MDOF prototype, an
initial velocity 16m/sec, a minimum initial deflection 1.49m and a loading frequency Q=3.32w,, are
required for subharmonic resonance. The deflection time-history diagrams, for these initial conditions
and for zero initial conditions, are shown in Figure 6-14.
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Figure 6-14: Time-history diagrams of the central node deflection for Q/w,=3.32 and (Py)=9464kN: (a) with
zero initial conditions, (b) with initial displacement and velocity

For a load amplitude equal to (Py)n=8619kN, corresponding to 51kN for the MDOF prototype, an initial
velocity 16m/sec, a minimum initial deflection 2.28m and a loading frequency Q=3.44w,, constitute
the conditions for subharmonic resonance. The time-history diagrams of the central node deflection,
for these initial conditions and for zero initial conditions, are shown in Figure 6-15.
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Figure 6-15: Time-history diagrams of the central node deflection for Q/w,=3.44 and (Py),=8619kN: (a) with
zero initial conditions, (b) with initial displacement and velocity

If the load amplitude is equal to (Po)n=8281kN, (corresponding to (Py),=49kN), subharmonic
resonance occurs for an initial velocity equal to 16m/sec, a minimum initial deflection 2.99m and a
loading frequency Q=3.57w,. The time-history diagrams of the central node deflection, for these
initial conditions and for zero initial conditions, are shown in Figure 6-16. In this case, the load
amplitude is smaller, the initial deflection required in order to have subharmonic resonant conditions is
larger and, during the resonant phenomenon, the dynamic deflection of the central node reaches

almost the maximum permissible one.
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Figure 6-16: Time-history diagrams of the central node deflection for Q/w,,=3.57 and (Py),=8281kN: (a) with
zero initial conditions, (b) with initial displacement and velocity

6.4.2.7 Fundamental resonance for damping ratio (=0.5%

Similarly, for damping ratio (=0.5%, the threshold of the load amplitude can be calculated:

(Po)mpeak <2-25.52kNsec? m™ -0.005 - (8.22sec')? - 3.975m = 68.54kN (6-103)

which is much smaller that in the case of damping ratio (=2%. This load corresponds to load
amplitude for the MDOF cable net:

2
2
(Po)p,pea = 68.54kN - [%j — 0.40kN (6-104)

A smaller load amplitude is chosen for the prototype equal to (P,),=0.31kN, corresponding to a nodal
load for the SDOF model, equal to:

2
(Pg)m =0.31kN- [?j =52.39kN (6-105)
For this load amplitude the maximum amplitude of the steady-state response is:

I 52.39KN s oam
Pek = 5 . 25.52kNsec? mt -0.005 - (8.22sec 1)2 (6-106)

and the corresponding value of the detuning €o:

3-(52.39kN)? - 4211697.6kN / m?
2-(25.52kNsec® m™)3.0.0052 - (8.22sec)° - (100m)3

€0 peak = =1.11sec™ (6-107)

almost equal to the one for damping ratio (=2%. Hence, the peak steady-state response amplitude
occurs for loading frequency:
Q=wn,+€0=8.22sec'+1.11sec"=9.33sec’=1.14wy, (6-108)

The response curve is based on Eq. (6-39):
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6a> 4211697.6kN
€0 = . T
8.22sect 25.52kNsec? m™ - (100m)3

(52.39kN)? 142

+ —(0.005-8.22sec™)” = -

\/4-(25.52stec2 m1)2(8.22sec)? - a2 (6-109)

€0 = {0.12a2 - 0'0216 —0.002]sec‘1

a

The backbone curve of the system, independent of the damping ratio, remains:

g0 = 0.12a%(sec?) (6-110)
The instability region is now defined by:

2B - B2 — ({w,,)? <€0 < 2B +yB% - ({0,)> =

2B - /B2 - (0.005-8.22sec 1)? < €0 < 2B + B2 - (0.005-8.22sec 1)? = (6-111)
2B — /B2 — (0.0411sec?)? < €0 < 2B + /B? — (0.0411sec )2

where B is calculated by Eq. (6-44). The amplitude of the steady-state response with respect to the
ratio of the loading frequency over the eigenfrequency is plotted in Figure 6-17. The bending of the
curve is the same as in case of (=2%, because the backbone curve, defining this bending, is
independent of the damping ratio. In the case of smaller damping ratio, though, the perturbation from
the equilibrium state is smaller, meaning that the response curve approaches more the backbone
curve, which represents the equilibrium state.

—— SDOF response
= SDOF backbone
------- SDOF instability curve

Amplitude |a|] (m)

0.9 1 1.1 1.2 1.3
Q/wn

Figure 6-17: Fundamental resonance: response curve of the SDOF model for {=0.05% and load amplitude
(Pg)m=52.39kN

6.4.2.8  Superharmonic resonance for damping ratio (=0.5%

In case of superharmonic resonant conditions, the peak amplitude of the free oscillation term is
calculated from Eq. (6-49):
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16 - 4211697.6kN A3 3
Apeak = : =(7.82-N°)(m) -112
Pek 55 50kNsec? mt - (100m)®  0.005 - (8.22sec 1)? (6-112)

The value of A that causes a deflection equal to the maximum permissible one is:

Ny =0.69m (6-113)
and the threshold of the load amplitude can be calculated as:

(Po)mpeak = 2-25.52kNsec’ m™* - 0.69m- ((8.22sec )2 — (2.74sec *)? ) =

(Po)m peak = 2115.20kN (6-114)
which corresponds to load amplitude for the MDOF cable net:

2 2
(Po)p,peak = 2115.20kN-(%J =12.52kN (6-115)

A smaller load amplitude is chosen for the prototype equal to (Po),=10kN, corresponding to a nodal

load for the SDOF model, equal to:

26

2
(Pg)m =10kN- (7} =1690kN (6-116)
meaning:
1690kN 1
- 2 1 1,2 T2
2-25.52kNsec*m™ - (8.22sec™)° —(2.74sec™) (6-117)
A =0.552m
The amplitude of the free oscillation term for this nodal load is:
apeak = (7.82- N*)(m) = 7.82m ™ - (0.552m)> =1.30m (6-118)
occurring for frequency detuning:
€0 o = : 48.42116972.6kN1 . .(0.552m)? -
8.22sec™-25.52kNsec” m™ - (100m)
2
14 . 1 _ 16 - 421216917.6kN . .(0.552m)* | = (6-119)
8-0.005° - (8.22sec™)" | 25.52kNsec” m™ - (100m)
€0 peak = 0.50seC™
The maximum steady-state amplitude is:
Wmax,super,m = a+2\ = (7.82- A3 +2A)(m) =1.30m + 2 -0.552m = 2.40m (6-120)
The diagram of the steady-state response is defined as:
Doctoral Thesis of Isabella Vassilopoulou N.T.U.A. 2011



Investigation of a MDOF Cable Net using an Equivalent SDOF Cable Net 227

oo 48-(0.552m)* 4211697.6kN N
(8.22sec™!)  25.52kNsec?m™ - (100m)3
6a’ 4211697.6kN

+ : +
(8.22sec!) 25.52kNsec?m™ - (100m)3

(6-121)

. J (0.552m)® ( 16 - 4211697.6kN

2
2
—10.005-(8.22sec )| =
(8.22sec)?a? 25.52stec2m‘1-(100m)3J [

€0 = 0.293sect+0.12a%(sec 1) + \/&203 (sec™) - 0.002(sec %)
a

and the frequency detuning is calculated for a given response amplitude. The total response
amplitude is:
W =a+2A (6-122)

where A this time is:

1690kN 1
= N =
2-25.52kNsec’m™ . (8.22sec?)? - Q?
_ 33.11m/sec? (6-123)
(8.22sec )2 - @?
with
W, +E&0
Q=—"=— (6-124)

The response diagram is plotted in Figure 6-18.
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Figure 6-18: Superharmonic resonance: response curve of the SDOF model for {=0.5% and load amplitude
(Pg)m=1690kN

6.4.2.9 Subharmonic resonance for damping ratio {=0.5%

Subharmonic solutions exist only if:
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1262 4211697.6kN
€0 > = 3 >+
8.22sec™ 25.52kNsec”m™ -(100m)

25.52kNsec’® m™ - (100m)® 0.005° - (8.22sec*)° -
8-4211697.6kN N2

(6-125)

€0 > 2.53A\?(sec ) + %(sec 1)

for a given quantity of A. The amplitude of the oscillation is calculated as:
a2 =c++vc®>-D-E (6-126)

where c and D are taken from Egs. (6-99) and (6-100), respectively, and

2
IN? 16-4211697.6kN
E=|e0o- N 2 1 3
8.22sec™ 25.52kNsec“m™ -(100m)
+9.(0.005-8.22sec1)? = (6-127)

—E= [(ao — 2.89N? )2 + 0.015}(sec‘2)

Thus, Eq. (6-126) becomes:

a’ = (2.77e0 - 6A*)(m?) +

+ \/[(2.7750 —6n2)m?)f -7.66- |:(go- 2800 F + 0_015}(m4) (6-128)

In Figure 6-19, the curve defining the region of the subharmonic solutions is plotted, by means of A
and (Po)m with respect to the frequency ratio, while in Figure 6-20 the same charts are plotted for
values of load amplitude up to the maximum permissible static one. Figure 6-21 shows the response
amplitude with respect to the frequency ratio and the loading amplitude, while in Figure 6-22 the
same charts are plotted for values of the response amplitude up to the maximum permissible one.
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Figure 6-19: Subharmonic resonance of the SDOF model for (=0.5%: (a) A vs. frequency ratio, (b) (Pg)m Vs.
frequency ratio
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Figure 6-20: Subharmonic resonance of the SDOF model for (=0.5% for loads up to the maximum permissible
static one: (a) A vs. frequency ratio, (b) (Po)m vs. frequency ratio
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Figure 6-21: Subharmonic resonance of the SDOF model for {=0.5%: (a) response amplitude vs. frequency ratio,
(b) load amplitude (Py)m vs. response amplitude
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Figure 6-22: Subharmonic resonance of the SDOF model for (=0.5% for loads up to the maximum permissible
static one: (a) response amplitude vs. frequency ratio, (b) load amplitude (Po)., vs. response amplitude
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For this damping ratio and for an initial deflection smaller than the maximum permissible one equal to
Wmax,m=3.975m, the load amplitude that can cause a subharmonic resonance must be larger than
1180kN. A load amplitude, almost equal to the maximum permissible for superharmonic resonance,
i.e. (Po)m=2500kN and a frequency ratio larger than 3.15, may cause subharmonic resonance. Taking
into account initial deflection 1.50m and an initial velocity 25.50m/sec, for (Py)m=2535kN, which
corresponds to a load for the MDOF system equal to 15kN, the frequency ratio that causes a
subharmonic resonance is Q/w,=3.37, giving an amplitude of steady-state oscillation equal to 2.98m,
which is smaller than the maximum permissible one, meaning that no cable tensile failure occurs. For
zero initial conditions the steady-state amplitude is only 0.14m (Figure 6-23).
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Figure 6-23: Time-history diagrams of the central node deflection for Q/w,,=3.37 and (Py),=2535kN: (a) with
zero initial conditions, (b) with initial displacement and velocity

6.4.3 Numerical results for the MDOF prototype

In order to evaluate the accuracy of this method, numerical analyses are conducted to calculate the
dynamic response of the MDOF cable net, being the prototype for this example.

6.4.3.1 Static response

The maximum cable tension for the prototype is:

Nemax, p=Ap0,=0.00196m?*157000kN/m?>=3082kN (6-129)

Loading uniformly the structure and conducting a numerical analysis of the MDOF prototype, the load
that leads to tensile failure of the cables is calculated equal to P,,.=55.68kN, causing also a maximum
static deflection at the central node equal to 3.20m. The load-displacement curve for the central node
of the net is plotted in Figure 6-24 and the tension distribution at the cables when the load reaches
the maximum value, is illustrated in Figure 6-25, where the slackening of the cables is noted. The
magnified deformed shape is also shown in Figure 6-25.
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Figure 6-24: Load-displacement diagram for the central node
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Figure 6-25: Cable tension of the deformed structure

The maximum permissible load for the SDOF model of Eq. (6-66) is transformed to the load for the
MDOF prototype according to similarity relation (6-18):

N, +1 2

2 2
Proaxp = Pmax’m[N 1] - 10939kN-(%j — 64.73kN (6-130)

p +
and the maximum permissible deflection of Eq. (6-64), calculated for the model, is transformed to the
one for the prototype according to similarity relation (6-26):

Wp=Wr=3.975m (6-131)

The permissible load and deflection of the MDOF prototype provided by the method of the equivalent
SDOF model is, respectively, 16% and 24% larger than the magnitudes obtained by the numerical
simulation. The difference is rather large, because the difference between the model and the
prototype, regarding the number of cables is also large. Nevertheless, this method is not used here to
calculate with accuracy the maximum deflection and cable tension, but it is proposed to detect the
occurrence of nonlinear phenomena.

6.4.3.2 Eigenfrequencies and eigenmodes of the prototype

For this example, the non-dimensional parameter A? is:
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2 2 2 2
\2 () EA _( 1" 165000000kN/m’ -0.00196m> _ . ,, (6-132)
L) Ng 35 600kN

which means that the first mode of the system is the symmetric mode with a vertical component
having no internal nodes with zero displacements. A modal analysis is performed to calculate the
vibration modes and the natural frequencies of the system. The first twelve vibration modes are
shown in Figure 6-26, while the symmetric ones among the first 55 vibration modes are shown in
Figure 6-27. The first vibration mode is the first symmetric mode (1S) with frequency ®,=9.902sec™.
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Figure 6-26: The first twelve vibration modes of the prototype
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Figure 6-27: Symmetric vibration modes of the prototype

According to similarity relation (6-27) the natural frequency of the model should be equal to the
prototype’s one. The natural frequency of mode 1S, obtained by the equivalent SDOF model, is 17%
smaller than the one calculated by modal analysis of the MDOF system. The difference is considered

again as large.
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6.4.3.3 Fundamental resonance for damping ratio (=2%

A dynamic load Py(t)=(Po)pcos(Qt) is applied on every node. The load amplitude is chosen in section
6.4.2.4, equal to (Po),=1.30kN. The load frequency varies between 0.90w, and 1.30w,. The damping
ratio, according to similarity relation (6-29), is equal to {,=(,=(=2%. Considering equal damping
ratios for the first four modes, the coefficients for the Rayleigh damping are calculated, taking into
consideration the first and the fourth eigenfrequencies, as also explained in chapter 2:

_ 2lw;w,  2-0.02-9.902sec*-12.751sec”
W1 + Wy 9.902sec !+12.751sect

0 =0.22sec! (6-133)
27 2.0.02

a, = =
'T w0, +ws 9.902sec+12.751sec

=0.0018sec (6-134)

The amplitude of the steady-state response for the central node of the MDOF prototype with respect
to the ratio of the loading frequency over the eigenfrequency is plotted in Figure 6-28. In the same
diagram the response of the SDOF model of Figure 6-6 is also illustrated for comparison reasons. In
this diagram each dot corresponds to the steady-state deflection amplitude of the central node,
obtained by one numerical analysis with zero initial conditions. The circles define the steady-state
response of one numerical analysis considering initial conditions. It is noted that the equivalent SDOF
model can predict with very good accuracy the response of the MDOF system.

—— SDOF response

- SDOF backbone

------- SDOF instability curve
e MDOF response with zero initial conditions
o MDOF response with initial conditions

Steady state amplitude (m)

Figure 6-28: Fundamental resonance: response curve of the MDOF prototype for (=2% and load amplitude
(Po)p=1.30kN

According to similarity relation (6-25), the nodal dynamic deflection of the prototype should be equal
to the one of the model. For frequency ratios between Q/w,=0.90 and Q/w,=1.10, the error of the
calculation is not more than 10%, which is considered as satisfactory. After the peak amplitude and as
the frequency ratio increases, the error increases too, arising at 45% for Q/w,=1.30. This occurs
because the sixth mode of the MDOF system is another symmetric mode, having a frequency
ws=14.655sec’'=1.48w,=1.48w,. Thus, as the loading frequency approaches the frequency of this
mode, the amplitude increases, leading to a fundamental resonance for the sixth mode. Using the
equivalent SDOF model, which has a unique frequency, is not possible to predict this second
fundamental resonance.
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The bending of the response curve for the MDOF system is obvious from the diagram of Figure 6-28.
If zero initial conditions are assumed, when the frequency ratio is Q/w,=1.07 the steady-state
amplitude is 2.52m, while for Q/w,=1.08, the amplitude drops suddenly to 1.06m, verifying the jump
phenomenon. However, if initial conditions are assumed, the amplitude of the steady-state deflection
for Q/wp=1.08 is 2.62m, verifying that the dynamic response of the MDOF prototype depends on the
initial conditions. The initial conditions are deformations and velocities with respect to the three global

axes, applied on every node, taken from the response of the MDOF system for Q/w,=1.07 (Figure
6-29).
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Figure 6-29: Time-history response of the central node for Q/w,=1.07: (a) deflection diagram and
b) vertical velocity diagram
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Figure 6-30: Time-history response of the central node for Q/w,=1.07 at time interval 49sec-50sec:
a) deflection diagram and (b) vertical velocity diagram

At time t=49.58sec, both vertical displacement and velocity are considerable (Figure 6-30), thus the
deflection (Figure 6-31) and the velocity (Figure 6-32) at that time are chosen as initial conditions for
the next frequency step.
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Figure 6-32: Vertical initial velocity for Q/w,=1.08
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The time-history diagrams for Q/w,=1.08, for these two cases of initial conditions, are plotted in
Figure 6-33. It is worth mentioning that for Q/w,=1.12, taking into account initial conditions, the
steady-state deflection of the central node for the first 15 seconds is 2.87m, but after t=20sec, it
becomes much smaller (Figure 6-34). For larger frequency ratios, the initial conditions do not play an
important role in the steady-state response of the system.
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Figure 6-33: Time-history diagrams of the central node deflection for Q/w,=1.08: (a) with zero initial conditions,

b) with initial displacement and velocity
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Figure 6-34: Time-history deflection diagram of the central node for Q/w,=1.12

These phenomena, namely the maximum steady-state amplitude occurring for frequency ratio larger
than 1, leading to the bending of the curve, the jump and the multiple response amplitudes
dependent on the initial conditions, also verified by the numerical simulation, confirm the intense
nonlinearity of the MDOF cable net, which was predicted by the SDOF model. Using the equivalent
SDOF model, it is possible to estimate, for specific load amplitudes, the frequency ratio for which the
maximum dynamic response of the MDOF system is expected.

6.4.3.4 Superharmonic resonance for damping ratio (=2%

In case of superharmonic resonance the load amplitude for the MDOF prototype is chosen in section
6.4.2.5, equal to (Po),=14kN. The load frequency varies between 0.30w, and 0.60w,. The amplitude
of the steady-state response for the central node of the MDOF prototype with respect to the
frequency ratio, and the response of the equivalent SDOF model of Figure 6-7, are plotted together in
Figure 6-35. The steady-state amplitudes, estimated by the method of the SDOF model, are between
25% and 48% larger than the ones obtained by numerical analysis. This estimation cannot be
considered as satisfactory.
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Figure 6-35: Superharmonic resonance: response curve of the MDOF prototype for (=2% and load amplitude
(Po)p=14kN

On the other hand, the peak amplitude for frequency ratio Q/w,=0.36, predicted by the equivalent
SDOF model, is verified for the prototype, confirming the occurrence of the order-three superharmonic
resonance for the first symmetric mode. In Figure 6-36 the response of the central node is depicted
by means of time-history diagrams and response spectra, verifying this nonlinear resonance. The
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steady-state response, obtained after 20sec, is an oscillation of at least two different frequencies. This
is also illustrated in the response spectrum, where two peaks are noted for frequencies 0.56Hz
(3.52sec™), which is close to the loading frequency (Q2=0.36"w,=3.56sec’’) and 1.68Hz (10.56sec™),
which is almost equal to the frequency of the first symmetric mode (w;=w;s=w,=9.902sec™?).
However, in Figure 6-35, a second peak of the amplitude is observed for frequency ratio Q/w,=0.53
for the MDOF system, corresponding to an order-two superharmonic resonance for the same mode. In
this case, the loading frequency is Q=0.53"w,=5.525sec=0.36ws, where ws is the frequency of the
sixth mode equal to we=14.655sec’’. Hence, this second peak indicates also an order-three
superharmonic resonance for the sixth mode being the second symmetric mode of the system.
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Figure 6-36: Response diagrams of the central node deflection for Q/w,=0.36: (a) time-history diagram,
b) response spectrum

In Figure 6-37a, the time-history diagram of the central node deflection is plotted. In Figure 6-37b,
the response spectrum of the central node deflection illustrates that the oscillation of the central node
is characterised by three frequencies: at 0.84Hz (5.28sec™), which is close to the loading frequency
(Q=0.53"w,=5.25sec’?), at 1.72Hz (10.81sec™), being close to the frequency of the first symmetric
mode (w;=w;s=w,=9.902sec’) and at 2.52Hz (15.83sec™), which is close to the frequency of the
second symmetric mode (weg=14.655sec’?).
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Figure 6-37: Response diagrams of the central node deflection for Q/w,=0.53: (a) time-history diagram,
b) response spectrum

Thus, both modes are activated and the occurrence of the order-three superharmonic resonance and
order-two for the first and the second symmetric mode, respectively, is verified. With the equivalent
SDOF model having only one frequency, it is not possible to predict this second superharmonic
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resonance for the mode of higher order. In addition, the SDOF model, having only a cubic nonlinear
term, cannot detect order-two superharmonic resonances.

6.4.3.5 Subharmonic resonance for damping ratio (=2%

Based on the parametric analysis of section 6.4.2.6, a load amplitude equal to (Py),=51kN applied on
every node, with a load frequency equal to Q=3.44w, and initial conditions that correspond to an
initial deflection of the central node 2.28m and initial velocity of the same node 16m/sec, should
cause subharmonic resonance. In order to apply the initial conditions the diagram of Figure 6-31 is
scaled so that the deflection of the central node is 2.28m, while the one of Figure 6-32 is magnified so
that the central node velocity results in 16m/sec. Conducting a numerical analysis for the prototype,
before the first cycle of the oscillation concludes, the nodal deflection reaches the maximum
permissible one, causing cable tensile failure. The same also occurs for load amplitude (Pg),=56kN,
loading frequency Q=3.32w, and initial conditions, corresponding to a deflection and velocity for the
central node, 1.48m and 16m/sec, respectively (Figure 6-38). For smaller load amplitudes, larger
initial deflection is required, and for smaller initial deflection, only larger load amplitude can cause
subharmonic resonance. Both cases lead to cable tensile failure. Thus, for this cable net, with
damping ratio 2%, it is impossible for the subharmonic resonance to evolve, because the large load
amplitude and the large initial conditions required for such a resonance, cause cable tensile failure as
soon as the vibration starts.
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Figure 6-38: Time-history response of the central node for: (a) (Po),=51kN and Q/w,=3.44, (b) (P),=56kN and
Q/wp=3.32

6.4.3.6 Fundamental resonance for damping ratio {=0.5%

For damping ratio {=0.5%, the load amplitude is chosen in section 6.4.2.7, equal to (Py),=0.31kN.
The load frequency varies again between 0.90w, and 1.40w,. The coefficients for the Rayleigh
damping are calculated, taking into consideration the first and the fourth eigenfrequencies:

_ 24w;w, _2-0.005-9.902sec*-12.751sec !

q =0.0557sec? 6-135
0w +w, 9.902sec 1+12.751sec? ( )
2 2.0.005
a, = = =0.0018sec _
' 0, +ws 9.902sect+12.751sect (6-136)

The amplitude of the steady-state response for the central node of the MDOF prototype with respect
to the ratio of the loading frequency over the eigenfrequency is plotted in Figure 6-39, along with the
response diagram of the SDOF model of Figure 6-17. In this case the error of the estimated response
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amplitude, based on the method of the equivalent SDOF model, is approximately 10%, which is
considered as satisfactory. In addition, the instability region, the jump phenomenon, the double
response dependent on the initial conditions and the frequency ratio for which the maximum steady-
state response occurs are predicted by the SDOF model. The diagram is narrower than the one for
damping ratio (=2%, approaching the backbone curve. As a consequence, the existence of the sixth
mode will increase the steady-state amplitude of the response for frequency ratios near Q/w,=1.48,
causing a divergence between the results of the equivalent model with the ones obtained numerically,
due to the fundamental resonance for this second symmetric mode. But for values up to Q/w,=1.30,
this mode does not influence the response curve, resulting in very good agreement between the
analytical solution for the SDOF model and the numerical one for the MDOF prototype. For frequency
ratios between Q/w,=1.04 and Q/w,=1.06, two response amplitudes are obtained, depending on the
initial conditions.

—— SDOF response

—— SDOF backbone

------- SDOF instability curve
e MDOF response with zero initial conditions
o MDOF response with initial conditions

Steady state amplitude (m)

0.9 1 11 1.2 1.3
Qfwp

Figure 6-39: Fundamental resonance: response curve of the MDOF prototype for (=0.5% and load amplitude
(Pg)p=0.31kN

The deflection distribution at the nodes considered as initial condition is shown in Figure 6-40, while
the vertical initial velocity distribution, in Figure 6-41. The time-history diagrams of the response for
Q/wp=1.04, taking into account initial conditions or not, are plotted in Figure 6-42.
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Figure 6-40: Vertical initial deflection for Q/w,=1.04
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Figure 6-41: Vertical initial velocity for Q/w,=1.04
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Figure 6-42: Time-history diagrams of the central node deflection for Q/w,=1.04: (a) with zero initial conditions,
b) with initial displacement and velocity

For Q/w,=1.07, taking into consideration initial conditions, the steady-state deflection of the central
node for the first 20sec is 2.13m, but then it drops with beat phenomenon until the steady-state
amplitude corresponding to zero initial conditions is reached (Figure 6-43). For frequency ratios larger
than Q/w,=1.07, the initial conditions do not influence the steady-state response of the system.
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Figure 6-43: Time-history deflection diagram of the central node for Q/w,=1.07

6.4.3.7 Superharmonic resonance for damping ratio (=0.5%

For superharmonic resonant conditions, the load amplitude for the MDOF prototype is chosen in
section 6.4.2.8, equal to (Py),=10kN. The amplitude of the steady-state response for the central node
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of the MDOF prototype with respect to the frequency ratio, varying between 0.30w, and 0.60w,, and
the response of the equivalent SDOF model of Figure 6-18, are plotted together in Figure 6-44. The
estimation of the steady-state amplitudes by the method of the SDOF model, is again non satisfactory,
being 16%-45% larger than the ones obtained by numerical analysis. Two peaks of the steady-state
amplitude are noted for the prototype. The first one occurs for frequency ratio ©Q/w,=0.35, as
predicted by the equivalent SDOF model, confirming the order-three superharmonic resonance for
mode 1S. In Figure 6-45 the deflection time-history and response spectrum are plotted, verifying the
phenomenon of this nonlinear resonance. In the second chart, two peaks are noted for frequencies
0.55Hz (3.45sec’), which is almost equal to the loading frequency (Q=0.35'wp=3.47sec'1) and 1.66Hz
(10.43sec’), which is close to the frequency of mode 1S (w;s=w,=9.902sec™).
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Figure 6-44: Superharmonic resonance: response curve of the MDOF prototype for (=0.5% and load amplitude
(Pg)p=10kN
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Figure 6-45: Response diagrams of the central node deflection for Q/w,=0.35: (a) time-history diagram,
b) response spectrum

The second peak of the steady-state amplitude is observed for Q/w,=0.52, corresponding to order-
two superharmonic resonance for mode 1S and an order-three superharmonic resonance for the sixth
mode, verified also by the charts of Figure 6-46, which present the time-history diagram and the
response spectrum of the central node deflection. In the second chart three frequencies of the
oscillation are noted: at 0.82Hz (5.15sec™), which is equal to the loading frequency
(Q=0.52'0)p=5.15sec'1), at 1.66Hz (10.43sec), being close to the frequency of the first symmetric
mode (w;=w;s= 0,=9.902sec™) and at 2.47Hz (15.52sec™), which is close to the frequency of the
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sixth mode (ws=14.655sec?). None of these two nonlinear resonances can be predicted by the
method of the equivalent SDOF model.
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Figure 6-46: Response diagrams of the central node deflection for ©Q/w,=0.52: (a) time-history diagram,
b) response spectrum

6.4.3.8 Subharmonic resonance for damping ratio (=0.5%

In order to detect subharmonic resonance, the conditions of section 6.4.2.9 are adopted. Thus, the
load amplitude takes the value (Py),=15kN, while the frequency ratio is Q/w,=3.37. The time-history
diagram of the central node deflection for zero initial conditions is shown in Figure 6-47a, while in
Figure 6-47a the diagram of the central node motion is plotted, taking into account the initial
deflection shown in Figure 6-40 and the initial velocity illustrated in Figure 6-41, which are close to the
corresponding ones, assumed in section 6.4.2.9.
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Figure 6-47: Time-history diagrams of the central node deflection for Q/wy,=3.37 and (Py),=15kN: (a) with zero
initial conditions, b) with initial displacement and velocity

For these diagrams, an infinitely linear material is assumed, in order to avoid the end of the
calculation due to cable tensile failure. Indeed, in case initial conditions are considered, the maximum
deflection measured is 3.71m at time 1.215sec, exceeding the maximum permissible one, which is
3.20m, leading to a maximum cable tension equal to 3077kN (Figure 6-48). For a material
1670/1860MPa though, the maximum permissible cable tension would be equal to:

Nemax,p=Ap0,=0.00196m*167000kN/m?*=3273kN (6-137)

which means that, for this steel category, the deflection of 3.71m would be possible to occur without
causing cable tensile failure.
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Figure 6-48: Maximum cable tension of the deformed structure
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Comparing the diagrams of Figure 6-47 with the ones of Figure 6-23, it is obvious that the response of
the MDOF prototype is not well predicted by the equivalent SDOF model. For zero initial conditions,
the steady-state amplitude of the prototype is almost 1.00m, while for the SDOF model it is 0.14m.
Considering initial conditions, the steady-state amplitude of the prototype does not differ from the one
calculated with zero initial conditions, in contrast to the response of the SDOF model, for which, due
to the subharmonic resonance, the oscillation amplitude arises at 2.98m.

Plotting the response spectra of the central node deflection in Figure 6-49, it is noted that for zero
initial conditions, the vibration of the central node has only one dominant frequency, equal to 5.31Hz,
which is the loading frequency, corresponding to w=33.36sec’’, which is near the frequency of the
51 mode (ws;=35.931sec™), shown in Figure 6-27. This means that a fundamental resonance for this
mode occurs, which explains the large amplitude of the MDOF prototype, with respect to the one of
the SDOF model. The SDOF model, having only one eigenmode, cannot predict this fundamental
resonance. In case initial conditions are assumed, two vibration frequencies are noted, one at 1.71Hz
(w=10.74sec™) and one at 5.31Hz (w=33.36sec?). The first one is very close to the frequency of the
first symmetric mode (w;5=9.902sec™), while the second one is the loading frequency.
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Figure 6-49: Response spectra of the central node deflection for Q/w,=3.37: (a) with zero initial conditions,
(b) with initial displacement and velocity

In Figure 6-50, the time-history diagram of the central node amplitude is plotted again, zoomed at the
time interval from the beginning of the analysis until 20sec. In this chart, the amplitude of the motion
is almost 3.00m until the time of 6sec, when, with a beat phenomenon, it begins to reduce. This
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means that for the first 6sec, a subharmonic resonance occurs with steady-state amplitude equal to

3.00m, as predicted by the SDOF model, but then the fundamental resonance for the 51% mode
prevails.
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deflection (m)
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Figure 6-50: Time-history diagram of the central node deflection for ©/w,=3.37 with initial displacement and
velocity

6.5 EXAMPLE 2: CABLE NETS WITH SAG-SPAN RATIO f/L=1/20

6.5.1 Characteristics of the cable nets

Another cable net is assumed, with sag-to-span ratio equal to f/L=1/20, Young modulus E=165GPa,
and four different cases of cable diameter D and initial pretension No, accounting for three different
levels of initial cable stress. The cable diameter, the initial pretension and the yield stress are chosen
appropriately resulting in characteristic values of the non-dimensional parameter A>. The load
amplitude in each case is chosen large enough to cause bending of the response curve, but small
enough to avoid cable tensile failure. The characteristics of the nets for these cases are tabulated in
Table 6-1.

Table 6-1: Characteristic cases for cable net with f/L=1/20 and E=165GPa

Cases | Py [kN] | D[mm] | No[kN] | o, [MPa] | No/(Ac,) | A
1 1.3 40 735 1670 0.35 0.70
2 1.2 40 600 1570 0.30 0.86
3 2.0 50 600 1570 0.20 1.35
4 5.0 80 800 1570 0.10 2.59

6.5.2 Eigenfrequencies

The first five symmetric modes of the cable nets are illustrated in Figure 6-51, where it is noted that

the shapes of these modes are similar for all cases but do not follow always the same sequence of
appearance.
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Figure 6-51: Eigenmodes and eigenfrequencies of the cable nets with sag-to-span ratio f/L=1/20

The relation between the frequencies of these modes is tabulated in Table 6-2. In all cases the second
and third symmetric modes (2S and 3S) have frequencies close to the one of mode 1S, while the
frequencies of the fourth and fifth symmetric modes (4S and 5S) are considered close to the previous
three symmetric modes only in the last two cases. This, as will be shown, influences the response of
the system, for loading frequencies close to the one of the second and third symmetric modes.

Table 6-2: Relation between the eigenfrequencies of the first symmetric modes

Cases Wys/W1s W3s/W3s Wss/W3s Wss/W3s
1 1.32 1.33 1.73 1.92
2 1.28 1.28 1.64 1.82
3 1.21 1.22 1.49 1.64
4 1.25 1.25 1.44 1.54

6.5.3 Fundamental resonance

Following the same procedure, as described in section 6.4, a damping ratio (=2% is considered and
the case of fundamental resonance for the first symmetric mode (1S) is addressed. The diagrams of
the steady-state amplitude of the central node deflection of the MDOF system, along with the ones of
the equivalent SDOF cable net, for different frequency ratios, are illustrated in Figure 6-52. In all
charts, two peaks appear in the response curve of the MDOF system. The first one, for frequency ratio
close to 1, corresponds to the fundamental resonance of the first symmetric mode, while the second
peak describes the fundamental resonance for the second symmetric mode.
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Figure 6-52: Fundamental resonance: response curve of the MDOF prototype and SODF model for (=2%

For the first two cases, the maximum steady-state response of the central node of the MDOF system,
as well as the frequency ratio for which this occurs, are predicted with satisfactory accuracy by the
method of the SDOF system. For the third case, the response diagram bends more than the one of
the equivalent SDOF cable net, while for the fourth case the method does not provide accurate
results. In this case, the bending of the response curve for the MDOF system is more intense and the
maximum steady-state amplitude of the central node is smaller than the one predicted by the method.
This occurs because for the third and fourth cases the parameter A% is larger than 1.17, meaning that
the fist symmetric mode presents internal nodes with zero displacements, as explained in chapter 5.
Thus, the vibration mode of the SDOF cable net cannot describe well the one of the MDOF system,
and the results do not agree. The analysis of the equivalent SDOF cable net, having only one degree
of freedom, cannot predict the fundamental resonance for the second symmetric mode. In the last
two cases, following fundamental resonance for the first symmetric mode a beat phenomenon
characterises the time-history diagrams of the central node deflection, meaning that more than one
modes participate in the motion of the node. This occurs for frequency ratios between Q/w,=1.14 and
Q/w,=1.20 for the third case and between Q/w,=1.20 and Q/w,=1.40 for the fourth case. The beat
phenomenon is very intense in the fourth case, in which all five symmetric modes have frequencies
close to the loading frequencies, resulting in the irregular increase of the response amplitude, as
shown in Figure 6-52. For example, the time-history diagram and the response spectrum of the
central node deflection for frequency ratio Q/w;s=1.25 are plotted in Figure 6-53. The beat
phenomenon is obvious in the time-history diagram during the 100 seconds of the analysis, which
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does not decay, although damping is included. In the response spectrum, several peaks are
distinguished, corresponding to each one of the symmetric modes illustrated in Figure 6-51, proving
that all symmetric modes are activated during the oscillation of the net.
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Figure 6-53: Response diagrams of the central node deflection for Q/w,=1.25 (case 4): (a) time-history diagram,

(b) response spectrum

Observing the diagrams of Figure 6-52, it is worth mentioning that in order to obtain similar
oscillations amplitudes, the load amplitude for the fourth case is much larger than the one of the other
cases, as listed in Table 6-1. Thus, for the same load amplitude, larger parameters A? lead to smaller
oscillation amplitudes. In the next chapter, the response of the second case is thoroughly
investigated.

6.6 EVALUATION OF THE METHOD

The pros of this method are the following:

The intensity of the geometrical nonlinearity of the MDOF system can be estimated very
satisfactorily, by means of the bending of the response curve, the jump phenomena and the
existence of double response amplitude due to the initial conditions.

The loading frequency detuning, for which fundamental, superharmonic or subharmonic resonances
for the first symmetric mode occur, can be estimated with good accuracy.

The load amplitude, for which cable tensile failure occurs under fundamental, superharmonic or
subharmonic resonant conditions, can be estimated with small error.

The occurrence of subharmonic resonance can be excluded if the system is highly damped or
weakly nonlinear.

The computational time required to solve the equation of motion and have an assessment of the
response of the MDOF system is minimal. On the contrary, the creation of a response diagram for
the MDOF system requires a large number of nonlinear dynamic analyses.

The cons of this method are the following:

The solution of the equation of motion, derived for the SDOF cable net, cannot consider cable
slackening or cable tensile failure during the dynamic motion.

The equivalent SDOF model, having only one eigenfrequency and eigenmode, can detect neither
resonances for higher modes for a MDOF cable net, nor internal resonances.

The equivalent SDOF model, having only a cubic nonlinear term, cannot predict superharmonic or
subharmonic resonances of order two for the large system.
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— The analytical solution of the SDOF cable net is provided for the vertical load applied on the central
node, causing a vertical vibration. Thus, only the oscillation amplitude of the central node of the
MDOF system can be estimated.

— In addition, this vertical motion corresponds to the first symmetric mode of the cable net. Hence,
the method of the equivalent SDOF model cannot estimate the response of the MDOF cable net for
other modal shapes, or for other spatial loading distributions, such as antisymmetric ones.

— The analytical solution of the SDOF cable net describes the steady-state amplitude of the response
but not the maximum transient one, for which a cable tensile failure is possible to occur, before the
steady-state response is reached.

— The results of this method are not satisfactory when the parameter A is larger than 1.17 for the
MDOF system. In this case, the first symmetric mode of the cable net presents internal nodes with
zero displacements and cannot be simulated with accuracy by the one of the SDOF model. Thus,
this method is not recommended for cable nets with sag-to-span ratio between 1/30 and 1/20, with
low levels of initial cable stress or for deep cable nets with sag-to-span ratio larger than 1/20,
independently of the initial cable stress.

— The accuracy of the response amplitude assessment is not satisfactory when, for the MDOF system,
two or more modes with similar shapes have commensurable frequencies, leading to internal
resonance.

6.7 SUMMARY AND CONCLUSIONS

A method of using an equivalent single-degree-of-freedom cable net is introduced in this chapter, in
order to predict the nonlinear dynamic response of a multi-degree-of-freedom cable net. The
geometrical and mechanical characteristics of the large cable net are transformed to the
corresponding ones of the small cable net, using similarity relations. The analytical solution of the
SDOF model is explored, in order to detect nonlinear phenomena, such as the bending of the
response curve, the occurrence of superharmonic and subharmonic resonances, instability regions,
jump phenomena and the double response amplitude with respect to the initial conditions. The results
of the SDOF model, by means of the maximum load, the maximum deflection and the loading
frequency, are transformed to the ones of the MDOF system, by using the inverse similarity relations.
Conducting nonlinear dynamic analyses and numerical simulation of the MDOF cable net, the
nonlinear phenomena are verified.

This investigation verifies that the saddle-form cable nets have cubic nonlinearities, but also quadratic
ones. Near resonances, although damping exists, a small change of the loading frequency may cause
large difference in the oscillation amplitude. The initial conditions influence significantly the response
of the cable net, as occurs in nonlinear systems. Jump phenomena, superharmonic resonances are
also confirmed. Concerning the subharmonic resonances, it is difficult to detect them for a MDOF
system, because they require specific load amplitude, load frequency and initial conditions. It is
impossible to know which load amplitude and frequency and which initial deflection and velocity can
cause this kind of nonlinear resonance, because no analytical solutions are available. The investigation
of the SDOF model showed that subharmonic resonances may occur under certain conditions, but for
the MDOF they are unlikely to occur, because the large initial conditions and the large load amplitude
required for this phenomenon lead to cable tensile failure at the beginning of the vibration. If this is
avoided, the subharmonic resonance appears only in the first few seconds of the vibrations and then
the energy is transmitted to other modes, leading to fundamental resonances for modes of higher
order.

The numerical investigation of the overall nonlinear dynamic behaviour of a MDOF system can be
obtained by a large number of nonlinear time-history analyses, for different load amplitudes and for
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very small time steps and frequency steps. This method can detect the loading amplitudes and
frequencies for which nonlinear phenomena occur, constituting a useful guideline for the design of
such cable structures, in order to avoid nonlinear phenomena.

Part of the work developed in this chapter has been presented in [6-17].
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7 DYNAMIC RESPONSE OF MDOF CABLE NETS
UNDER HARMONIC LOAD

7.1 INTRODUCTION

Tensile structures are much lighter than any other conventional steel or concrete structure, designed
to span the same area and to carry the same permanent loads. This is their main advantage, but, on
the other hand, their lightness renders them particularly susceptible to dynamic oscillations due to
fluctuating loads. Their response under dynamic excitation may become unpredictable, as, apart from
the primary resonance phenomena, secondary resonances may emerge as well, endangering the
system’s stability causing cable slackening, fatigue problems at the cable anchorages or even tensile
failure of some cables.

Several researchers have investigated such phenomena for individual cables, with many applications
in cable stayed or suspension bridges, electrical overhead transmission lines or guyed masts, but only
a few have dealt with such phenomena for cable suspended roofs. Most of the pertinent publications
present new computerised methods of analysis and other numerical techniques to calculate the
nonlinear static or dynamic response of cable networks and membranes, by solving the governing
equations of motion ([7-1] — [7-11]), several of them compared with experimental results. In [7-12]
the authors, presenting several time-history analyses of a cable network oscillation, concluded that
symmetric uniform loading produces an almost linear dynamic response, whilst for antisymmetric
loads, the nonlinearity of the system is more intense. Lazzari et al. [7-13] studied the free vibrations
of a real saddle-form cable net, its resonant behaviour and its dynamic response under wind action.
They interpreted the beat phenomenon of the displacement time-history diagram, in case of primary
resonance, as the change of stiffness due to increase of deformation, producing also a change of the
resonance frequency and avoiding the well-known continuously increasing amplitude of vibration,
which occurs for linear systems.

During the initial stage of the present work, the dynamic behaviour of an undamped cable net with
fixed supports under fundamental resonance was explored in [7-14] and internal resonances were
detected, indicated by the beat phenomena in the oscillation of the net. On the other hand, in [7-15]
a damped cable net with rigid supports subjected to a uniform symmetric load was analysed for a
wide range of values of the loading frequency, concluding that it is never sufficient to take into
consideration only the first natural modes, as fundamental resonances of higher modes may lead to
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cable nets’ oscillations of large amplitudes, comparable to those generated by the fundamental
resonance of the first symmetric mode. Moreover, in [7-16], some similarities and differences between
a network with rigid cable supports and one with the cables anchored to a flexible edge ring were
highlighted.

In this chapter, the nonlinear nature of a cable net is investigated through the occurrence of nonlinear
dynamic phenomena, in order to ascertain whether it can be treated as a weakly nonlinear system.
The net is subjected to harmonic excitations, considering three different spatial distributions regarding
the sign of the dynamic nodal loads. Diagrams of nodal displacements and cable tension variation,
obtained by nonlinear transient analyses, delineate the response of the system. The boundary
conditions of the cables are also studied, underlining similarities and differences between a network
with rigid cable supports and one with the cables anchored to a deformable edge ring, proving that
simplifying assumptions lead in some cases to completely different results.

7.2 MODELLING ISSUES AND ASSUMPTIONS

The 3-dimensional cable network system, described in chapter 6, is utilised again for the investigation
of the dynamic response under harmonic excitation. The cable net forms the surface of a hyperbolic
paraboloid, with circular plan view of diameter L=100m. The net consists of N=25 cables in each
direction, arranged in a quadratic grid. The sag of the roof is equal to f=L/20=5m. All cables have a
circular cross-section with the same diameter D=50mm and area A=0.0019635m?, and mass density
of the cables is m=10kN-sec>*m™, while no concentrated additional masses are assumed. The
influence of the edge ring on the cable net response under harmonic load is also investigated, using
the cable net described above, as far as the cable characteristics are concerned, with a contour ring
having a square box cross-section of width b=6.00m, wall thickness b/10=0.60m, unit weight
p,=25kN/m>® and elastic modulus E,=39GPa. The eventual cable slackening is taken into account
assuming a constant modulus of elasticity E=165GPa in the tension branch and zero compression
branch. The initial cable pretension is Ny=600kN, which is introduced as initial strain in the cable,
equal to No/EA=0.001852. The maximum cable stress is considered equal to the yield stress 1570MPa
corresponding to a strain equal to 0.009515 and a maximum cable tension Np.,=3082.68kN.

Regarding the boundary conditions, the cable ends are considered either as fixed or anchored to a
boundary ring, as described in chapter 5. The state under prestressing is taken into consideration as
the initial state. As proved in chapter 5, the equilibrium at every node under pretension is reached at
the first step of the analysis. Hence, introducing the same strain in all cable segments does not entail
errors in the results. A lumped mass matrix is used and a damping ratio equal to {=2% is assumed.
The damping is introduced in the system as mass and stiffness proportional Rayleigh damping [7-171].
Linear modal analyses are performed to calculate the eigenfrequencies and the eigenmodes, while the
dynamic response of the cable net is represented by nodal displacement and cable tension response
diagrams, conducting time-history analyses, considering also the geometric nonlinearity of the
structure. The geometry and the mechanical characteristics of this system are very close to the ones
of the cable net roof of the Peace and Friendship Stadium in Athens, Greece [7-18].

The difference between the dynamic response and the static one is defined by the ratio of the
dynamic magnitudes of the response over the static ones corresponding to the same load:

Mg

Ry = —3
dyn Mst

(7-1)

where M stands for the nodal deflection or the cable tension and the subscripts d and s denote
dynamic and static results, respectively.
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7.3 LOAD DESCRIPTION

Equal concentrated loads expressed as P=Pycos(Qt), are exerted vertically on all nodes of the net,
having the same amplitude and time variation. No permanent loads are taken into consideration. The
frequency of the harmonic load Q takes several values, aiming at resonance conditions. Two load
amplitudes are considered for dynamic analysis, equal to Py=2kN and Py=24kN, for loading
frequencies near the natural frequency of the system, aiming at fundamental resonance, or smaller
than that, aiming at superharmonic resonance, respectively. Thus, for Py=2kN the loading frequency
Q varies between 0.90w and 1.40w, and for Pq=24kN, Q varies between 0.30w and 0.60w, where w is
the eigenfrequency of the cable net. The same loads are applied statically, in order to compare the
static response with the dynamic one. These amplitudes are chosen so that phenomena of
fundamental and superharmonic resonances appear, respectively, without cable tensile failure; thus,
for load amplitudes larger than 2kN with loading frequencies close to the eigenfrequency of the
system, and for load amplitudes larger than 24kN with loading frequencies smaller than the natural
frequency, the cables reach the yield stress.

The spatial load distribution is assumed either uniform, signed according to the first symmetric mode
(1S), or antisymmetric, signed either according to the first antisymmetric mode with respect to one
horizontal axis (1A), or to both horizontal axes (2A). The nodes that exhibit the maximum deflection
for each loading spatial distribution are node 15 (central node) for mode 1S (Figure 7-1), node 202 for
mode 1A and node 458 for mode 2A (Figure 7-2). The deflection diagrams for these nodes will
describe the response of the system.

Figure 7-2: Antisymmetric spatial load distributions and characteristic nodes

7.4 CABLE NET WITH RIGID SUPPORTS

7.4.1 Eigenmodes and eigenfrequencies

The non-dimensional parameter A? is:

Nonlinear dynamic response and design of cable nets
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This value of the parameter A* does not imply any crossover point. The first mode of the system is the
antisymmetric mode with reference to both horizontal axes, (2A). The second and third modes are
both antisymmetric with respect to y’ or x" axis, respectively, with equal eigenfrequencies and similar
shapes (1A). The auxiliary coordinate system with axes x’ and y’ is shown in Figure 7-3.
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Figure 7-3: Auxiliary axes x’ and y’

The first symmetric mode of the system (1S) is the fourth mode. The first twelve vibration modes and
the corresponding natural frequencies are shown in Figure 7-4. The appearance sequence of the
eigenmodes is as expected, based on the value of parameter A* (see Chapter 5).
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Figure 7-4: Vibration modes and natural frequencies of the cable net with rigid supports

7.4.2 Uniform spatial load distribution (1S) — Static response

For spatial load distribution signed according mode 1S, the load-deflection diagram for the central
node as well as the variation of the maximum tension in the longest cable, are plotted in Figure 7-5
for load up to 24kN. The response appears to be practically linear up to a load level of 18.5kN but
then, the stiffness of the system decreases, due to the slackening of some cables. The geometric
nonlinearity of the system is proved to be weak for this load level, causing almost linear diagrams,
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instead of curved ones as in highly nonlinear systems. The two loads that are considered for dynamic
analysis, equal to P=2kN and P=24kN, cause a maximum static deflection at node 15 equal to 0.067m
and 0.838m, respectively. In addition, these two loads cause maximum static cable tension, equal to
676kN and 1433kN, respectively, developed in cable segment 40 (Figure 7-6). The magnified
deformed shape of the net for P=24kN is shown in Figure 7-7.
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Figure 7-5: Static response of the cable net with rigid supports for uniform spatial load distribution (1S)

Figure 7-7: Magnified deformed shape for uniform spatial load distribution (1S)

7.4.3 Uniform spatial load distribution (1S) — Dynamic response

For a uniform spatial load distribution of the dynamic loads, the steady-state response amplitude of
node 15 with respect to the ratio of the loading frequency over the frequency of mode 1S is illustrated
in Figure 7-8, for loading amplitude Py=2kN and loading frequency between 0.90w;s and 1.40ws,

where w;s=w,=13.875sec™ (f,=2.208Hz, T4=0.45sec).
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Figure 7-8: Steady-state response of the cable net with rigid supports under fundamental resonance for mode 1S
(Pg=2kN)

The maximum steady-state oscillation amplitude occurs for Q/w;s=1.07, equal to 2.18m, which is
much larger (R4yn=32.54) than the static one caused by a load of the same amplitude P=2kN. For
Q/w15=1.08, the steady-state amplitude drops to 1.14m, indicating the bending of the curve and the
jump phenomenon. The time-history diagrams and response spectra of the central node deflection are
illustrated in Figure 7-9 for these frequency ratios. It is noted that the response for Q/w;s=1.07 is
larger than the one corresponding to Q/w;s=1.08. From the response spectra it is confirmed that only
one frequency characterises the oscillation of node 15, equal to 2.37Hz, which is the loading
frequency and close to the frequency of mode 1S. The maximum tension is calculated for cable
segment 129, shown in Figure 7-10. The tension time-history diagrams for these frequency ratios are

illustrated in Figure 7-11. The maximum cable tension of the longest cable is 2410kN (Rg4n=3.56) for
Q/(,l)ls=1.07.
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Figure 7-9: Deflection diagrams for node 15 of the cable net with rigid supports under fundamental resonance for
mode 1S (Po=2kN)
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Figure 7-10: Cable segment 129 developing the maximum tension
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Figure 7-11: Tension diagrams of the cable net with rigid supports under fundamental resonance for mode 1S
(Po=2kN)

The initial conditions influence the response only when Q/w;s=1.31, meaning Q=18.18sec™ (2.89Hz).
For this frequency ratio another peak of the response is observed in Figure 7-8. This loading
frequency corresponds to a frequency ratio Q/ws=1.08 (ws=16.838sec) for the fifth mode, which is
the second symmetric mode of the system, as illustrated in Figure 7-4. Thus, the second peak
indicates a fundamental resonance for this mode. The response diagrams for this frequency ratio,
considering initial conditions, are plotted in Figure 7-12. It is verified that the main peak in the
response spectrum corresponds to the fifth mode. For larger values of this frequency ratio, the
response amplitude suddenly decreases, indicating again jump phenomena.
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Figure 7-12: Deflection diagrams for node 15 of the cable net with rigid supports under fundamental resonance
for mode 1S (Py=2kN, Q/w;s=1.31, initial conditions)

For loading amplitude Py=24kN and frequencies between 0.30w;s and 0.60w;s, the steady-state
response is shown in Figure 7-13. In this chart, two peaks of the response are noted: one for
Q=0.33w;s=4.57sec? (0.73Hz), and one for Q=0.42w;s=5.83sec’! (0.93Hz). The first one, equal to
1.203m, indicates an order-three superharmonic resonance for the fourth mode, while the second
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one, equal to 1.257, corresponds to an order-three superharmonic resonance for the fifth node. This
is verified by the frequency ratio Q/ws=0.35 where ws=16.838sec™’. For frequency ratios between
0.33 and 0.42 smaller steady-state amplitudes are observed. Thus, a small change of the loading
frequency results in significantly different response amplitudes, due to the superharmonic resonance.
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Figure 7-13: Steady-state response of the cable net with rigid supports under superharmonic resonance for mode
1S (Py=24kN)

The deflection diagrams of node 15 for these two frequency ratios are illustrated in the diagrams of
Figure 7-14. The maximum oscillation amplitude is observed during the transient response and it is
equal to -2.13m for Q/w:s=0.33 and -2.72m for Q/w;s=0.42, with Rg4n=2.54 and Ry»=3.25,
respectively. The response spectrum for the first frequency ratio shows two significant frequencies,
one at 0.75Hz, being the loading frequency, and another one at 2.20Hz, being equal to the one of
mode 1S, verifying the order-three superharmonic resonance for this mode. The frequencies of the
oscillation for Q/w;s=0.42, shown in the response spectrum, are 0.95Hz, being close to the loading
frequency, 2.25Hz, near the frequency of mode 1S, and 2.80Hz, which is close to the frequency of the
fifth mode, confirming the order-three superharmonic resonance for these two modes.
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Figure 7-14: Deflection diagrams for node 15 of the cable net with rigid supports under order-three
superharmonic resonance for mode 1S (Py=24kN)
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The cable tensions of the segments presenting the maximum magnitude for these two frequency
ratios are plotted in Figure 7-15. For Q/w;s=0.33 and 0.42, the maximum tension is 2117kN

(Rayn=1.48) and 2470kN (Rq4yn=1.72), respectively. In these diagrams it is noted that cable slackening
and re-tensioning take place.

Q/(,l)15=0.33 Q/(J)15=0.42
3000 - —— dynamic max static 3000 —— dynamic max static

= =

< <

s 2000 A h s 2000 A

‘B ﬂ R T T T T T T T T § B hhnhlﬂ-lnnﬂAAAanan

o) )

g -UWMNKN\/\Nmmm g

Q Q

Qo Qo

8 8

0 T T T 1 O a
0 5 10 15 20 0 5 10 15 20

time (sec) time (sec)

Figure 7-15: Tension diagrams for the cable net with rigid supports under order-three superharmonic resonance
for mode 1S (Py=24kN)

Two other smaller peaks are also observed in Figure 7-13 for Q/w:;s=0.50 and Q/w;s=0.57
corresponding to order-two superharmonic resonances for the same two symmetric modes. The
deflection diagrams of node 15 for these two frequency ratios are plotted in Figure 7-16, with
maximum deflection -2.96m for Q/w;s=0.50 and -3.00m for Q/w;s=0.57, with R4,=3.53 and
Rayn=3.58, respectively. The response spectra show that in case of Q/w;s=0.50, the two frequencies
characterising the oscillation of node 15 are the loading frequency and the one of mode 1S, verifying
the order-two superharmonic resonance for this mode, while for Q/w;s=0.57, three frequencies are
noted, the loading one, and the frequencies for mode 1S and the fifth mode, confirming this time the
order-two superharmonic resonance not only for the fourth mode but also for the fifth one.
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Figure 7-16: Deflection diagrams for node 15 of the cable net with rigid supports under order-two superharmonic
resonance for mode 1S (Py=24kN)
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The cable tension diagrams for these two frequency ratios are illustrated in Figure 7-17. For
Q/w1s=0.50 and 0.56, the maximum tension is 2077kN (Rg4n=1.45) and 2457kN (R4n=1.71),
respectively. In these diagrams cable slackening and re-tensioning are noted again.
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Figure 7-17: Tension diagrams for the cable net with rigid supports under order-two superharmonic resonance for
mode 1S (Py=24kN)

The same conclusions are drawn if smaller load amplitude is assumed, in order to avoid cable
slackening if the load is applied statically. Thus, for loading amplitude P,=18kN the steady-state
response is shown in Figure 7-18. Within the range of Q/w;s=0.30 and Q/w;s=0.60, three peaks are
observed for frequency ratios 0.34, 0.42, 0.53. As expected, they are smaller than the ones of Figure

7-13. As explained in chapter 3, for small load amplitudes, superharmonic resonances cannot cause
large oscillation amplitudes.
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Figure 7-18: Steady-state response of the cable net with rigid supports under superharmonic resonance for mode
1S (Py=18kN)

Although based on the static response the system could be considered as weakly nonlinear, the
response to dynamic loads is proved to be highly nonlinear, characterised by superharmonic

resonances, bending of the response curve, dependence on the initial conditions and jump
phenomena.

7.4.4 Antisymmetric spatial load distribution (1A) — Static response

The net is now uniformly loaded with a vertical static nodal load equal to P=2kN, applied on every
node. The sign of the nodal loads follows mode 1A. The maximum vertical displacement is observed
for node 202 (Figure 7-2), while the maximum tension develops in cable segment 217 (Figure 7-19).
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Figure 7-19: Cable segment 217 developing the maximum tension

The load-deflection diagram for node 202, as well as the variation of the maximum tension are
illustrated in Figure 7-20 for load up to P=24kN. The first diagram is slightly curved, meaning that for
this spatial load distribution the nonlinearity of the cable system is stronger with respect to the
previous consideration of uniform load. The two load amplitudes P=2kN and P=24kN, which will be
considered for dynamic analysis, cause maximum deflection 0.10m and 1.01m, respectively, and
maximum cable tension 665kN and 1349kN, respectively. No cable slackening occurs for this load
level. The magnified deformed shape of the net is shown in Figure 7-21.
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Figure 7-20: Static response of the cable net with rigid supports for antisymmetric spatial load distribution (1A)

Figure 7-21: Magnified deformed shape for antisymmetric spatial load distribution (1A)

7.4.5 Antisymmetric spatial load distribution (1A) — Dynamic response

For a dynamic load with loading amplitude Py=2kN, and spatial antisymmetric distribution signed
according to mode 1A, the steady-state response amplitude of node 202 (Figure 7-2) with respect to
the ratio of the loading frequency over the frequency of mode 1A is plotted in Figure 7-22 for loading
frequency between 0.90w;» and 1.40w;,, where wi=w,=w3;=13.039sec”, corresponding to
f213=2.075HZ and T213=0.485ec.
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Figure 7-22: Steady-state response of the cable net with rigid supports under fundamental resonance for mode
1A (Py=2kN)

For frequency ratios between Q/w;x=1.12 and Q/w;,=1.19, two steady-state responses are calculated.
Considering as initial deflection and initial velocity the ones calculated for Q/wia=1.12, the large
vibration amplitudes are obtained, while the small ones are obtained with zero initial conditions. The
maximum steady-state oscillation amplitude occurs for Q/w;x=1.17 and it is equal to 1.972m
(R4yn=19.72), much larger than the static deflection for the same load amplitude. The maximum
steady-state deflection of the net for this load distribution is smaller than the one of the uniform
distribution for the same load amplitude. On the other hand, the bending of the response curve for
the antisymmetric spatial load distribution is more intense than the one for the uniform load shown in
Figure 7-8, signifying a more intense nonlinear behaviour, as was also observed for static loads.

For Q/w;x=1.18, considering initial conditions, the steady-state amplitude is 1.88m, but suddenly it
decreases to 0.33m, which corresponds also to the steady-state amplitude for zero initial deflection
and velocity. The response for this frequency ratio is shown in Figure 7-23, for the two assumptions
regarding the initial conditions. The response spectra show that only one oscillation frequency exists,
2.45Hz, equal to the loading frequency.
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Figure 7-23: Deflection diagrams for node 202 of the cable net with rigid supports under fundamental resonance
for mode 1A (Py=2kN)
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The maximum cable tension is 895kN for cable segment 121 and zero initial conditions, while taking
into account initial conditions the maximum cable tension develops in cable segment 524, equal to

2155kN with Rqyn=3.24. The aforementioned cable segments are illustrated in Figure 7-24, while the
corresponding diagrams are plotted in Figure 7-25.
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Figure 7-24: Cable segments 121 and 524 developing the maximum tension
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Figure 7-25: Tension diagrams for the cable net with rigid supports under fundamental resonance for mode 1A
(Po=2kN)

The deflection diagram of the net for loading amplitude Py=24kN and loading frequency between
0.30w;4 and 0.60w;, is plotted in Figure 7-26. The maximum steady-state amplitude is 1.803m for
Q=0.40w;4=5.22sec™ (0.83Hz), indicating an order-three superharmonic resonance for mode 1A. The
deflection diagrams of node 202 are illustrated in Figure 7-27, while the time-history diagram of the
maximum cable tension is plotted in Figure 7-28.
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Figure 7-26: Steady-state response of the cable net with rigid supports under superharmonic resonance for mode
1A (Py=24kN)
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Figure 7-27: Deflection diagrams for node 202 of the cable net with rigid supports under superharmonic
resonance for mode 1A (Py=24kN)
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Figure 7-28: Tension diagram for the cable net with rigid supports under superharmonic resonance for mode 1A
(Po=24kN)

The response spectrum shows two significant frequencies of oscillation, one at 0.85Hz, being close to
the loading frequency, and another one at 2.50Hz, which corresponds to the one of mode 1A,
verifying the occurrence of order-three superharmonic resonance for this mode. The maximum cable
tension is 2091kN presenting a ratio Rqy,=1.55.

7.4.6 Antisymmetric spatial load distribution (2A) — Static response

For an antisymmetric spatial load distribution signed according to mode 2A, the maximum tension
develops in cable segment 405, shown in Figure 7-29. The load-deflection diagram for node 458, as

well as the variation of the maximum tension, are shown in Figure 7-30, for load amplitude up to
P=24kN.
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Figure 7-29: Cable segment 405 developing the maximum tension
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Figure 7-30: Static response of the cable net with rigid supports for antisymmetric spatial load distribution (2A)

The first diagram is more curved than the corresponding ones for the uniform load (Figure 7-5) and
the antisymmetric spatial load distribution (1A) (Figure 7-20), meaning that in this case the geometric
nonlinearity of the cable system is more intense than in any other consideration of load distribution.
The two load amplitudes considered for dynamic analysis, P=2kN and P=24kN, cause maximum static
deflection 0.11m and 0.892m, respectively and maximum static cable tension 613kN and 990kN,

respectively. This level of load does not cause any cable slackening. The magnified deformed shape of
the net is shown in Figure 7-31.

Figure 7-31: Magnified deformed shaped for antisymmetric spatial load distribution (2A)

7.4.7 Antisymmetric spatial load distribution (2A) — Dynamic response

Assuming now an antisymmetric spatial load distribution signed according to mode 2A and applied
dynamically, the steady-state response amplitude of node 458 (Figure 7-2), with respect to the ratio
of the loading frequency over the frequency of the antisymmetric mode 2A, is plotted in Figure 7-32,
for loading amplitude Py=2kN and loading frequency between 0.90w,, and 1.40w,,, where
Wa=w;=12.679sec? (f;=2.018Hz, T,=0.50sec). For frequency ratios between Q/w,=1.17 and
Q/wyn=1.33, there are two steady-state responses depending on the initial conditions. The large
amplitudes are obtained taking into consideration as initial deflection and initial velocity the ones
calculated for Q/w,,=1.16, while the small amplitudes are obtained without initial conditions. The
maximum steady-state oscillation amplitude occurs for Q/w,,=1.33 and it is equal to 1.461m with
ratio Ryyn=13.28. The deflection diagrams for these two responses are shown in Figure 7-33.
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Figure 7-32: Steady-state response of the cable net with rigid supports under fundamental resonance for mode
2A (Po=2kN)
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Figure 7-33: Deflection diagrams for node 458 of the cable net with rigid supports under fundamental resonance
for mode 2A, for Q/wx=1.33 (Pg=2kN)

The maximum cable tension is 651kN for cable segment 121 and zero initial conditions, while taking
into account initial conditions the maximum cable tension develops in cable segment 222, equal to
1706kN corresponding to R4yn=2.78. These cable segments are illustrated in Figure 7-34. The tension
diagrams for both assumptions regarding the initial conditions are shown in Figure 7-35. The different
oscillation and tension amplitudes are noted, according to the assumed initial conditions. The main
vibration frequency is the loading frequency, but in case zero initial conditions are considered, there is
another frequency at 2.05Hz, which is almost equal to the frequency of mode 2A. For zero initial
conditions the amplitude for the same frequency ratio is only 0.18m. The maximum cable tension for
this frequency ratio, considering initial conditions, is 1706kN for which the ratio Ry results equal to

Rgyn=2.78.
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Figure 7-34: Cable segments 121 and 222 developing the maximum tension
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Figure 7-35: Tension diagrams for the cable net with rigid supports under fundamental resonance for mode 2A
(P0=2kN, Q/(DZA=133)

For larger frequency ratios the initial conditions do not influence the steady-state response. For
example, for Q/w,,=1.34, the steady-state response is the same with or without initial deflection and

velocity, but not the transient response. In Figure 7-36 these two responses are plotted, by means of
time-history diagrams of the deflection for node 458.
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Figure 7-36: Deflection diagrams for node 458 of the cable net with rigid supports under fundamental resonance
for mode 2A (Py=2kN, Q/w,x=1.34)

Considering a loading amplitude Py=24kN and loading frequency between 0.30w,, and 0.60w,,, the
steady-state response of the net is plotted in Figure 7-37. The maximum steady-state amplitude is

1.588m for Q=0.47w,,=5.96sec® (0.95Hz), indicating an order-three superharmonic resonance for
mode 2A.
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Figure 7-37: Steady-state response of the cable net with rigid supports under superharmonic resonance for mode
2A of the net (Py=24kN)

The deflection diagrams of node 458 are illustrated in Figure 7-38, while the time-history diagram of
the maximum cable tension is shown in Figure 7-39. The maximum oscillation amplitude for
Q/w4=0.47 is 1.774m (R4n=1.99), while in the response spectrum two significant frequencies
appear, one at 0.95Hz, being the loading frequency, and another one at 2.85Hz, which is close to the

one of mode 2A, indicating the order-three superharmonic resonance for this mode. The maximum
cable tension is 1979kN with Rq,n=2.00.
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Figure 7-38: Deflection diagrams for node 458 of the cable net with rigid supports under superharmonic
resonance for mode 2A (Py=24kN)
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Figure 7-39: Tension diagram for the cable net with rigid supports under superharmonic resonance for mode 2A
(Pg=24kN)

This load distribution results in smaller response with respect to the other two for the same load
amplitude, but for a large range of frequency ratio Q/w,, the initial conditions influence the response
of the net, in contrast to the other two spatial load distributions. Hence, among the three spatial load

distribution considerations, this case leads to the most intense bending of the response curve and
thus to the highest nonlinearity.
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7.5 CABLE NET WITH BOUNDARY RING

7.5.1 Eigenmodes and eigenfrequencies

For the cable net with a deformable boundary ring, the first twelve vibration modes of the system,
with the corresponding natural frequencies, are shown in Figure 7-40.
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Figure 7-40: Vibration modes and natural frequencies of the cable net with deformable boundary ring

The first mode of the system is the ring’s in-plane mode, the second is mode 2A, the third and fourth
are modes 1A and the fifth one is mode 1S. Comparing these eigenfrequencies with the ones of the
first cable net with rigid supports (Figure 7-4), it is noted that the 2A frequency remains unaltered
whether the ring is taken into account or not, the 1A frequencies decrease by about 1%, while the
presence of the ring increases the 1S frequency by about 6%.

7.5.2 Uniform spatial load distribution (1S) — Static response

For a uniform spatial distribution, the load-deflection diagram for node 15 as well as the variation of
the maximum cable tension, are illustrated in Figure 7-41, for load amplitude up to P=24kN. The
deformability of the ring renders the system more flexible, thus, the deflection is larger and the cable
tension is smaller than the corresponding ones calculated for the cable net with fixed ends (Figure
7-5). For the two load amplitudes assumed, P=2kN and P=24kN, the maximum static deflection at
node 15 is equal to 0.105m and 1.21m, respectively. Moreover, these two loads cause maximum static
cable tension equal to 667kN and 1411kN, respectively.
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Figure 7-41: Static response of the cable net with flexible supports for uniform spatial load distribution (1S)

7.5.3 Uniform spatial load distribution (1S) — Dynamic response

For a dynamic load, P(t)=Pqcos(Qt), having a uniform spatial load distribution, the steady-state
response amplitude of node 15 with respect to the ratio of the loading frequency over the frequency
of mode 1S is given in Figure 7-42, for loading amplitude P,=2kN and loading frequency between
0.90ws and 1.40w;s, Wwhere w;s=ws=14.690sec? (f;=2.338Hz, Ts=0.43sec). In the same chart, the
response of the cable net with rigid supports is also plotted, for comparison reasons.

o flexible supports O rigid supports
node 15

deflection (m)

Figure 7-42: Steady-state response under fundamental resonance for mode 1S (Py=2kN)

As for the cable net with rigid supports, two peaks of the response are noted, one occurring for
Q=1.03w;s=15.13sec? (2.41Hz), corresponding to the fundamental resonance for the mode 1S, and
one for Q=1.26w;s=18.51sec’ (2.95Hz), for which a fundamental resonance for the ninth mode
occurs, which is also a symmetric one (Figure 7-40). It should be mentioned that, in contrast to the
static response, smaller dynamic deflection is observed for the cable net with the boundary ring,
although this cable net is more flexible than the one with fixed cable ends. This is explained next.

For frequency ratio Q/w;s=1.03 the deflection diagrams of node 15 are illustrated in Figure 7-43 and
the time-history diagram of the maximum tension in Figure 7-44. The maximum net deflection is
0.814m (R4yn=7.75), being only 37% of the one calculated for the cable net with rigid cable ends
(Figure 7-9). The response spectrum shows that the main oscillation frequency is 2.42Hz, which is the
loading frequency and close to the frequency of mode 1S. The maximum cable tension, developed in

cable segment 40 (Figure 7-6), is 1031kN (Rq4,n=1.55), which is 43% of the corresponding one for the
cable net with rigid cable ends (Figure 7-11).
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Figure 7-43: Deflection diagrams for node 15 of the cable net with flexible supports under fundamental resonance

for mode 1S (Py=2kN)
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Figure 7-44: Tension diagram of the cable net with flexible supports under fundamental resonance for mode 1S

(Po=2kN)

Two more time-history diagrams are plotted; one for the highest ring node 563, with coordinates (0, -
L/2) (Figure 7-45) and one for the lowest ring node 318, with coordinates (L/2, 0) (Figure 7-46). In
the response spectra diagrams of the horizontal displacement of the ring nodes, the highest peak is
for the loading frequency, but a much smaller one, for f;=1.38Hz which is the frequency of the ring
in-plane mode, indicates that the symmetric loading activates also the symmetric in-plane ring mode,
even though there is no internal resonance between the two first symmetric modes.
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Figure 7-45: Response of the ring’s highest node 563 under fundamental resonance for mode 1S
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Figure 7-46: Response of the ring’s lowest node 318 under fundamental resonance for mode 1S

A detail of the above time-history diagram of the net deflection is shown in Figure 7-47, while for the
ring’s nodes in Figure 7-48, zooming at the last second of the analysis. Observing the diagrams, it can
be explained why the ring oscillation influences favourably the system, by decreasing the net vibration
amplitude and the cable tension. When the net deflection is positive (upwards), the horizontal
displacements of nodes 563 and 318 are also positive, which means that the highest nodes of the ring
approach each other, while the lowest ones are moving apart. Both motions of the ring generate a net
deflection downwards, as illustrated in Figure 7-49. Hence, an in-plane vibration of the ring of several
centimetres may cause a vertical oscillation to the net of opposite sign with respect to the one

produced by the external load, reducing the absolute magnitude of the net deflection and the cable
tension.
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Figure 7-47: Detail of the deflection time-history diagram for the central node of the net under fundamental
resonance for mode 1S
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Figure 7-48: Detail of the horizontal displacement time-history diagrams for the (a) highest node of the ring,
(b) lowest node of the ring under fundamental resonance for mode 1S
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Figure 7-49: Deformation of the ring and the net under fundamental resonance for mode 1S

For loading amplitude Py=24kN and loading frequency between 0.30w;s and 0.60w;s, where
w1s=ws=14.690sec’, the steady-state response is shown in Figure 7-50, for both cable nets, with rigid
or flexible supports. In case the boundary ring is considered, the response is larger. The maximum
steady-state amplitude is calculated for loading frequency Q=0.53w;s=7.786sec™ (1.24Hz).
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Figure 7-50: Steady-state response under superharmonic resonance for mode 1S (Py=24kN)

For frequency ratios larger than Q/w;s=0.53, cable tensile failure occurs during the transient vibration
of the first steps of the numerical analysis. The response of the system for this frequency ratio is
plotted by means of deflection diagrams of node 15 (Figure 7-51), time-history diagrams of the
maximum cable tension (Figure 7-52), and diagrams of the horizontal displacement for the ring’s
highest node 563 (Figure 7-53) and lowest one 318 (Figure 7-54).
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Figure 7-51: Deflection diagrams for node 15 of the cable net with flexible supports under superharmonic
resonance for mode 1S (Py=24kN)
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Figure 7-52: Tension diagram for the cable net with flexible supports under superharmonic resonance for mode
1S (Py=24kN)
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Figure 7-53: Response of the ring’s highest node 563 under superharmonic resonance for mode 1S

0.6 - Q/w15=0.53 (node 318) 0.3 1 Q/w15=0.53 (node 318)

E 041 E

.5 0.2 A -§ 0.2 -

g 0.0 A1 g
. o 4

ug -0.2 < 0.1

© ©

% -0.4 7 *

'0.6 T T T 1 00 T T T T 1
0 5 10 15 20 0 2 4 6 8 10
time (sec) frequency (Hz)

Figure 7-54: Response of the ring’s lowest node 318 under superharmonic resonance for mode 1S

Both ring and net oscillate with the loading frequency, which is close to the frequency of the first in-
plane mode of the ring (1.381Hz). Thus, for larger loading frequencies, the cable failure occurs due to
the fundamental resonance for the first mode of the system. Zooming at the last second of the
analysis, a detail of the time-history diagrams is drawn again for the net deflection in Figure 7-55, and
for the ring’s nodes in Figure 7-56. In this case, when the net deflection is negative (downwards), the
horizontal displacement of nodes 563 and 318 are positive. The highest nodes approach each other,

while the lowest ones are moving apart. Both motions generate a net deflection downwards,
reinforcing the deflection of the net.
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Figure 7-55: Detail of the deflection time-history diagram for the central node of the net under superharmonic
resonance for mode 1S
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Figure 7-56: Detail of the horizontal displacement time-history diagrams for the (a) highest and
(b) lowest node of the ring under superharmonic resonance for mode 1S

7.5.4 Antisymmetric spatial load distribution (1A) — Static response

For a load distribution signed as mode 1A, the load-deflection diagram for node 202 as well as the
variation of the maximum cable tension for nodal load up to P=24kN are shown in Figure 7-57. For
P=2kN and P=24kN the maximum deflection calculated for node 202 is 0.10m and 1.02m,
respectively, while the maximum cable tension is 659kN and 1336kN, respectively, being slightly
different with respect to the ones for the cable net with rigid supports.
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Figure 7-57: Static response of the cable net with flexible supports for antisymmetric spatial load distribution (1A)

7.5.5 Antisymmetric spatial load distribution (1A) — Dynamic response

The dynamic response of the cable net with boundary ring, subjected to a dynamic load
P(t)=Pocos(Qt) with a spatial load distribution signed according to mode 1A does not differ
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significantly from the one of the net with fixed cable ends, meaning that the ring does not influence
the response of the net for this load distribution. The steady-state response amplitude of node 202
with respect to the ratio of the loading frequency over the frequency of mode 1A, for both systems, is
shown in Figure 7-58, where two charts are plotted: one for load amplitude Py=2kN and fundamental
resonance for mode 1A, meaning that the frequency ratio varies between Q/w;y=0.90 and
Q/wi4=1.40, where win=w;=w,=12.924sec™, and one for Py=24kN and frequency ratio between
Q/w14=0.30 and Q/w;»4=0.60, leading to superharmonic resonance for the same mode.
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Figure 7-58: Steady-state response under fundamental and superharmonic resonance for mode 1A

7.5.6 Antisymmetric spatial load distribution (2A) — Static response

For a static load up to P=24kN, having a spatial distribution signed according mode 2A, the load-
deflection diagram for node 458 as well as the variation of the maximum cable tension are plotted in
Figure 7-59. For P=2kN and P=24kN the maximum deflection calculated for node 458 is 0.11m and
0.897m, respectively, while the maximum cable tension is 608kN and 986kN, respectively. The
difference with the corresponding magnitudes of the cable net with rigid supports is negligible.

254 24kN = 1500 -
<
= 20 - s
~3 K] 4
3 151 : % 1000
3 ; o
o 10 1 . 2 o .
= 2kN : & 5007 ;
% 5 _/ 0.897m: S : 24kN -
. x . 2kN .
o fr==0d1m \ g 0l :
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25
deflection of node 458 (m) static load (kN)

Figure 7-59: Static response of the cable net with flexible supports for antisymmetric spatial load distribution (2A)

7.5.7 Antisymmetric spatial load distribution (2A) — Dynamic response

In case the dynamic load P(t)=Pycos(Q2t) has spatial load distribution signed according to mode 2A,
the ring does not influence the response of the net. The steady-state response amplitude of node 458
with respect to the ratio of the loading frequency over the frequency of mode 2A, is plotted in Figure
7-60 for both systems: (i) for load amplitude Py=2kN and frequency ratio between Q/w,,=0.90 and
Q/wx=1.40, where w,,=0,=12.679sec™, accounting for fundamental resonance for mode 2A, and (ii)

for Pg=24kN and frequency ratio between Q/w;,=0.30 and Q/w,,=0.60, concerning the
superharmonic resonance for the same mode.
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Figure 7-60: Steady-state response under fundamental and superharmonic resonance for mode 2A

7.6 PARAMETRIC ANALYSES

7.6.1 Influence of the initial cable stress

In the example presented in section 7.2, the initial strain assumed causes an initial cable stress equal
to 19% of the yield stress. Changing the initial pretension and the cable cross-sectional area, but
keeping the sag-to-span ratio equal to 1/20 as well as all other parameters of section 7.2, the
influence of the initial cable stress on the nonlinearity of the dynamic behaviour is studied.
Considering cable nets that approximate realistic structures, two more cases are studied. In the first
one, the cables have diameter D=80mm, initial pretension Ny=800kN, corresponding to an initial cable
stress equal to 10% of the yield stress, while in the second one, the cable diameter is D=40mm, and
the initial pretension Ny=600kN, corresponding to 30% of the yield stress. The natural frequencies of
the cable nets for the first symmetric mode are listed in Table 7-1. The load amplitude is chosen
appropriately to cause nonlinear phenomena, without cable tensile failure.

Table 7-1: Characteristics and frequencies of the cable nets for the first symmetric mode w;s

D[mm] [ No[kN] | o, [MPa] | No/(Ac,) | A? ws [sec?] | fig [Hz]
80 800 1570 0.10 2.59 11.422 1.818
40 600 1570 0.30 0.86 15.221 2.423

The steady-state response of both systems for uniform spatial load distribution and loading

frequencies close to the frequency of mode 1S is shown in Figure 7-61, accounting for fundamental
resonance.
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Figure 7-61: Steady-state response of the cable nets with initial cable stress 10%0, and 30%0, under
fundamental resonance for mode 1S
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It is noted that small levels of initial cable stress lead smaller eigenfrequencies and to intense
nonlinear phenomena, such as jump phenomena and dependence on the initial conditions, while large
initial cable stresses, rendering the system stiffer, lead to an almost linear behaviour. However, the
maximum steady-state amplitude is observed in both cases for frequency ratio larger than 1, meaning
that even for large values of initial stress the bending of the response curve characterises the dynamic
behaviour of the cable net. Fundamental resonances for the second symmetric mode occur for both
cable nets.

For loading frequencies smaller than the frequency of mode 1S (Figure 7-62), superharmonic
resonances occur for the system with low levels of initial cable stress, as explained in section 7.4.3,
while for high levels of initial cable stress the peaks observed in the diagram are very small. This
investigation leads to the conclusion that high levels of pretension render the system stiff enough to
respond in an almost linear way.
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Figure 7-62: Steady-state response of the cable nets with initial cable stress 10%0, and 30%0, under
superharmonic resonance for mode 1S

7.6.2 Influence of the sag-to-span ratio

In order to investigate the influence of the sag-to-span ratio on the nonlinearity of the dynamic
response of such systems, two more cable nets are considered with f/L=1/35 and f/L=1/10,
representing a shallow and a deep cable net, respectively. The number of cables in each direction, the
diameter of the circular plan view L, the cable diameter D, cross-sectional area A and unit weight p,
the Young modulus E, the initial pretension Ny, and the damping ratio ¢ remain as given in section 7.2.
The natural frequencies of the cable nets for the first symmetric mode are listed in Table 7-2.

Table 7-2: Characteristics and frequencies of the cable nets for the first symmetric mode w;g

f/L )\2 Wis [SeC-l] flS [HZ]
1/35 0.44 9.902 1.576
1/10 5.40 17.061 2.715

For a uniform harmonic load with amplitude that is large enough to cause resonant phenomena
without cable failure, and a loading frequency close to the frequency of the first symmetric mode, the
response diagrams of the central nodes of these two cable nets are illustrated in Figure 7-63.
Comparing these diagrams with the one of Figure 7-8 it is noted that as the sag-to-span ratio
decreases, the eigenfrequency decreases and the system becomes more flexible leading to an intense
bending of the response curve. As a consequence, for small values of the sag-to-span ratio, the initial
conditions play an important role in the steady-state amplitude. Thus, for the cable net with f/L=1/35,
for a wide range of frequency ratios, two responses are expected, depending on the initial conditions,
while for f/L=1/20 the corresponding range of the frequency ratio is limited, as shown in Figure 7-8
and explained in section 7.4.3. For the cable net with f/L=1/10 the response is more linear, with a
slight bending of the curve and no dependence on the initial conditions, while the fundamental
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resonance for the second symmetric mode causes larger oscillation amplitudes than the ones
corresponding to the fundamental resonance for mode 1S.
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Figure 7-63: Steady-state response of the cable nets with sag-to-span ratio f/L=1/35 and f/L=1/10 under
fundamental resonance for mode 1S

Superharmonic resonances occur for both systems when the loading frequency is equal to one third or

half of the frequency of mode 1S (Figure 7-64), even for the second system, which could be
considered as weakly nonlinear.
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Figure 7-64: Steady-state response of the cable nets with sag-to-span ratio f/L=1/35 and f/L=1/10 under
superharmonic resonance for mode 1S

7.7 SUMMARY AND CONCLUSIONS

The nonlinear dynamic response of two saddle-shaped cable net systems is studied in this chapter.
The first system is a net with fixed cable ends and the second one takes into consideration the
deformability of the edge ring. In order to compare the results, the systems have the same geometry,
a circular plan view with diameter L=100m and a sag-to-span ratio equal to f/L=1/20, similar to the
geometry of the Peace and Friendship Stadium in Athens, Greece. The cable nets are subjected to a
harmonic excitation, considering three different spatial load distributions, regarding the sign of the
load, which is determined by the first symmetric and antisymmetric vibration modes of the net. The
loading frequency varies, in order to trace several kinds of resonances in the response of the net, such
as fundamental and superharmonic resonances. A nonlinear static analysis is also conducted, in order
to compare the dynamic response with the static one.

The present investigation proves that cable networks having the shape of a hyperbolic paraboloid
exhibit strongly nonlinear dynamic behaviour, in spite of their significant stiffness compared to simple
cables, even for low levels of loading amplitude, which, applied statically, would lead to an almost
linear behaviour. Bending of the response curve, jump phenomena, sudden drops of the response
amplitude, response peaks for small loads confirm the nonlinearity of the system and the occurrence
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of secondary resonances. In addition, fundamental resonance occurs for frequency ratio larger than 1,
indicating the hardening nonlinear behaviour of the system. Such systems cannot be characterised as
weakly nonlinear systems, even if their static response is almost linear. Their analysis should not be
approached by linear or quasi-static methods, but only by nonlinear dynamic methods, such as time
domain analysis, considering the geometric nonlinearity of the system. In addition, response curves
should be plotted in order to detect the loading frequency for which nonlinear phenomena take place.
All these phenomena occur for both shallow and deep cable nets and for medium or low levels of
initial pretension. Only for high levels of initial cable stress does the response of the cable net
approach the linear one.

This work also proves the sensitivity of cable nets with respect to the assumptions regarding their
boundary conditions. Modelling the edge ring is indispensable, because it inserts new vibration modes,
which may transform the entire behaviour of the net and modify the results with respect to the ones
referring to the net with rigid supports. It is verified that the existence of the in-plane mode of the
ring influences significantly the amplitude of the net oscillation for uniform spatial distribution of the
load, while for antisymmetric spatial load distribution the presence of the ring does not alter the
dynamic response of the net.

It is finally noted that the dynamic response of the net, regarding its oscillation amplitude and the
tension developed in the cables, depends on the spatial load distribution. It is important to determine
a realistic spatial distribution of dynamic loads, in order to proceed in a correct design, without either
very conservative or unsafe assumptions, especially if the dynamic load is due to wind, with a
pressure distribution over the roof surface depending on its inclination and the wind direction.

Part of this work has been published in [7-19].
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8 WIND PRESSURE DISTRIBUTION ON
SADDLE-FORM ROOFS

8.1 INTRODUCTION

The two most important dynamic actions acting on structures are due to wind and earthquake, but
suspended cable structures may exhibit large deformations mostly due to wind, rather than
earthquake, because of their small mass. In order to analyse correctly such structures subjected to
wind pressures, it is important to know the spatial distribution of these pressures over the surface of
the structure, as well as the frequency spectrum and magnitude of wind velocity.

The wind pressure on a surface can be expressed as:
w=0.5¢c,pV? (8-1)

where p is the air density, V is the wind velocity at the surface altitude and ¢, is the pressure
coefficient, which depends on the geometry and the orientation of the surface with respect to the
wind flow. The wind pressure coefficient is usually obtained experimentally. Eurocode 1, Part 1.4
[8-1], constitutes a useful guideline for wind pressures on roofs, proposing the coefficients of wind
internal and external pressures for flat, duopitch, monopitch, hipped and vaulted rectangular roofs
and domes, considering also eventual wall openings. Each surface is divided in zones according to
their location as well as their orientation with respect to the wind direction and the external pressure
coefficients are provided, which include local coefficients and global ones, named as overall
coefficients. Local coefficients, defined as c,,1, refer to loaded areas of A=1m? or less e.g. for the
design of small elements and fixings, while for loaded areas larger than A=10m?, overall coefficients,
denoted as Cpe, 10, Can be used. For 1m?<A<10m?, the pressure coefficient is calculated as:

Cpe = Cpe,1 - (Cpe,l 'Cpe,lo) Ioglo A (8'2)

However, Eurocode 1 does not cover roofs with circular plan view or with unusual shapes, such as
hyperbolic paraboloids. Thus, cable nets having the shape of hyperbolic paraboloids cannot be
designed for wind according to Eurocode 1. For these structures wind tunnel experiments are
recommended as the only reliable technique for calculating wind pressures.
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Results from wind tunnel experiments can be found in the literature, concerning simple suspended
cables ([8-2], [8-3]), unique geometries of actual design projects, such as stadium roofs ([8-4] —
[8-7]), hangars [8-8], or roofs with common shapes ([8-9] — [8-19]). Few publications refer to roofs
with hyperbolic paraboloid surface. Tabarrok and Qin in [8-20] and [8-21] proposed an approximate
procedure to estimate the wind pressure distribution upon saddle roofs, by assuming the wind
pressure coefficient to be equal to the minus cosine of the angle a between the wind direction and the
outward normal to the element surface.

Cp=-C0Sa (8-3)

This model gives zero pressures on horizontal surfaces (a=90°), positive values (wind pressure) on
windward surfaces (cosa<0) and negative values (wind suction) on leeward surfaces (cosa>0).
However, this approach has not been proved experimentally and cannot be considered as accurate. A
wind tunnel study of cable roofs was described in [8-22], where the Calgary Olympic Coliseum in
Canada was used as the prototype. In this study, the frequency and damping ratios were measured,
and found to be dependent on the area of lateral openings. The maximum deflection of the net was
also reported, but no pressure coefficients were given. Buchholdt [8-23] referred to a wind tunnel
study carried out by Beutler [8-24], as the most comprehensive one and he reported some pressure
distribution diagrams for a rhomboid saddle-form roof with rectilinear or curvilinear boundaries and for
different directions of the wind. Buchholdt also gave a diagram of the pressure coefficient for an open
saddle-shaped cable roof, with circular plan view, very similar to the ones under investigation in this
work. Wind tunnel test results were also summarised in [8-25] — [8-27] referring to saddle-shaped
suspended roofs of rhomboid plan view. Rizzo et al. in ([8-28] — [8-30]) referred to wind tunnel
experiments on tension roofs of hyperbolic paraboloid shape with rectangular, square and circular plan
view. Although several geometries were considered, they only presented diagrams with the wind
pressure coefficients of roofs with a square plan view. In [8-31] though, several results were
presented regarding all three shapes of plans.

This chapter includes an attempt to compare the very few reported experimental data offered by wind
tunnel tests and the proposed pressure coefficients, which are recommended by Eurocode 1 for
similar shapes. Several simplifying assumptions are made, in order to apply these recommendations
on a surface of a hyperbolic paraboloid. Firstly, circular flat roofs are considered confirming that the
pressure coefficients given by Eurocode 1 for rectangular roofs can be applied also for circular ones.
Secondly, the comparison between the wind tunnel results for a vaulted roof and the coefficients
proposed by Eurocode 1 are discussed. Subsequently, the wind tunnel results of hyperbolic paraboloid
surfaces are compared with Eurocode 1, using the pressure coefficients for duopitch and vaulted
roofs. Finally, evaluating the conclusions of the above comparisons, a spatial distribution of the wind
pressure upon saddle-form cable nets is proposed, which will be used next for an investigation of their
dynamic behaviour under wind loads.

8.2 CIRCULAR FLAT ROOFS

8.2.1 Wind tunnel experiment

Stefanou in [8-17] gave a wind pressure diagram on a circular roof, but no further information was
provided about the dimensions of this roof, the height of the building, or whether it referred to a
closed building or to a structure with lateral openings. More information is available, instead, from the
wind tunnel test of circular flat roofs, reported in [8-19]. The geometry of the model used in the
experiment is shown in Figure 8-1a. It represents a cylindrical building without wall openings. The
diameter D of the model was 267mm and the height-to-span ratio H/D varied between 1/16 and
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16/16. The wind pressure coefficient was determined with respect to the velocity pressure at the roof
height H. A diagram of the mean fluctuating wind pressure coefficient is illustrated in Figure 8-1b.

D (=267mm) !
H/D = 1/16 - 16/16 Cp

(a) (b)

Figure 8-1: (a) Geometry of the wind tunnel circular flat roof model, (b) Pressure coefficient diagram for
H/D=4/16, (from [8-19])

8.2.2 Comparison with Eurocode 1

Eurocode 1 provides the pressure coefficients for flat rectangular roofs with parapets, sharp, curved or
mansard eaves. In the case of the circular building described in section 8.2.1 the eaves are sharp. The
surface is divided in zones according to the dimensions and the height of the building (Figure 8-2).

Edge of eave
ho % ./ \
- e
h |%
VIO TITITE ] : T T TETET
Parapets Curved and mansard eaves
1 d |
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K3 e=bor2h
old F whichever is smaller
b : crosswind dimension

eld F

Figure 8-2: Key for flat roofs (from [8-1])
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Values for the pressure coefficients cye10, Which may be used for the overall loaded structure, are
listed for each zone of the surface in Table 8-1. The positive values correspond to wind pressure and
the negative ones to wind suction. Applying these coefficients to a circular roof inscribed in a
rectangular flat roof, taking into account the regions defined in Figure 8-2, the corresponding diagram
of the pressure coefficients will be as shown in Figure 8-3, which is very close to the diagram of Figure
8-1b, if the negative value of region I is considered. Thus, the methodology proposed by Eurocode 1
can be adopted for circular flat roofs.

Table 8-1: External pressure coefficient for flat roofs (from [8-1])

Zone
Roof type F G H I
Cpe.10 Cpe.10 Cpe.10 Cpe.10
Sharp eaves -1.8 -1.2 -0.7 +(())22

rectangular

1G2 [ H 1 roof by EC1
Lozl 194 a
inscribed
e/i— ™ |circular roof

e=D/2 | &2

Figure 8-3: Pressure coefficient diagram for H/D=4/16 according to Eurocode 1

8.3 VAULTED ROOFS

A comparison between the coefficients suggested by Eurocode 1 for vaulted or curved roofs and the
ones obtained by wind tunnel experiments was discussed in [8-16]. The models tested in the wind
tunnel had rise/width ratios (r/d) from 0.05 to 0.5 and wall height/width ratios (h/d) from 0.06 to 1.0.
That study also included a range of building length/width (L/d) ratios from 1 to 10 in order to study
the effect of two-dimensional flow at L/d=10 and three-dimensional flow at L/d=1. Figure 8-4 shows a
schematic representation of the model used for the wind tunnel test. Averaged pressure coefficients
were obtained for each of the zones defined in Figure 8-5. The authors concluded that the suggested
pressure coefficients by Eurocode 1 (Figure 8-6) do not match with the experimental results in all
cases considered and they proposed some amendments in the diagram of the recommended
coefficients. The modified pressure diagram proposed by the authors is illustrated in Figure 8-7.

Figure 8-4: Geometry of the wind tunnel vaulted roof model [8-16]
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Figure 8-5: Definition sketch with key to loaded areas (from [8-16])
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Figure 8-6: External pressure coefficients ¢y, 10 for vaulted roofs with rectangular base according to Eurocode 1,
(from [8-1])
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Figure 8-7: Proposed revision to Eurocode 1 diagram for pressure coefficients on vaulted roofs, (from [8-16])

Nonlinear dynamic response and design of cable nets



288 Chapter 8

Eurocode 1 does not give any guidance for wind blowing onto the eaves of vaulted roofed buildings,
but the authors in [8-16] proposed that, for the purposes of codification, the data for duopitch roofs
may approximate wind pressures, assuming that the effective pitch angle a of the vaulted roofs is
taken as a=arctan(2f/d). A comparison between the experimental data and those referred to
Eurocode 1 is plotted in Figure 8-8.
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Figure 8-8: Comparison between vaulted roof measurements and duopitch data for wind direction 90°
(from [8-16])

8.4 SADDLE-FORM CANOPY

8.4.1 Wind tunnel experiment

Buchholdt [8-23] gave some wind tunnel results for a cable net, having the surface of a hyperbolic
paraboloid, with 100% wall openings. The model had a circular plan view of diameter L=120m (Figure
8-9) and a sag-to-span ratio equal to f/L=3% for both main and secondary cables. The mean height
of the roof was 20m. The self-weight of the roof, including the net and the cladding, was equal to
0.6kN/m?, and an additional air mass was assumed to be vibrating with the roof, only in resonant
conditions, equal to 60kg/m?. The rigid model was tested in the wind tunnel and the resulted pressure
coefficients are illustrated in Figure 8-10.
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Figure 8-9: Plan view of the model used in the wind tunnel (LP: Low Points, HP: High Points) (from [8-23])

Wind

B

———
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Figure 8-10: Diagram of wind pressure coefficient (LP: Low Points, HP: High Points) (from [8-23])

8.4.2 Comparison with Eurocode 1

Provided that Eurocode 1 does not give values for the pressure coefficients for this kind of structure,
the ones suggested for an open canopy will be used and compared with the experimental results. The
maximum angle of the canopy, at the lowest points of the boundary, which lie on the windward of the
canopy, is assumed to be equal to a=arctan(2f/L)=arctan(0.06)=3.4°. According to Eurocode 1, for
pitch angles between a=-5° and a=+5°, the roof should be considered as flat. Thus, the values of
Table 8-2 are adopted, for angle 0° and for blockage ¢ equal to zero, representing an empty canopy.
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Table 8-2: Values of the coefficients c; e and ¢ for flat canopies (from [8-1])

Net pressure coefficient ¢, pet
B $ 1
b/10
wind b
‘ c A c
b/10
B i
e+ d/10 d/10 je>
d
Overall force
Roof angle a Blockage ¢ coefficient ¢ Zone A Zone B Zone C
0° Ming =0 - 0.5 - 0.6 -1.3 -1.4

Applying these coefficients to a circular canopy inscribed in a rectangular canopy, taking into
consideration the regions defined in Table 8-2, the corresponding diagram of the pressure coefficients
are those of Figure 8-11. The diagram for the overall force coefficient is very close to the one of
Figure 8-10. The net pressure coefficient diagram can be considered again close to the experimental
data, if the extreme zones B and C are neglected. In any case the wind pressure distribution
according to Eurocode 1 is a little more conservative than the wind tunnel results.

-1.3 +
e
rectangular rectangular
roof by EC1 r% roof by EC1
-1.4 — c
-0.6 s -0.5 <
' S =
inscribed )‘ﬁ
circular roof inscribed
12m circular roof
Iy e A
-1.3
(a) (b)

Figure 8-11: (a) Overall force coefficient ¢; (b) Net pressure coefficient diagram for flat canopy according to
Eurocode 1

8.5 SADDLE-FORM ROOFS

8.5.1 Wind tunnel experiment

Buchholdt again in [8-23] referred to a wind tunnel study, performed by Beutler [8-24]. A part of this
work deals with rhomboid saddle-shaped surfaces. A parametric analysis was carried out for different
curvatures, corresponding to H=A/2, A/3, A/4, A/6, A/8 and A/10 and for three different wind
directions (Figure 8-12).
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Figure 8-12: Wind directions and geometry of the wind tunnel model (from [8-23])

Buchholdt in his book gave some pressure distribution diagrams, regarding only the case of H=A/2, as
the most complete. The longest cable span is equal to L = V2A and the sag of the roof is f=H/2=A/4,
corresponding to a sag-to-span ratio f/L equal to 17.7%. The diagrams for the wind pressure
distribution presented in Figure 8-13, concern a closed roof for wind direction at 0°, 45° and 90°. In
these diagrams, HP stands for the Highest Points and LP for the Lowest Points.

@ (b) (c)

Figure 8-13: Saddle roof with edge beams and walls (from [8-23]): pressure distribution above the roof surface
for wind direction at (a) 0°, (b) 45° and (c) 90° (HP: Highest Points, LP: Lowest Points)

8.5.2 Comparison with Eurocode 1

8.5.2.1 The roof modelled as duopitch roof in both directions

For these structures, the recommended pressure coefficients for a duopitch roof will be adopted and
compared with the experimental results. Four cases are distinguished and combined in Eurocode 1,
regarding a duopitch roof: a) positive pitch angle of the roof, b) negative pitch angle of the roof, c)
wind direction 8=0° and d) wind direction 8=90°. According to which case is considered, the zones are
defined on the roof and the overall pressure coefficients c,10 are taken from the corresponding
Tables of Eurocode 1. These four cases are illustrated in Figure 8-14.
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Figure 8-14: Key for duopitch roofs (from [8-1])

In order to adopt the proposed methodology of Eurocode 1 to the saddle-form roof, the following
assumptions are made:

The angle of the roof is assumed to be equal to a=arctan(2f/L)=arctan(0.354)=19.5°.

The surface of the saddle-shaped roof is divided into four zones, as shown in Figure 8-15.

Two vertical sections A and B are defined, as shown in Figure 8-16.

Zones 1 and 2, referring to section A, have a positive pitch angle, and zones 3 and 4, referring to
section B have a negative one.

For wind direction 0°, section A is parallel to the wind, and thus zones 1 and 2 refer to the Table of
Eurocode 1 for 8=0°, while the section B is perpendicular to the wind and zones 3 and 4 refer to
the Table of Eurocode 1 for 8=90°.

Respectively, for wind direction 90°, section A is perpendicular to the wind, and thus zones 1 and 2
refer to the Table of Eurocode 1 for 8=90°, while section B is parallel to the wind and zones 3 and 4
refer to the Table of Eurocode 1 for 6=0°.

For wind direction 45°, no pressure coefficients are available. In this case, the wind is analysed into
two equal components, one at direction 0° and one at 90° and the above assumptions with the
corresponding pressure coefficients multiplied by cos45°, are adopted again. Thus, the resultant of
the two pressure diagrams produces the diagram for this wind direction.

Zone J of Figure 8-14 is not taken into account, because there is no acute ridge or trough. This
zone is incorporated in zone I. Zone F cannot be defined, because of the rhomboid shape of the
roof. Zone G is very small and it is not taken into consideration.
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Figure 8-15: Zones on the hyperbolic paraboloid surface (HP: Highest Points, LP: Lowest Points)
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Figure 8-16: Vertical sections (HP: Highest Points, LP: Lowest Points)

Table 8-3 and Table 8-5 give the pressure coefficient for wind direction 6=0° and 6=90°, respectively,
reported from Eurocode 1. For pitch angle ax+20° a linear interpolation between the available values
is proposed, tabulated in Table 8-4 and Table 8-6, respectively.

Table 8-3: External pressure coefficient for wind direction 8=0° (from [8-1])

pitch Zone for wind direction 8 = 0°
angle F G H I ]
a Cpe.10 Cpe.10 Cpe.10 Cpe.10 Cpe.10
-30° -1.1 -0.8 -0.8 -0.6 -0.8
-15° -2.5 -1.3 -0.9 -0.5 -0.7
{50 -0.9 -0.8 -0.3 -0.4 -1.0
+0.2 +0.2 +0.2 0 0
30° -0.5 -0.5 -0.2 -0.4 -0.5
+0.7 +0.7 +0.4 0 0
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Table 8-4: External pressure coefficient for pitch angle £20° and for wind direction 6=0°

pitch Zone for wind direction 8 = 0°
angle F G H I ]
a Cpe,10 Cpe,10 Cpe.10 Cpe,10 Cpe.10
-20° -2.0 -1.1 -0.9 -0.5 -0.7
-0.8 -0.7 -0.2 -0.4 -0.8
(o}
+20 104 | +04 | +03 0 0

Table 8-5: External pressure coefficient for wind direction 8=90° (from [8-1])

Zone for wind direction 8=90°

Pitch angle a F G H I
Cpe,10 Cpe,10 Cpe,10 Cpe,10 |
-30° -1.5 -1.2 -1.0 -0.9
-15° -1.9 -1.2 -0.8 -0.8
15° -1.3 -1.3 -0.6 -0.5
30° -1.1 -1.4 -0.8 -0.5

Table 8-6: External pressure coefficient for pitch angle £20° and for wind direction 8=90°

Zone for wind direction 8=90°

Pitch angle a F G H I
Cpedo | Cpe1o Cpe,10 Cpe,10
-20° -1.8 -1.2 -0.8 -0.8
+20° -1.2 -1.3 -0.7 -0.5

Hence the diagrams of Figure 8-17 are produced, regarding the three directions of the wind.
Comparing these diagrams with the ones given in Figure 8-13, it is obvious that the consideration of
dividing the roof into two vertical sections, and taking the values from Eurocode 1, retaining each
section as a duopitch roof, with positive or negative pitch angle, results in 43% smaller values than
the ones obtained by the experiments, at the centre of the roof, for wind direction 0°. At the corners
of the roof for this wind direction, the pressures are not far from the ones obtained in the wind
tunnel. For the other directions of the wind, the maximum pressure coefficients according to Eurocode
1 are approximately 18% and 31% smaller for 45° and for 90°, respectively, than the ones from the
wind tunnel.

o0
LP HP LP HP LP HP
1 1 I H
o=0" a=2 | 8=00" a=2d 05 e 8=00, a=20"| 8=0", a=20"
0.4(0.0) 0.3 05 09
45"
1 H I I
8=00" a=-20 | 8=0" =2 07 04(+0.2) 8=0" a=-20" | 8=, a=2"
08 0.2(+0.3) 05 05
HP Lp HP LP P LP

N

0

Figure 8-17: Diagrams of the wind pressure distribution taking into account the values suggested by Eurocode 1
for duopitch roofs (HP: Highest Points, LP: Lowest Points)

8.5.2.2 The roof modelled as vaulted and duopitch roof in the two directions

For wind direction 0°, for which the largest difference is observed, the roof is assumed as vaulted.
Thus, new zones are defined, shown in Figure 8-18. For zones 1', 2/, 5, 6, 7 and 8 the pressure
coefficients are calculated from the diagram of Figure 8-6 for h=0 and f/d=f/L=0.177, while zones 3
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and 4 remain as defined before. For the wind direction 90°, the assumptions made before regarding
the zones remain the same.

LP HP

HP LP

Figure 8-18: Zones for wind direction 0° on the hyperbolic paraboloid surface (HP: Highest Points, LP: Lowest
Points)

The new pressure diagrams are shown in Figure 8-19 for the three directions of the wind. In these
diagrams, the pressure distribution is closer to the ones of Figure 8-13 and the difference for the wind
direction 0° is smaller than before, arising at 36% for the maximum value. Thus, the assumption of
treating the hyperbolic as vaulted roof, when the wind blows from the lowest parts, is considered as
the most appropriate.

/90
LP HP P HP LP HP
04 03 05 0.3
-05 09
-09 -09 0.7 03
- 45"
09 | -08 07 | 07
05 05
08 +03 07 +0.2
He P He LP HP LP

N

0

Figure 8-19: Diagrams of the wind pressure distribution taking into account the values suggested by Eurocode 1
for duopitch and vaulted roofs (HP: Highest Points, LP: Lowest Points)

8.6 PROPOSED PRESSURE DISTRIBUTION

Based on the above investigation concerning the wind tunnel results on circular, flat, vaulted or saddle
roofs, several assumptions are made in order to apply the wind pressure coefficients, recommended
by Eurocode 1, to a symmetric cable net with circular plan view, having the geometry of a hyperbolic
paraboloid, in order to represent a more realistic wind pressure distribution. The global coordinate
system and the geometry of the model is shown in Figure 8-20, in which L is the projected diameter, f
is the sag and z is the height of the roof’s centre. The angle a of the roof is defined as a=arctan(2f/L)
and it is positive for a vertical section at y=0 and negative for a vertical section at x=0. These vertical
sections are chosen because they correspond to the two main wind directions 0° (parallel to axis x)
and 90° (parallel to axis y) as illustrated in Figure 8-21.

Nonlinear dynamic response and design of cable nets



296 Chapter 8

Figure 8-21: Pitch angles for the vertical sections at x=0 and y=0

For pitch angles a<-5° and a>+5° corresponding to f/L>1/22, the roof is divided in eight zones
(Figure 8-22). Each zone is treated differently, according to the wind direction. Three wind directions
are studied, at 0° at 90° and at 45° with respect to axis x. The third one, as explained already, is
considered to be analysed into the two main directions of 0° and 90°, thus, no pressure coefficients
are provided, but it is recommended to apply the resultant of the values given for the other two wind
directions.
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Figure 8-22: Zones on the hyperbolic paraboloid surface with circular plan view and f/L>1/22 (HP: Highest
Points, LP: Lowest Points)

For wind direction parallel to x-axis (direction 0°), zones 2 — 7 refer to a vaulted roof and correspond
to zones A, B and C of a vaulted roof given by Eurocode 1, as defined in Figure 8-6. Zones 1 and 8,
instead, correspond to zone I of a duopitch roof according to Eurocode 1, for wind direction parallel to
the trough (6=90°), as shown in Figure 8-14. The correspondence of the eight zones with the ones of
Eurocode 1 is listed in Table 8-7.

Table 8-7: Cable nets considered as vaulted and duopitch roofs for wind direction 0°

. . Eurocode 1
Hyperbolic Paraboloid Duopitch roof Vaulted
Zone Pitch angle Zone Wind direction 6 roof

1 (-) I 90° (parallel to the trough)

2 B
3 A
4 B
5 B
6 C
7 B
8 () 1 90° (parallel to the trough)

For wind direction parallel to y-axis (direction 90°), zones 3, 4, 5 and 6, represented by section B
(Figure 8-21), correspond to a duopitch roof with positive pitch angle a. Thus, the pressure
coefficients for these zones are derived from Eurocode 1 for wind direction parallel to the ridge
(6=90°), as shown in Figure 8-14. Zones 1, 2, 7 and 8, instead, represented by section A, correspond
to a duopitch roof with negative pitch angle a, with pressure coefficients, derived from Eurocode 1,
which refer to a wind direction perpendicular to the trough (6=0°), as also shown in Figure 8-14. The
correspondence of the eight zones with the ones of Eurocode 1 is tabulated in Table 8-8. In these
tables, zones G and J, and in some cases zone H shown in Figure 8-14, are not included. As they are
dependent on the parameter e, which is equal to the minimum of the values L, or 2h, where h is the
height of the structure in the windward wall, usually small with respect to the span L, the parameter
e/10 defines zones of very small areas, which can be neglected. Zones F are also neglected, because
they are not included in the circular plan view of the structure.
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Table 8-8: Zones of cable nets considered as duopitch roofs for wind direction 90°
Hyperbolic Paraboloid - Eurocode 1
Duopitch roof Vaulted roof
Zone Pitch angle Zone Wind direction 6

1 (-) 1 0° (perpendicular to the trough)

2 (-) I 0° (perpendicular to the trough)

3 (+) I 90° (parallel to the ridge)

4 (+) 1 90° (parallel to the ridge)

5 (+) I 90° (parallel to the ridge)

6 (+) I 90° (parallel to the ridge)

7 ) H 0° (perpendicular to the trough)

8 (-) H 0° (perpendicular to the trough)

The values of the pressure coefficients given by Eurocode 1 are reported here for the zones used.
Hence, Table 8-9 provides the coefficients of zone I, needed for zones 1 and 8 with negative pitch
angle when the wind direction is 0° and for the central zones 3 — 6 with positive pitch angle when the
wind direction is 90°. In Table 8-10 the pressure coefficients for zones I and H are tabulated, needed
for zones 1, 2, 7 and 8 with negative pitch angle for wind direction 90°.

Table 8-9: External pressure coefficient for duopitch roofs for wind direction parallel to the ridge or the trough

(6=90° Eurocode 1)

Zone for wind direction 8=90°
pitch angle- a I

-45° -0.9
-30° -0.9
-15° -0.8
-5° -0.6
5° -0.6
15° -0.5
30° -0.5
45° -0.5
60° -0.5
75° -0.5

Table 8-10: External pressure coefficient for duopitch roofs for wind direction perpendicular to the ridge or the

trough (6=0° Eurocode 1)

Zone for wind direction 8 = 0°

pitch angle a H I
-45° -0.8 -0.7
-30° -0.8 -0.6
-15° -0.9 -0.5
o ) +0.2

5 0.8 0.6

For pitch angles -5°<a<+5°, corresponding to f/L<1/22, the roof can be considered as flat. Having in
both directions equal sag-to-span ratios, the pressure coefficients depend only on the wind direction.
Thus, the roof is divided in two zones, as shown in Figure 8-23. Zones H and I of Figure 8-2 for flat
roofs with sharp eaves correspond to zones 1 and 2 of Figure 8-23, respectively, as listed in Table
8-11. The pressure coefficients are listed in Table 8-12.
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Figure 8-23: Zones on the hyperbolic paraboloid surface with circular plan view and f/L<1/22

Table 8-11: Cable nets considered as flat roofs

. . Eurocode 1
Hyperbolic Paraboloid Flat roof

Zone Zone
1 H
2 I

Table 8-12: External pressure coefficient for flat roofs
Zone

Roof type H I

Cpe,10 Cpe,10

Sharp eaves -0.7 -0.2

8.7 VALIDATION OF THE PROPOSED PRESSURE DISTRIBUTION

The results of the only wind tunnel test found in the literature concerning saddle-form cable nets with
circular plan view are studied in order to evaluate the accuracy of the proposed pressure distribution.

8.7.1 Wind tunnel experiment

Rizzo et al. in [8-31] presented a summary of their work, regarding wind tunnel experiments on
tension roofs of hyperbolic paraboloid shape with rectangular, square and circular plan view,
performed in the CRIACIV's (Interuniversity research Centre of Aerodynamic and Wind Engineering)
wind tunnel in Prato (Italy). Fourteen different geometries were considered, regarding the shape and
the dimensions L; and L, of the plan, the sags in the direction of the main and stabilising cables f; and
f,, respectively, the height of the roof, defined as H=f;+f,, and the height of the walls from the base
to the lowest point or the roof, noted as H, (Figure 8-24). In order to simplify the three-dimensional
problem, they assumed a two-dimensional model, represented by two zones C1 and C2, which refer to
the dimension L; and L,, respectively (Figure 8-25).
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Circular shape

Square shape

Rectangular shape

Figure 8-25: Defined zones (from [8-31])

Regarding the wind direction, the results of three angles were reported, at 0°, 45° and 90°. The wind
direction at 0° was parallel to C2 cable zone, denoted as direction 1, while the 90° wind direction was
parallel to C1 cable zone, named as direction 2 (Figure 8-26).

Wind direction 0

Figure 8-26: Wind direction according to the roof’s orientation (from [8-31])
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The six examples of the roofs with circular plan view, presented in this work, had the characteristics of
Table 8-13. Two of the models (P.9 and P.10) have two different degrees of side roughness in order
to include the influence of the Reynolds number. The results of P.11 are reported here (Figure 8-27).

Table 8-13: Characteristics of the roofs with circular plan view (from [8-31])

Model number L (m) f; (m) f, (m) H (m) Hp, (m)
P.9/P.9 w.r. 80.00 4.44 8.89 13.33 13.33
P.10/P.10 w.r. 80.00 4.44 8.89 13.33 26.66
P.11 80.00 2.67 5.33 8.00 13.33
P.12 80.00 2.67 5.33 8.00 26.66

Figure 8-27: Wind tunnel test for a hyperbolic paraboloid with circular plan view (from [8-31])

For wind direction 0° parallel to the stabilising cables (direction 1 — zone C2) the mean pressure
coefficient distribution over the surface is illustrated in Figure 8-28, varying between -0.85 and -0.15.
The diagrams of Figure 8-29 show the variation of the maximum, minimum and mean value of the
coefficients c, along the zones C1 and C2. For wind direction 90°, parallel to the main cables (direction
2 — zone C1) the mean pressure coefficient distribution over the surface is presented in Figure 8-30,
ranging between -1.20 and 0.00. In Figure 8-31 the charts demonstrate the variation of the
maximum, minimum and mean value of the coefficients c, along zones C1 and C2. Finally, for wind
direction at 45° the mean pressure coefficient distribution varies between -1.50 and -0.11 (Figure
8-32), while the charts of Figure 8-33, plotting the variation of the maximum, minimum and mean
value of the coefficients ¢, only along zones C1 and C2, do not provide sufficient information about
the maximum absolute values of the wind pressure, which is observed at 45°.
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Figure 8-28: Mean pressure coefficients over a circular plan view for wind direction 0° (from [8-31])
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Figure 8-29: Pressure coefficient variation over a circular plan view for wind direction 0° (a) direction 1 parallel to
C2, (b) direction 2 parallel to C1 (from [8-31])
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Figure 8-30: Mean pressure coefficients over a circular plan view for wind direction 90° (from [8-31])
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Figure 8-31: Pressure coefficient variation over a circular plan view for wind direction 90° (a) direction 1 parallel
to C2, (b) direction 2 parallel to C1 (from [8-31])
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Figure 8-32: Mean pressure coefficients over a circular plan view for wind direction 45° (from [8-31])
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Figure 8-33: Pressure coefficient variation over a circular plan view for wind direction 45° (a) direction 1 parallel
to C2, (b) direction 2 parallel to C1 (from [8-31])

A comparison between all models with circular plan view studied in this work show that for wind
direction 0° the mean pressure coefficients are negative, indicating wind suction all over the roof
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(Figure 8-34), while for wind direction 90°, only a small central part of the surface presents small wind
pressure (positive pressure coefficient c,), while, in the rest of the surface, wind suction occurs.

L[m]
~—P9 -=-PIw.r P10 —=PlOw.r. —+P1l P12 ——P9 -m-PIw.r P10 —<PlOw.. —=P11 P12
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Figure 8-34: Mean pressure coefficient variation over a circular plan view for wind direction 0° for all models:
(a) direction 1 parallel to C2, (b) direction 2 parallel to C1 (from [8-31])
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Figure 8-35: Mean pressure coefficient variation over a circular plan view for wind direction 90° for all models:
(a) direction 1 parallel to C2, (b) direction 2 parallel to C1 (from [8-31])

8.7.2 Comparison with the proposed pressure distribution

8.7.2.1 Geometry

The sag-to-span ratio of the main cables (zone C1) is f;/L=1/30 and the angle of the roof is assumed
to be equal to a=-arctan(2f,/L)=-arctan(0.067)=-3.81°. In this direction the roof is considered either
as flat, or as duopitch with pitch angle a=-5°. The sag-to-span ratio of the stabilising cables (zone C2)
is f,/L=1/15 which corresponds to a pitch angle a=arctan(2f,/L)=arctan(0.13)=7.59°. The height of
the walls is H,=L/6 and H,/f,=15/6=2.5.

8.7.2.2  Wind direction 0°

When the wind direction is parallel to the stabilising cables, the roof is modelled as duopitch or flat
roof in direction C1 and as vaulted in direction C2. According to Figure 8-6, for h/d=H,/f,=2.5>0.5
and f,/L=1/15=0.067, the pressure coefficients for zones A, B and C of the vaulted roof are -1.2, -
0.85 and -0.4, respectively. According to Table 8-12 the pressure coefficient for zone I is -0.6 if it is
considered as duopitch roof and -0.2, if it is considered as flat roof. The pressure coefficient
distribution over the surface is illustrated in Figure 8-36. Comparing these diagrams with the one of
Figure 8-28 it is noted that the proposed pressure distribution results in a correct distribution
regarding the peaks of the wind suction. Regarding the direction of the stabilising cables, the pressure
coefficients are between ¢, and ¢, min, While near the highest points of the surface, where the main
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cables are anchored, the values approach ¢, for a duopitch roof assumption, or ¢, max COnsidering a
flat roof (Figure 8-29).
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Figure 8-36: Pressure coefficient distribution for wind direction 0° with C1 zone (y-direction) considered as
(a) duopitch roof, (b) flat roof

8.7.2.3  Wind direction 90°

When the wind direction is parallel to the main cables, the roof is modelled as flat or duopitch roof in
direction C1 and as duopitch with positive pitch angle a=7.59° in direction C2. According to Table 8-10
the pressure coefficient for zone I and for pitch angle 7.59° is -0.60 or +0.20. According to Table 8-12
the pressure coefficient for zones H and I of a flat roof are -0.7 and -0.2, respectively. The pressure
coefficient distribution over the surface is illustrated in Figure 8-37.
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Figure 8-37: Pressure coefficient distribution for wind direction 90° with C1 zone (y-direction) considered as
(a) duopitch roof, (b) flat roof

Comparing this diagram with the one of Figure 8-30 it is noted that the proposed pressure distribution
predicts again a correct distribution, while a comparison with the charts of Figure 8-31 shows that the
pressure coefficients are close to ¢, min regarding the direction of the stabilising cables. If a duopitch
roof is considered along the main cables, the pressure coefficients of the leeward side vary between
Cp,min @Nd Cp max. If instead a flat roof is assumed, they approach ¢, m. The values of the windward side
in both cases are between ¢, max and Cpm.
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8.7.2.4 Wind direction 45°

Considering as the two components of the wind direction 45° the ones given for wind direction 0°
(Figure 8-36) and 90° (Figure 8-37) the resultant creates pressure coefficient distributions as the ones
shown in Figure 8-38, considering as duopitch or flat the zone C1. Comparing this diagram with the
one of Figure 8-32 and the values of pressure coefficients for the two characteristic zones C1 and C2
(Figure 8-33), it can be noted that the proposed approach predicts a satisfactory distribution of the
wind suction, but the pressure coefficients are more conservative regarding the central zone.

45° LP 45° LP
N 0,95 N -0.95
-0.74 =0.74
HPioz7| -0.83 -0.74 (06 HPlgs| -0.78 o0.6202 "
-033 0.2
-0. 74 -0.M
0.5 0.5
Lp Lp
! o
(@) (b)

Figure 8-38: Pressure coefficient distribution for wind direction 45° with C1 zone (y-direction) considered as
(a) duopitch roof, (b) flat roof

In all cases, the use of the pressure coefficients suggested by Eurocode leads to a satisfactory
distribution of the wind pressure and can be adopted to assess the pressure coefficients.

8.8 NUMERICAL EXAMPLES

The cable nets that will be used in the next chapter have a circular plan view of diameter L=100m and
sag-to-span ratio for both main and stabilising cables f/L, corresponding to a pitch angle
a=arctan(2f/L), being positive for the direction of the stabilising cables and negative for the direction
of the main cables. The height of the central node of the roofs is equal to z=25m and the smallest
height of the lateral walls is h=z-f. The ratio h/L, which will be needed to assess the pressure
coefficients for the vaulted roof, is equal to h/L=0.2. The characteristics of these cable nets are
tabulated in Table 8-14.

Table 8-14: Characteristics of the numerical examples

L (m) f/L f(m) a (degrees) h/L
100 1/10 10.00 11.31=10° 0.15
100 1/20 5.00 5.71=5° 0.20
100 1/35 2.86 3.27=0° -

According to the pressure distribution presented in section 8.6, the distribution of the pressure
coefficients over the roofs, taking into consideration the maximum and minimum values suggested by
Eurocode 1, are illustrated in Figure 8-39 for the first example and in Figure 8-40 for the second and
third examples, for three wind directions.
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Figure 8-39: Pressure coefficients for the cable net with f/L=1/10
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Figure 8-41: Pressure coefficients for the cable net with f/L=1/35
8.9 SUMMARY AND CONCLUSIONS

In this chapter, wind tunnel test results providing wind pressure distribution on roofs are compared
with the pressure coefficients recommended by Eurocode 1, Part 1-4 for wind actions on structures.
The experiments concerning circular flat roofs, vaulted roofs and saddle-form canopies with circular
plan view and good agreement between the tests and Eurocode 1 is observed. In case of a saddle-
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form roof with rhomboid plan view, several assumptions are made in order to obtain a
correspondence between the pressure coefficients from Eurocode 1 and the ones measured for the
hyperbolic paraboloid surfaces. Eight different zones are defined on a saddle-shaped roof with circular
plan view and a relation between these zones and the pressure coefficients of Eurocode 1 is
delineated, with respect to the wind direction and the sag-to-span ratio of the roof. The only data
found in the literature, concerning wind tunnel tests of similar structures, are compared with the
results of the proposed approach, giving satisfactory agreement with the proposed pressure
coefficients and wind pressure distribution over the surface.
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O DYNAMIC RESPONSE OF CABLE NETS UNDER
WIND ACTION

9.1 INTRODUCTION

Wind action is the main load dominating the dynamic response of lightweight structures. The main
concern of the researchers dealing with wind actions on such structures is to find an equivalent static
procedure for estimating the nonlinear dynamic response, avoiding the large computational time
required for nonlinear dynamic analyses. For example in [9-1] a simplified frequency domain approach
was proposed to estimate the maximum probable wind response of a weakly nonlinear cable roof
network. In [9-2] it was concluded that the dynamic deflections of cable structures due to wind might
exceed twice the static deflections. A review covering cantilevered, enclosed, free edged, arched and
suspended roof systems subjected to wind load was presented in [9-3]. It was proved that for
relatively conventional configurations of cantilevered, enclosed and free edged roofs the code leads to
reasonable design loads. However, it was proposed that for arched and suspended roofs complex
static design loads are required to achieve equivalent displacements. In [9-4] the dynamic response of
cable-stayed masts to wind action was compared with the one calculated by assuming the patch load
method, proposed by Eurocode 3 [9-5], which is an equivalent static analysis. It was concluded that
the nonlinearity considerably influences the dynamic response of the tower. In [9-6] an actual cable
net structure was analysed, considering a time-history diagram of the wind velocity. Large oscillation
amplitudes were calculated, concluding that larger curvatures could improve the dynamic response,
while larger values of the initial pretension would not alter the results significantly.

The nonlinear dynamic behaviour of saddle-shaped cable nets subjected to wind actions is studied in
this chapter. Time-history analyses are performed, considering the geometric nonlinearity of the
system. The maximum dynamic response, expressed by means of the maximum nodal amplitude and
cable tension, is compared with the response provided by quasi-static analysis methods. The static
wind loads are calculated according to the quasi-static analysis for wind loads proposed by Eurocode 1
[9-7], while the dynamic ones are based on measured wind velocity records [9-8] as well as artificial
ones. Modal analyses are also conducted in order to calculate the natural frequencies of the cable net,
taking into account additional masses due to permanent loads. The wind direction, the sag-to-span
ratio, the initial cable stress, and the boundary conditions are parameters that influence the dynamic
response. Three different geometries and three different levels of initial cable stress are assumed,
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thus covering the range between deep and shallow, overstressed and under-stressed cable nets. The
influence of the deformability of the boundary ring is also investigated.

9.2 MODELLING ISSUES

The cable net utilised for the investigation of the dynamic response under wind action is the one
described in section 7.2 It has a hyperbolic paraboloid surface with a circular plan view of diameter
L=100m and sag-to-span ratio f/L=1/20. The height of the central node is assumed equal to z=25m.
The angle of the roof is defined as a=arctan(2f/L) (Figure 9-1). The net consists of 25 cables in each
direction, arranged in a quadratic grid; thus, the distance of the cables is 3.846m. Both carrying and
stabilising cables have a circular cross-section of diameter D=50mm, mass density m=7.85kN-sec’>*m™
and initial pretension Ng=600kN. The cable material has a constant modulus of elasticity E=165GPa in
the tension branch and zero compression branch. The maximum permissible cable stress is assumed
equal to the yield stress of the material, 0,=1570MPa. Rayleigh damping is also introduced for the
dynamic analysis [9-9] with damping ratio (=2%. No openings at the lateral walls of the roof are
considered.

Figure 9-1: Geometry of the cable net

9.3 INITIAL STATE UNDER PERMANENT LOADS

9.3.1 Nonlinear static analysis

Firstly, the deformed state under pretension, self-weight of the cables and additional permanent loads
equal to 0.36kN/m? is calculated, in order to be used as the initial state for the subsequent analyses.
These permanent loads, corresponding to cladding and electromechanical equipment, were also
considered for the design of the Peace and Friendship Stadium in Greece [9-10]. In this case the
maximum negative (downward) deflection of the net is -0.22m, the minimum cable tension is 388kN
and the maximum one 826kN. The deformed shape of the net is shown in Figure 9-2, where the
maximum and minimum cable tensions are also plotted.
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Figure 9-2: Deformed state and cable tensions under permanent loads

9.3.2 Modal analysis

Modal analysis is conducted in order to calculate the natural frequencies for the cable net considering
as initial state the one under permanent loads. Additional masses are assumed, corresponding to the
additional permanent loads. The mass matrix is considered as lumped. The first mode of the system is
an antisymmetric one with respect to both horizontal axes with natural frequency 0.976Hz. The
second and third modes are antisymmetric with reference to y and x axes, respectively, with natural
frequencies 0.991Hz and 1.013Hz, respectively. The fourth vibration mode is a symmetric one with
frequency 1.059Hz. The subsequent modes have symmetric or antisymmetric shapes. The modal
shapes and the corresponding natural frequencies of the first nine modes are shown in Figure 9-3.

Figure 9-3: First nine vibration modes and natural frequencies
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9.4 WIND DIRECTION AND SPATIAL DISTRIBUTION

A wind direction towards +x axis and parallel to the secondary cables (wind 0°) is considered, shown
in Figure 9-4a. In chapter 8 the pressure coefficients were defined for this example and for this wind
direction, illustrated in Figure 9-4b, where HP stands for High Points and LP for Low Points. The
negative values of ¢, indicate suction all over the surface of the roof.
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Figure 9-4: (a) Wind direction 0°, (b) Pressure coefficients

9.5 WIND ACTION

9.5.1 Wind velocities

According to Eurocode 1 [9-7], the mean wind velocity V,(z) at a height z above the terrain depends
on the terrain roughness (expressed by ¢;) and orography (expressed by c,, taken as 1) and on the
basic wind velocity, v,. Considering a basic wind velocity vy,=vy,0=30m/sec, terrain category III with
2,=0.3m, z,;=0.05m and z,,=5m, and height of the roof z=25m, the coefficients k. and c. are
calculated:

k:=0.19(z0/20,1)**"=0.19(0.3m/0.05m)**=0.215 (9-1)
c(z)=k; In(z/zy) = ¢,(25m)=0.215 In(25m/0.3m)=0.953 (9-2)

and the mean velocity is:

Vin(2)=¢(2) ¢co(z) Vb= Vin(25m)=0.953-1.00:30m/sec=28.58m/sec (9-3)

9.5.2 Wind velocity variation with time

Finding a real wind record with a small recording time step is proved to be difficult. A common time
step of such measurements is one or two minutes, usually obtained for meteorological purposes. Such
time steps though are very large for analysing cable nets with eigenfrequencies close to 1.00Hz,
because if a structure is subjected to a dynamic load with frequency much smaller than the lowest
eigenfrequency, the response is practically static in nature and no dynamic motions are observed
[9-11].

The wind velocity time-history diagram used for the nonlinear dynamic analyses of the cable net is
retrieved from an experiment during the program Long-term Inflow and Structural Test (LIST) [9-8].
This program is collecting long-term, continuous inflow and structural response data to characterise
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the extreme loads that drive the design of wind turbines. A heavily instrumented Micon 65/13M
turbine is being used as the test turbine for this program (Photo 9-1, [9-12]). The experiment
included measurements on three similar turbines, called the central tower, the north and the south
ones, located in Bushland, Texas (Photo 9-2, [9-12]). Three components of wind velocity, U, V, and
W, were recorded, referring to the along, across, and vertical components of the wind velocity,
respectively. Data from the various instruments are sampled at a rate of 30Hz, using a newly
developed data acquisition system that features a time-synchronised continuous data stream that is
telemetered from the turbine rotor [9-13]. The data, taken continuously, are divided into 10-minute
segments and archived for analysis.

Photo 9-1: LIST test turbine, reported from [9-12]

Photo 9-2: LIST turbines in Bushland, Texas, reported from [9-12]

The location of the measurement instruments are shown in Figure 9-5, reported from [9-12]. On the
central tower, there were recordings at three different heights: at 14.4m (Figure 9-6), at 22.9m
(Figure 9-7), and at 31.4m (Figure 9-8); on the north (Figure 9-9) and south (Figure 9-10) towers,
recordings were only at height of 22.9m.

Nonlinear dynamic response and design of cable nets



318 Chapter 9

South

o

C‘TD cup wind SO
anemometer B LN CHT 1 BT

Figure 9-5: LIST turbines: location of measurement instruments, reported from [9-12]
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Figure 9-6: Central tower recording at height 14.4m: (a) time-history diagram of the along velocity, (b) Fourier
diagram of the along velocity, (c) time-history diagram of the across velocity, (d) Fourier diagram of the across
velocity
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Figure 9-7: Central tower recording at height 22.9m: (a) time-history diagram of the along velocity, (b) Fourier
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Figure 9-8: Central tower recording at height 31.4m: (a) time-history diagram of the along velocity, (b) Fourier
diagram of the along velocity, (c) time-history diagram of the across velocity, (d) Fourier diagram of the across
velocity
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Figure 9-9: North tower recording at height 22.9m: (a) time-history diagram of the along velocity, (b) Fourier
diagram of the along velocity, (c) time-history diagram of the across velocity, (d) Fourier diagram of the across
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Figure 9-10: South tower recording at height 22.9m: (a) time-history diagram of the along velocity, (b) Fourier
diagram of the along velocity, (c) time-history diagram of the across velocity, (d) Fourier diagram of the across
velocity

It is noted that there are no significant differences between the records. For all diagrams the values of
wind velocity are smaller than 15m/sec. Moreover, their main frequencies are smaller than 0.50Hz,
while no significant amplitudes of wind velocity are observed for frequencies larger than 1.00Hz. The
velocity diagram used in this chapter is the one of the along velocity recorded on the south tower
(Figure 9-10a) presenting the maximum value of the wind velocity. The actually measured values are
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scaled so that the mean value of the diagram equals to V.,(25m)=28.58m/sec, which is the mean
velocity calculated by Eq. (9-3). The time-history of the scaled wind velocity, as well as its spectrum
are plotted in Figure 9-11. The minimum and maximum values of the wind velocity are 14.35m/sec
and 47.41m/sec, respectively.
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Figure 9-11: Wind velocity diagrams: (a) time-history diagram, (b) Fourier diagram

9.5.3 Static wind pressure and nodal force
The peak velocity pressure g,(z) at height z includes mean and short-term velocity fluctuations. The
turbulence intensity of the wind is defined as [9-7]:

I(2)=1/{In(z/zp) co(2)} = 1,(25m)=1/{In(25m/0.3m)1.00}=0.23 (9-4)

According to Eurocode 1 [9-7], taking into account the air density equal to p=1,25kg/m® at height
z=25m, the peak velocity pressure is calculated as:

Ap(2)=1/2[1+71(2)1p(Vin(2))* =
0.0125kN / m?3

10m/ sec? (28.58m/sec)? = 1.32kN/m? (9-5)
m/ sec

gy (25m) = %[1 +7-0.23]-

Applying the quasi-static analysis method of Eurocode 1 [9-7], the wind pressure acting on the
external surface of the roof is expressed as:

W(2)=0p(2)Cpe = W(25m)=1.32C,e(kN/m?) (9-6)
where ¢ is the pressure coefficient. The size factor is defined as:

] 147-1,(z) VB

T 1+71,(z) -7)

Assuming the background factor B>=1, on the safe side as recommended by Eurocode 1, c;=1. The
turbulent length scale at height z=25m>z;;,=5m is:

L(2) =L, (ZLJ = L(25m) = 300m(25—m

t 200m

[0.67+0.05In(0.3)]
j = 84.41m (9-8)

Considering that the main vibration mode of the net is the first symmetric one, with eigenfrequency
n=1.059Hz, the non-dimensional frequency of the wind velocity is defined as:

f (z,n) = r\‘/ "(ZZ)) — f_(25m,1.059Hz) =

m

1.059Hz - 84.41m _
28.58m / sec

3.128 (9-9)
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Taking into consideration the turbulence factor equal to k;=1.00 as recommended in Eurocode 1 and
k.=0.215, as calculated from Eqg. (9-1), the standard deviation of the turbulence is:

0,=k;"vp'k;=0.215-30m/sec*1.00=6.45m/sec (9-10)

The non-dimensional power spectral density suggested by Eurocode 1 is expressed as:

6.8 -f (z,n
SL(zln)= L( )
Y+102-f (zn)P 011
S, (25m,1.059Hz) = 68-3128 063

3t +10.2.3.128

Considering that the height and the width of the structure are h=25m and b=100m, respectively, the
reference height z. for the external pressure is equal to the height of the central node of the roof, that
is ze=z=25m, and that the frequency of the first symmetric mode represents the frequency
n; x=1.059Hz, the aerodynamic admittance functions are calculated as:

1 1 -2 1 1 2426
R, = —— l-e“M)=—-—— _(1-e ) =0.207 -
" 2.0, 4.26 2.4.26° (5-12)
1 1 . 1 1 -217.05
R, =—— _ 1-e“™)= - 1l-e ) =0.057 -
® e 2.0 17.05  2.17.052 (3-13)
with
4.6-h 4.6 -25m
=——.f(zo,n{ ) =———-3.128 =4.26 -
T =15y (e = gaai (9-14)
46-b 4.6 -100m
= -f Ny )=—-"—"-.3.128=17.05 -
T =1y M) = g (9-15)
The resonance response factor R? is defined as:
, n? n2
R :ﬁ'SL(zernl,x)'Rh(nh)'Rb(nb) = 20.02 0.0630.2070.057 :0-183 (9'16)

where 0 is the total logarithmic decrement of damping, taken equal to 2%. The up-crossing frequency
v is expressed as:

R? 0.183
Vel —5 = 1.059sz/— = 0.417Hz > 0.08Hz ]
| B2 4 R2 1.00 + 0.183 > (9-17)

The peak factor k;, is obtained by:

ky =2 In(v- 1)+ 20 _

2.In(v-T) 618)

J2-In(0.417Hz - 600 sec) + 0.6 - 3.504

2 -In(0.417Hz - 600 sec)

where T is the averaging time for the mean wind velocity and is equal to T=600 seconds. Thus, the
dynamic factor ¢4 is:
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L 1r2k 1,(z¢) VB> +R*  1,2.3,504.0.23 -1+ 0.183
L - _

=1.054 (9-19)
1+7'Iv(2e)"/32 1+7.023-41
Considering a reference area for each node A.=(3.846m)? and taking into consideration the external
wind pressure calculated from Eq. (9-6), the force applied on every node of the cable net is:

F= CiCq W(2)Arer=1.054'1.32(3.846m)2C,e =20.58C,. (kN/node) (9-20)

Since no openings are considered, the internal wind pressure is equal to zero. In addition, friction
forces are not taken into account.

9.5.4 Dynamic wind pressure and nodal force

Considering the wind velocity time variation V(t) of Figure 9-11, the wind pressure acting on the
external surface is a function of time:

W(t)= q(t)cpe=0.000625V(t)* Cpe (9-21)
where:

1 0.0125kN/m’

q()=1/2pV(t)"= G, (1) = 5 10m / sec?

-V(t)? = 0.000625 - V(t)? (9-22)

and the load applied on every node of the cable net is:
F(t)=w(t)Ar=0.000625V(t)*(3.846m)*C,e=0.00924c,[V(t)]* (kN/node) (9-23)

The time-history diagram of the wind load is plotted in Figure 9-12. The maximum load on the nodes
of the cable net is Frnax=20.78c,. (KN/node), which is very close to the one caused by the static wind
pressure, given by Eq. (9-20).
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Figure 9-12: Time-history diagram of the wind force acting on every node of the net

9.6 RESPONSE TO COMBINED PERMANENT LOADS AND WIND ACTION

9.6.1 Nonlinear static analysis

The static wind load is applied on every node of the net, considering also the short-term velocity
fluctuations, as calculated in section 9.5.3. The loads applied on every node are shown in Figure 9-13,
according to the zones with different pressure coefficients. The load direction is assumed vertical,
while the negative sign denotes wind suction. It is worth mentioning that the wind load considered for
the static analysis of the Peace and Friendship Stadium was -1.10kN/m?, uniformly distributed,
corresponding to nodal loads -16.30kN, which is very close to the values of Figure 9-13.

Nonlinear dynamic response and design of cable nets



324 Chapter 9

™ AR NN 1]
. |5.375kNfnode |
™ 1]

-1%.45kN/node N v -11.275kN/node

| N d
LY ™.

N
-:15.375k|~|fm:/ew\ \-:L5.375kN_!na:|= > x

v N
v N

A N
/" A45375kNfnode
1 N

/| ™
/ ™

12 30kM fnada

R A N 8 o

Figure 9-13: Static wind load on the nodes of the cable net for wind direction 0°

As initial state, the one under pretension and permanent loads is considered. Since the pressure
coefficients define wind suction all over the surface, the wind load causes an upward z-displacement
of the net equal to 0.306m. The minimum cable tension is 329kN and the maximum one 909kN. The
deformed shape of the net is shown in Figure 9-14, where the maximum and minimum cable tensions
are also plotted.
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Figure 9-14: Deformed state and cable tensions under permanent and wind loads

9.6.2 Nonlinear dynamic analysis

Taking into account the velocity diagram of Figure 9-11 and applying the wind action on the net as
described in section 9.5.4, the dynamic response of the cable net is calculated, considering again
additional nodal masses due to permanent loads. Assuming that the damping ratio is the same for the
first four modes, the Rayleigh damping coefficients [9-9] are calculated taking into consideration the
first and fourth natural frequencies. The frequency of the first and fourth vibration modes are
0;=6.134sec’ and w4=6.654sec, respectively. For damping ratio {=2%, the Rayleigh damping
coefficients are:
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2w;w; 2-6.134-6.654 1
dg = =0.02=—————— =0.12767sec™ -
0 =l o, 6.134 + 6.654 (9-24)
2 2-0.02
a, = = =0.00313sec -
1 T 0, 6.134+ 6,654 (3-25)

The difference between the dynamic response and the static one is defined by the ratio of the
dynamic magnitudes of the response over the static ones corresponding to the same load, denoted in
chapter 7 as Rgn. Thus, node 15, which is the central node of the net, exhibits the maximum
deflections, which are -0.649m (downwards) and 0.302m (upwards). The maximum negative
deflection is not predicted by the static analysis, while the maximum positive one is accurately
assessed by the static one. The deflection diagrams of node 15 are plotted in Figure 9-15.
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Figure 9-15: Deflection of the central node: (a) time-history diagram, (b) response spectrum

Cable segments 418 and 40, shown in Figure 9-16, develop the minimum and maximum tension,
respectively. The minimum cable tension is 137kN, being 42% of the minimum static one (Rqyn=0.42)
and the maximum cable tension is 1117kN, with R4,,=1.23. The tension diagrams are shown in Figure
9-17. It is noted that the tension response spectra present two main frequencies, one at 1.04Hz,
being close to the natural frequency of the system of the first symmetric mode, and one at 1.20Hz for
the minimum cable tension and 1.38Hz for the maximum one, corresponding to the fifth mode with
natural frequency 1.23Hz and the eighth one with 1.37Hz, respectively, being both symmetric modes,
as shown in Figure 9-3. Significant amplitudes are also observed for frequencies smaller than 1.00Hz,

while, for frequencies larger than 2.00Hz, the amplitudes are very small.
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Figure 9-16: Cable segments 418 and 40
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Figure 9-17: Minimum cable tension: (a) time-history diagram, (b) response spectrum,
Maximum cable tension: (c) time-history diagram, (d) response spectrum

Some shapshots of the dynamic motion, where the three symmetric modes appear, are illustrated in
Figure 9-18, in which the deformation is magnified. Although the spectrum of the wind velocity
presents large amplitudes for frequencies much smaller than the eigenfrequencies and much smaller
amplitudes for frequencies close to the natural frequencies, the symmetric modes of the system are
activated. This occurs because even small amplitudes of the wind velocity cause fundamental
resonances with large oscillation amplitudes, despite the presence of damping. In addition, due to the
small frequencies of the wind, superharmonic resonances evolve, triggering the oscillation of the net
with small frequencies, as the ones of the wind, but also with frequencies larger than the ones of the
external excitation. Both kinds of resonances lead to larger dynamic response with respect to the
static one, as observed from the cable tension time-histories.

Figure 9-18: Snapshots of the dynamic motion for wind direction 0°
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9.7 PARAMETRIC ANALYSES

9.7.1 Influence of the wind direction

The wind direction towards +y axis and parallel to the main cables (wind 90°) is considered, shown in
Figure 9-19a. The pressure coefficients are illustrated in Figure 9-19b, retrieved from chapter 8. In
two leeward zones the coefficient c,. takes two values, one positive (c,.=+0.20) and one negative
(cpe=-0.60). The negative one corresponds to a spatial distribution of the wind pressure similar to the
one for wind direction 0°, thus only the positive value is taken into account in this section resulting in
an antisymmetric spatial distribution.

Ny -~ 0.6 (40.2)
0.6 (+0.2)
Plos| o8 06 |06 wx
08
3 -
Hp
190“
() (b)

Figure 9-19: (a) Wind direction 90°, (b) Pressure coefficients

In this case the main vibration mode is assumed to be the third one, which is antisymmetric with
respect to x-axis, with eigenfrequency 1.013Hz. Following the procedure described in section 9.5.3,
considering n=1.013Hz, the dynamic factor c4 results equal to 1.06. Thus, according to Eq. (9-20), the
wind force on every node is:

F= cCq W(Z)Arer=1.06'1.32/(3.846m)’c,e =20.70¢,e (kN/node) (9-26)

Taking into consideration the pressure coefficients of Figure 9-19b, the loads applied on every node
are shown in Figure 9-20. The positive sign denotes a downward direction, while the negative sign an
upward one. The load direction is assumed again as vertical. The state under pretension and
permanent loads is considered again as initial state, calculated in section 9.3.1. Node 27 exhibits the
maximum downward z-displacement, with negative value, equal to -0.502m, while the maximum
upward one, with positive value, is for node 35 and it is equal to 0.470m, as plotted in Figure 9-21,
being both larger than the deflection calculated in section 9.6.1. The minimum cable tension is 291kN
and the maximum one 972kN.
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Figure 9-21: Vertical nodal displacements due to the static wind load for wind direction 90°

The dynamic response of the cable net is calculated considering the velocity diagram of Figure 9-11.
The maximum negative vertical nodal displacement is -0.772m (downwards) for node 27, with
Rayn=1.54. The maximum positive one is 0.394m (upwards) for node 35, with Rq4,=0.84. The
diagrams for the two nodes exhibiting the maximum negative and positive deflections are plotted in
Figure 9-22. Cable segments 35 and 40 develop the minimum and maximum tension, respectively,
shown in Figure 9-23. The minimum cable tension is 157kN with Ry4,,=0.54 (Figure 9-24) and the
maximum cable tension is 1060kN with R4,,=1.09 (Figure 9-25). These differences are smaller than
the corresponding ones for wind direction 0°, rendering the wind direction parallel to the secondary

cables more unfavourable than the one parallel to the main cables.
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Figure 9-24: Wind direction 90°: minimum cable tension: (a) time-history diagram, (b) response spectrum
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Figure 9-25: Wind direction 90°: maximum cable tension: (a) time-history diagram, (b) response spectrum

All response diagrams verify that the main vibration frequency of the cable net is close to the
eigenfrequency of the system for the antisymmetric mode with respect to x-axis (1.013Hz), confirming
once again the fundamental resonance caused by small loading amplitudes and the superharmonic
one, due to the small frequencies of the wind. As a result of these two kinds of resonances, the
dynamic response of the net is larger than the static one. The snapshots of the dynamic motion with
magnified deformations, shown in Figure 9-26, confirm the antisymmetric deformed shape.

Figure 9-26: Snapshots of the dynamic motion for wind direction 90°

The maximum absolute values of the net deflection and cable tension for both assumptions regarding
the wind direction are tabulated in Table 9-1.

Table 9-1: Static (st) and dynamic (d) response with respect to the wind direction

Max net deflection Max tension
wind direction | wg(m) [ wg(m) | wg/Weg | Nt (KN) | Ng (KN) | Ng/Ng
0° 0.306 0.649 2.12 909 1117 1.23
90° 0.502 0.772 1.54 972 1060 1.09

A comparison of the maximum deflection diagrams for the two wind direction assumptions is shown in
Figure 9-27. The maximum deflection is noticed for wind direction 90°, but the maximum variance of
the response, which can cause fatigue problems, is observed for wind direction 0°, verified also by the
larger oscillation amplitude in the response spectra.
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Figure 9-27: Maximum nodal deflection according to the wind direction: (a) time-history diagrams, (b) response
spectra

9.7.2 Influence of the parameter A2

In this section the influence of the non-dimensional parameter A*> on the dynamic response of the
cable nets is investigated. The initial pretension of the cable net described in section 9.2 corresponds
to an initial cable stress, equal to 19% of the yield stress o,, which is a common level of prestressing
for this kind of structures. In this section, two more cases are studied regarding the initial pretension
and the cable cross-sectional area for the same geometry, accounting for different levels of stiffness
due to the initial prestressing. Considering cable nets that approximate realistic structures, in the first
case the cables have diameter D=80mm and initial pretension Ny=800kN, corresponding to an initial
cable stress equal to 10%a0,, while in the second one, the cable diameter is D=40mm, and the initial
pretension No=600kN, corresponding to initial cable stress 30%0,.

Changing the initial cable stress, the non-dimensional parameter A’ and the natural frequencies of the
nets change too, as well as the sequence of the corresponding vibration modes, as proved in chapter
5. For the first cable net, although the initial stress is smaller than the one of the previous example,
the frequency of the first symmetric mode is larger, due to the large cable diameter, axial stiffness EA
and cable mass. The cable net with cable diameter D=40mm and initial stress 30%a0,, instead, has
smaller eigenfrequency and parameter A* than both other systems. A comparison between the
different characteristics of the three systems is provided in Table 9-2.

Table 9-2: Characteristics of the nets with different cable diameters and initial cable stress

Cable net | D[mm] | Ng[kN] | No/(Aa,) [%] N w5 [sec?] | fis [Hz]
1 80 800 10 2.59 7.696 1.225
2 50 600 19 1.35 6.654 1.059
3 40 600 30 0.86 6.085 0.968

For the first cable net the dynamic factor c4 results equal to 1.038 taking into account the frequency
of the first symmetric mode. Considering wind direction parallel to x-axis (wind 0°), the static response
due to the wind load results in a maximum upward z-displacement 0.095m, a minimum cable tension
515kN and a maximum one 1097kN. The maximum and minimum dynamic deflection is observed for
node 182, shown in Figure 9-28. The dynamic load of the wind causes maximum negative z-
displacement of the net (downwards) equal to -0.273m and a positive one (upwards) equal to
0.069m. The deflection diagrams are illustrated in Figure 9-29. The static analysis gives conservative
results regarding the maximum upward displacement, but it still cannot predict the maximum
downward one.
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Figure 9-29: Cable net with A2

2.59: maximum and minimum nodal deflection: (a) time-history diagram,

(b) response spectrum

The minimum and maximum cable tensions are 253kN (R4,=0.49) and 1385kN (R4,=1.26),

respectively, leading to larger differences between the static and dynamic responses, with respect to

the ones of the first example given in section 9.6.2. Cable segment 27 exhibits the minimum tension,

while the maximum one develops in cable segment 40 (Figure 9-30).
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Figure 9-30: Cable segments 27 and 40

-31. In the response spectra of the cable tensions

The tension diagrams are plotted in Figure 9

significant tension amplitudes are observed again for small frequencies due to superharmonic

resonances. The three peaks, at 1.18Hz, 1.53Hz, and 1.93Hz, confirm resonances for at least three

modes.
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Figure 9-31: Cable net with A*>=2.59: minimum cable tension: (a) time-history diagram, (b) response spectrum,
maximum cable tension: (c) time-history diagram, (d) response spectrum

Similar differences between static and dynamic results arise for the cable net with the smallest
parameter A>. The dynamic factor ¢4 is equal to 1.067 taking into account again the frequency of the
first symmetric mode. For wind direction parallel to x-axis (wind 0°), the maximum static upward z-
displacement is 0.492m, the minimum cable tension 331kN and the maximum one 916kN. The
dynamic wind load causes a maximum negative (downward) z-displacement of the central node of the
net equal to -0.990m and a positive (upward) one 0.621m (Figure 9-32). The maximum downward
deflection cannot be calculated by the static analysis while the maximum upward dynamic deflection is
close to the static one.
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Figure 9-32: Cable net with A2=0.86: maximum and minimum nodal deflection: (a) time-history diagram,
(b) response spectrum
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The minimum and maximum cable tensions, observed in cable segments 418 and 40, respectively
(Figure 9-16), are 208kN (Rg4n=0.63) and 1105kN (R4n=1.21), respectively. The tension time-history
diagrams and response spectra are plotted in Figure 9-33. Superharmonic and fundamental
resonances are verified again by the response spectra.
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Figure 9-33: Cable net with A>=0.86: minimum cable tension: (a) time-history diagram, (b) response spectrum,
maximum cable tension: (c) time-history diagram, (d) response spectrum

The maximum absolute values of the results for the three cable nets are listed in Table 9-3. A
comparison of the maximum deflection diagrams for the three cable nets is illustrated in the charts of
Figure 9-34. The largest difference between static and dynamic results is noted for the first cable net
with the minimum initial cable stress. However, the maximum response is noticed for the cable net
with the minimum cable diameter and the maximum initial cable stress, having the smallest parameter
A\2. The maximum variance of the response is also observed for the same cable net. This parametric
analysis shows that, although the larger initial stress increases the system’s stiffness, it does not result
in smaller dynamic oscillation amplitudes and in general in a smaller dynamic response of the net. The
cable diameter is also important, which as proved in chapter 3 influences the nonlinear term. In
addition, a smaller cable diameter decreases the axial stiffness of the system and the total mass. As A
increases the oscillation amplitudes decrease. For the first cable net, parameter A’ equals to 2.59
indicating that the first symmetric mode has internal nodes with zero vertical displacements, resulting
thus in smaller oscillation amplitudes.

Table 9-3: Static (st) and dynamic (d) response with respect to parameter A?

Max net deflection Max tension
Cable net N Wy (M) wg (m) W/ Wet Ngt (kN) Ng (kN) Na/Net
1 2.59 0.095 0.273 2.87 1097 1385 1.26
2 1.35 0.306 0.649 2.12 909 1117 1.23
3 0.86 0.492 0.990 2.01 916 1105 1.21
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Figure 9-34: Maximum nodal deflection according to parameter A%: (a) time-history diagrams, (b) response
spectra

9.7.3 Influence of the sag-to-span ratio

In order to investigate the influence of the roof’s curvature on the dynamic response of such systems,
two more cable nets are considered with f/L=1/35 and f/L=1/10, representing a shallow and a deep
cable net, respectively. The number of cables in each direction, the diameter of the circular plan view
L, the height of the central node of the net z, the cable diameter D and mass density m, the Young
modulus E, the initial pretension Ny and the damping ratio C remain as defined in section 9.2. The
wind direction is parallel to the secondary cables (wind 0°). The equivalent pitch angle for the cable
net with f/L=1/35 is a=3.27°, which is smaller than 5°. According to Eurocode 1, this roof can be
considered as flat and it can be divided in two zones regarding the pressure coefficients. For f/L=1/10,
this angle is a=11.31° and the roof is divided in the eight zones. The pressure coefficients c,. for both
cable nets are given in chapter 8.

The first vibration mode of the shallow cable net with f/L=1/35 is the first symmetric one with
frequency 0.777Hz, and the second one is the antisymmetric with respect to x-axis, with frequency
0.836Hz, being both closer to the wind frequencies. Due to the wind spatial distribution, it is expected
that the antisymmetric mode will be the main vibration mode, thus the dynamic coefficient, taking into
consideration the frequency of this antisymmetric mode, results in c¢4=1.093. For the deep cable net
with f/L=1/10, the frequency of the first symmetric mode is 1.306Hz, which is away from the
frequencies of the excitation, leading to a dynamic coefficient c4=1.032. For comparison reasons, the
parameter A’ and the eigenfrequencies of the main vibration modes for these two systems and the
one with f/L=1/20 described in section 9.3.2 are listed in Table 9-4.

Table 9-4: Characteristics of the nets with different f/L

Cable net f/L N | wis[sect] | fis[Hz] | wia[sec?] | fia [Hz]
1 1/35 0.44 - - 5.253 0.836
2 1/20 1.35 6.654 1.059 - -
3 1/10 5.40 8.205 1.306 - -

Applying the dynamic load of the wind on the shallow cable net, the maximum dynamic positive
(upward) and negative (downward) deflections are observed for node 109 and 367, respectively,
shown in Figure 9-35. The maximum positive deflection is 0.408m (with R4,=0.70 where the
maximum static one is equal to 0.587m) and the maximum negative one is -1.635m (with Ry4,,=9.97
where the corresponding static one is equal to -0.164m). The deflection diagrams for nodes 109 and
367 are plotted in Figure 9-36.
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Figure 9-35: Cable net with f/L=1/35: nodes 109 and 367
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Figure 9-36: Cable net with f/L=1/35: maximum positive deflection: (a) time-history diagram, (b) response
spectrum, maximum negative deflection: (c) time-history diagram, (d) response spectrum

The minimum and maximum tensions, due to the static wind load, are 334kN and 804kN, respectively,
while the corresponding dynamic ones are 61kN and 1513kN, leading to large differences between the
two analyses and thus unsafe estimation of the response if the analysis is based on equivalent static
methods. The minimum and maximum cable tensions are observed for cable segments 97 and 297,
respectively, shown in Figure 9-37. The tension diagrams for both cable segments are plotted in
Figure 9-38. Snapshots of the dynamic motion with magnified deformed shapes are illustrated in
Figure 9-39, where symmetric and antisymmetric motions are noted.
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Figure 9-37: Cable net with f/L=1/35: cable segments 97 and 297
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Figure 9-38: Cable net with f/L=1/35: minimum cable tension: (a) time-history diagram, (b) response spectrum,
maximum cable tension: (c) time-history diagram, (d) response spectrum

Figure 9-39: Snapshots of the dynamic motion for the cable net with f/L=1/35

The wind load is also applied on the deep cable net statically and dynamically and the two responses
are compared again. Node 400 oscillates with the maximum amplitude, shown in Figure 9-40. As
expected, due to the high level of stiffness obtained by the large sag-to-span ratio, the amplitudes of
the deflection are very small with respect to the cable nets with smaller curvatures. The maximum
upward deflection is 0.10m, equal to the static one, while the maximum downward deflection equals
to -0.16m. The deflection diagrams of node 400 are illustrated in Figure 9-41. In the deflection
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response diagram, it is shown that the main vibration frequencies are close to 1.70Hz and 2.00Hz,
meaning that higher modes than the first symmetric one are activated. This is verified by the motion
of the net, snapshots of which are shown in Figure 9-42 with magnified deformed shapes, while the
corresponding vibration modes are illustrated in Figure 9-43.
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Figure 9-40: Cable net with f/L=1/10: node 400
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Figure 9-41: Cable net with f/L=1/10: maximum and minimum nodal deflection: (a) time-history diagram,
(b) response spectrum

Figure 9-42: Snapshots of the dynamic motion for the cable net with f/L=1/10
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Figure 9-43: Activated vibration modes and natural frequencies for the cable net with f/L=1/10

Cable segments 6 and 59 develop the minimum and maximum tension, respectively. These segments
are shown in Figure 9-44. The minimum dynamic cable tension is 347kN (Figure 9-45), with R4,=0.83
where the static one is 418kN. The maximum dynamic cable tension arises at 870kN (Figure 9-46),
while the static one is 782kN, leading to a ratio R4,,=1.11. These differences are small with respect to
the corresponding ones of the previous examples. The main vibration frequencies close to 2.00Hz are
also verified by the tension response diagrams.
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Figure 9-44: Cable net with f/L=1/10: cable segments 6 and 59

—— dynamic static
1600 - segment 6 40 segment 6
~ =
Z 1200 1 2 30
S 800 1 % 3 20
2 b, B b 23
g 400 e g 10
©
0 T T 1 0 U ....‘“.._‘ U T
0 200 400 600 0 1 2 3 4
time (sec) frequency (Hz)
(a) (b)

Figure 9-45: Cable net with f/L=1/10: minimum cable tension: (a) time-history diagram, (b) response spectrum
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Figure 9-46: Cable net with f/L=1/10: maximum cable tension: (a) time-history diagram, (b) response spectrum

The maximum absolute values of the results for all three sag-so-span ratios are listed in Table 9-5.

Table 9-5: Static (st) and dynamic (d) response with respect to the sag-so-span ratio

Max net deflection Max tension
Cable net f/L N Wt (M) | wg (M) W/ Wit Net (KN) [ Ng (KN) | Ng/Ng
1 1/35 | 0.44 0.587 1.635 2.78 804 1513 1.88
2 1/20 | 1.35 0.306 0.649 2.12 909 1117 1.23
3 1/10 | 5.40 0.100 0.160 1.60 782 870 1.11

The maximum nodal deflection diagrams for all three sag-to-span ratios are compared in the charts of
Figure 9-47. As expected, the shallow cable net, being more flexible than the other systems, exhibits
the maximum variance of the response, which can cause severe fatigue problems to the cable
anchorages. Comparing also the response of these cable nets with the ones of section 9.7.2, it is
verified that as parameter A’ becomes larger, the cable nets exhibit smaller oscillation amplitudes.
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Figure 9-47: Maximum nodal deflection according to the sag-to-span ratio: (a) time-history diagrams,
(b) response spectra

9.7.4 Influence of the boundary conditions

In all previous examples, the cable ends are considered as fixed. In this section the influence of the
cable supports on the net’s dynamic response is compared with respect to the one of section 9.6.2.
Thus, keeping the same geometry and mechanical characteristics of the net given in section 9.2, a
boundary ring is added in the model having a square box cross-section, with width b=6.00m, wall
thickness 0.60m and unit weight p,=25kN/m?>. The Young-modulus of the ring’s material is assumed
equal to E,=37GPa. The boundary conditions are assumed as described in chapter 5, in such way that
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the radial deformation of the ring is allowed, but not the overall rotation about the z global axis. The
ring’s first vibration mode is the first mode of the system with eigenfrequency w,=5.54sec (0.882Hz),
while the first symmetric mode of the cable net is the fifth mode of the system with eigenfrequency
w;s=7.358sec™ (1.171Hz). Considering the first vibration mode, as the main vibration mode for the
wind action the dynamic coefficient cq4 is calculated equal to 1.083. The static load of the wind causes
a maximum upward deflection equal to 0.496m. The minimum and maximum cable tensions are
345kN and 921kN, respectively. The dynamic load of the wind is also applied, calculated as described
in section 9.5.4. The central node oscillates with the maximum amplitude, assuming a maximum
negative value equal to -1.109m (downward deflection) and a positive one 0.502m (upward
deflection), being both almost 170% of the corresponding ones calculated in section 9.6.2. The
diagrams of the central node deflection are plotted in Figure 9-48.
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Figure 9-48: Cable net with boundary ring: maximum and minimum nodal deflection: (a) time-history diagram,
(b) response spectrum

Both static and dynamic deflections are larger than the ones of the system with fixed cable ends, due
to the activation of the ring’s vibration mode and the first symmetric mode of the cable net. This is
shown in the response spectrum, in which two main peaks are observed corresponding to these two
symmetric modes. Even for this system the upward maximum deflection is estimated with accuracy by
the quasi-static method, but not the downward one.

Cable segments 416 and 40 develop the minimum and maximum cable tension, respectively (Figure
9-49). The minimum cable tension is 140kN and the maximum cable tension is 1177kN (Figure 9-50),
which are both very close to the ones calculated for the system with fixed cable ends, but the
difference from the static corresponding ones is larger.
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Figure 9-49: Cable net with boundary ring: cable segments 416 and 40
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Figure 9-50: Cable net with boundary ring: minimum cable tension: (a) time-history diagram, (b) response
spectrum, maximum cable tension: (c) time-history diagram, (d) response spectrum

As proved in chapter 7, fundamental resonance for the first symmetric mode of the net, results in
smaller response for the cable net with the edge ring than for the one with rigid supports, because
the vibration of the ring suppresses the net’s oscillation amplitude, while superharmonic resonance
has opposite results. For the wind load considered, both kinds of resonances occur, resulting in similar
responses for both models regarding the cable tensions. The response diagrams verify that the main
vibration mode is the one of the ring, with frequency 0.882Hz. Modes of higher order, with
frequencies close to 2.00Hz, also appear. In Figure 9-51, some snhapshots of the cable net dynamic
motion are illustrated with magnified deformed shapes, where it is evident that several symmetric
modes are activated. Table 9-6 gives the maximum absolute values of the results for the two
assumptions regarding the boundary conditions.

Figure 9-51: Snapshots of the dynamic motion of the cable net with boundary ring

Table 9-6: Static (st) and dynamic (d) response with respect to the boundary conditions

Max net deflection Max tension
Cable net with Wgt (M) wg (M) Wa/Wet | Net (KN) | Ng (KN) | Ng/Ng
rigid supports 0.306 0.649 2.12 909 1117 1.23
ring 0.496 1.109 2.23 921 1177 1.28
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In Figure 9-52 a comparison of the nodal deflections is given for the two boundary assumptions,
where it is shown that the cable net with the ring experiences larger deflection than the one with fixed
cable ends. The maximum variance of the response is also observed for the same system.
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Figure 9-52: Maximum nodal deflection according to the boundary assumptions: (a) time-history diagrams,
(b) response spectra

9.7.5 Artificial wind function

An artificial function of the turbulent wind velocity is created as described in chapter 2, based on the
procedure proposed in [9-14]. For a mean value of the wind velocity equal to 28.58m/sec, as
calculated from Eq. (9-3), the diagrams of an artificial wind velocity function are plotted in Figure
9-53.
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Figure 9-53: Artificial wind velocity: (a) time-history diagram, (b) Fourier diagram

The maximum and minimum values of the time-history diagram are 48.01m/sec and 8.47m/sec,
respectively. The maximum value is very close to the corresponding one of the real record of Figure
9-11a, while the minimum one is smaller than the one of the real record, causing more intense
variance. The main frequencies of the wind velocity are smaller than 1.00Hz as in the Fourier diagram
of Figure 9-11b. Thus, this artificial wind velocity diagram approaches very satisfactorily real records
of the wind. Two cable nets are subjected to this wind load; the first one is the cable described in
section 9.2 and the second one is the cable net with a boundary ring having the characteristics of
section 9.7.4.

The deflection diagrams of the central node of the cable net with rigid supports are plotted in Figure
9-54. The maximum negative deflection (downwards) is -0.898m, while the positive one (upwards) is
0.674m, being both larger than the corresponding ones of the analysis with the real wind record,
shown in Figure 9-15, although the response diagram of the deflection do not present significant
differences. The ratio Ry, for the maximum upward deflection is Rqn=2.20. Thus, not only the
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maximum and minimum values of the wind velocity, but also its fluctuations play an important role in
the dynamic response of the net.
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Figure 9-54: Cable net with rigid supports and artificial wind diagram: maximum and minimum nodal deflection:
(a) time-history diagram, (b) response spectrum

Cable segments 368 and 40, shown in Figure 9-55, develop the minimum and maximum cable
tension, respectively. The minimum cable tension is 43kN (Figure 9-56) and the maximum one is
1296kN (Figure 9-57), being more conservative than the corresponding ones for the real wind record,
given in Figure 9-17, causing thus larger differences from the static results. However, the response
frequencies for both wind considerations are the same. In Table 9-7 the maximum absolute values of
the results for the real and the artificial wind diagrams are listed.
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Figure 9-55: Cable net with rigid supports: cable segments 368 and 40
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Figure 9-56: Cable net with rigid supports and artificial wind diagram: minimum cable tension: (a) time-history
diagram, (b) response spectrum
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Figure 9-57: Cable net with rigid supports and artificial wind diagram: maximum cable tension: (a) time-history
diagram, (b) response spectrum

Table 9-7: Static (st) and dynamic (d) response of the cable with rigid supports with respect to the wind diagram

Max net deflection Max tension
Wind diagram Wgt (M) Wg (M) | wa/Wst | N (KN) | Ng (kN) | Ng/Ngt
real 0.306 0.649 2.12 909 1117 1.23
artificial 0.306 0.898 2.93 909 1296 1.43

In the charts of Figure 9-58 the maximum nodal deflection is compared for this cable net subjected to
the wind action of the real record, plotted in Figure 9-11 and the artificial one of Figure 9-53. The
amplitude of the response is larger for the artificial wind but the main vibration frequencies are the
same for both wind diagrams.
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Figure 9-58: Maximum nodal deflection for a cable net with rigid supports considering real and artificial wind
diagrams: (a) time-history diagrams, (b) response spectra

Regarding the cable net with boundary ring, the deflection diagrams of the central node are plotted in
Figure 9-59, with maximum negative value -1.606m (downward deflection) and a positive one 0.984m
(upward deflection), leading to larger response amplitudes with respect to the ones caused by the real
wind record. The minimum and maximum cable tension diagrams are plotted in Figure 9-60 for cable
segments 416 and 40, respectively, shown in Figure 9-49. The minimum one is 104kN and the
maximum one is 1420kN. In this case, the boundary ring influences significantly the response of the
net, not only in terms of the net deflection but also in terms of the cable tension. The difference of
the results between this analysis and the one of section 9.7.4 is also considerable. This difference is
attributed to the intense fluctuations of the produced wind. The ring’s vibration mode prevails again
during the dynamic motion, as proved by the main oscillation frequency of the response diagrams. In
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Table 9-8 the maximum absolute values of the results for the real and the artificial wind diagrams are
listed.
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Figure 9-59: Cable net with boundary ring and artificial wind diagram: maximum and minimum nodal deflection:
(a) time-history diagram, (b) response spectrum
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Figure 9-60: Cable net with boundary ring and artificial wind diagram: minimum cable tension: (a) time-history
diagram, (b) response spectrum, maximum cable tension: (c) time-history diagram, (d) response spectrum

Table 9-8: Static (st) and dynamic (d) response of the cable with boundary ring with respect to the wind diagram

Max net deflection Max tension
Wind diagram | wg (m) [ wg(m) | wg/We | Ng (kN) Ng (KN) | Ng/Ng
real 0.496 1.109 2.23 921 1177 1.28
artificial 0.496 1.606 3.24 921 1420 1.54

The charts of Figure 9-61 compare the maximum nodal deflection diagram for the cable net with rigid
supports or with boundary ring for the artificial wind function. The response of the cable net with the
deformable boundary ring is again the larger one. The response spectra show the different vibrations
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frequencies for the two systems, corresponding to the first symmetric mode and the in-plane mode of
the ring.
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Figure 9-61: Maximum nodal deflection according to the boundary assumptions considering the artificial wind
diagram: (a) time-history diagrams, (b) response spectra

Figure 9-62 gives the comparison of the maximum nodal deflection diagram for the cable net with
boundary ring for the real record and the artificial one. The artificial wind function results again in
larger oscillation amplitudes, but the main vibration frequencies coincide for both wind diagrams.
Thus, in the lack of real wind records, the creation of a wind diagram according to the procedure
described in [9-14] gives reliable results.
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Figure 9-62: Maximum nodal deflection for a cable net with boundary ring considering real and artificial wind
diagrams: (a) time-history diagrams, (b) response spectra

9.8 SUMMARY AND CONCLUSIONS

In this chapter, the dynamic response of saddle-shaped cable nets under wind action is studied.
Accounting for different stiffness levels, several cable nets with different characteristics are assumed.
Two different wind directions are also considered, leading to different deformed shapes of the net.
The influence of the boundary conditions of the cables on the dynamic response of the net is also
investigated. The time-history of the wind velocity is obtained from real records and scaled so that the
mean velocity equals the one suggested from Eurocode 1 for the height of the net’s central node. An
artificial wind function is also created, taking into account the wind velocity spectrum proposed by
Eurocode 1. Both velocity diagrams lead to similar results. Nonlinear dynamic analyses are performed
considering the geometric nonlinearity of the system. Nonlinear static analyses are also conducted,
based on the methodology proposed by Eurocode 1. The dynamic response of the cable nets is
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compared with the static one, by means of the maximum deflection as well as the maximum and
minimum cable tension.

Although the wind main frequencies are much smaller than the natural frequencies of the cable nets,
the response spectra indicate the occurrence of superharmonic and fundamental resonances, causing
oscillations with large amplitudes and frequencies not only equal to the wind frequencies but also
equal to the natural frequencies. Superharmonic resonances, which amplify the dynamic response,
cannot be assessed by the quasi-static methods. The dynamic analysis results in larger response with
respect to the static one. The difference is significant for shallow or medium cable nets. For deep
cable nets, the difference arises at 10%. In addition, it is proved that as parameter A* increases, the
oscillation amplitudes become smaller. The modelling of the boundary ring affects the maximum
deflection of the net, leading to larger responses. Finally, artificial wind functions can reliably be used
in the lack of real wind records.

Part of this work has been presented in [9-15] and [9-16].
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10 SUMMARY AND CONCLUSIONS

10.1 SUMMARY

In the last decades many researchers have dealt with the dynamic response of simple suspended
cables. Analytical solutions are provided in the literature describing the nonlinear phenomena that
govern their behaviour and several experiments have been conducted to confirm the theory. A few
publications refer to the nonlinear dynamic behaviour of larger cable structures such as cable nets.
Most of them present innovative computerised methods of analysis and other numerical techniques to
calculate their nonlinear dynamic response, or include results from parametric analyses concerning
their eigenmodes and eigenfrequencies. Others draw their conclusions about the nonlinear manner in
which such structures behave, either from isolated time-history analyses, or comparing the results
obtained from linear and nonlinear analyses. Nevertheless, one can hardly find a systematic study of
nonlinear dynamic phenomena in cable nets.

The aim of this research is to investigate the response of cable nets to dynamic loads such as
harmonic loads or wind actions, focusing on the dynamic phenomena that characterise nonlinear
structures, such as hardening or softening behaviour, dependence of the dynamic response on the
initial conditions, bending of the response curve, instability regions, jump phenomena, internal and
secondary resonances.

Firstly a simple cable net, consisting of two crossing cables, is studied and the equation of motion is
derived. Neglecting small terms of its equation of motion, this single-degree-of-freedom (SDOF)
system is proved to be similar to a Duffing oscillator with a cubic nonlinear term of the displacement.
A thorough study of this oscillator can be found in the literature. The analytical solution of its steady-
state response is adopted for the simple cable net and the occurrence of fundamental and secondary
resonances, such as superharmonic or subharmonic resonances, is verified for this system, as well.
The response diagrams are plotted for different resonant conditions showing bending of the response
curve, hardening behaviour and dependence on the initial conditions. This response is confirmed by
solving numerically the equation of motion as well as using finite element software and performing
time-history analyses considering also the geometric nonlinearity of the cable net.

Proceeding to multi-degree-of-freedom (MDOF) systems, a saddle-form cable net with circular plan
view is assumed. The boundary of the net is considered either as rigid, with cable ends modelled as
pinned, or as flexible, modelling the deformable edge ring. The first symmetric and antisymmetric
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vibration modes and the corresponding natural frequencies are calculated. A parametric analysis
shows that changing the sag-to-span ratio of the net and the mechanical characteristics of the cables,
regarding their axial stiffness and their pretension, the sequence of the first modes changes, as also
occurs in simple cables. A non-dimensional parameter A%, similar to the one used for simple cables to
describe this phenomenon, is also introduced for cable nets in this study. It is confirmed that this
parameter determines the sequence of their vibration modes, as in simple cables. For specific values
of this parameter two or more vibration modes have equal frequencies although they have different
shapes, leading to internal resonances. Based on a wide range of parametric analyses, semi-empirical
formulae are proposed to estimate the frequencies of the first vibration modes of the system.

Regarding MDOF systems, nonlinear dynamic phenomena cannot be detected by performing single
numerical analyses. The hardening behaviour of simple cable nets confirms that such systems
experience fundamental resonances for loading frequencies slightly larger than the natural frequency
of the system. For specific load amplitudes, the exact value of loading frequency causing the
maximum response depends on the characteristics of the system and the initial conditions. On the
other hand, secondary resonances occur for loading frequencies away from the eigenfrequency.
Although, it is well-known that a frequency ratio Q/w (Q: loading frequency, w: natural frequency)
close to 1/3 or/and 1/2 for a system having cubic or/and quadratic nonlinear terms may lead to
superharmonic resonance, the exact frequency of the load is not known and it is not sure whether the
load amplitude under consideration is large enough to cause this phenomenon. Subharmonic
resonance may also evolve for frequency ratios close to 2 or/and 3, but the exact loading frequency
and amplitude and the initial conditions, which play the most important role in this phenomenon, are
unknown. Only a specific combination of these parameters forces a certain system to nonlinear
resonances, but obtaining this combination numerically is a time consuming procedure.

Having the analytical solution of the simple cable net, the idea of an equivalent SDOF system to
assess the dynamic response of a MDOF system is introduced. The transformation of the
characteristics from the large system to the smaller one is obtained by similarity relations adopted
from a preliminary method used at the first steps of this research, which is extended here for this
purpose. Response diagrams are plotted for both SDOF and MDOF systems, based on the analytical
solutions and conducting time-history analyses, respectively. The two responses are compared for
several geometries and cable initial stresses in order to define the field of application of this method,
concluding that this method can be used for flexible cable nets with sag-to-span ratio between 1/30
and 1/20 and with high levels of initial cable stress.

Next, the influence of the spatial load distribution on the response of a cable net subjected to
harmonic loads is investigated. Three different spatial load distributions are assumed: a symmetric
one, and two antisymmetric ones with respect to one or both horizontal axes. Response diagrams are
plotted for loading frequencies either close to the natural frequency, leading to fundamental
resonances, or smaller than the eigenfrequency, aiming at superharmonic resonances. The influence
of the boundary ring on the net oscillation is also investigated for the same spatial load distributions.

In order to analyse the behaviour of such structures subjected to actual dynamic loads such as wind
actions, the wind pressure distribution on surfaces of this type is defined, based on the
recommendations of Eurocode 1. The saddle-form roof is divided into eight zones and pressure
coefficients are provided for each zone according to the wind direction. The proposed wind pressure
distribution is also compared with experimental results in order to verify the accuracy of the
assumptions made. It is proved that the approach adopted in this thesis results in slightly larger
pressure coefficients in some cases, but the spatial distribution of the wind pressure is satisfactory.
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Finally, an actual wind record and an artificial one are considered, resulting in a time-history diagram
of the wind load, and nonlinear time-history analyses are performed to detect nonlinear resonant
phenomena for the wind action, as well, using the spatial distribution proposed before. The dynamic
behaviour of the cable nets is compared with the static one, which is calculated according to the
quasi-static procedure recommended by Eurocode 1.

10.2 CONCLUDING REMARKS

Exploring the equation of motion of the simplest cable net with two crossing cables is an important
first step towards understanding the dynamic response of cable nets. The opposite curvatures
between the two cables, which is the main difference between cable nets and simple cables, double
the stiffness of the system but they do not render it stiff enough so as to behave as a weakly
nonlinear system. Nonlinear dynamic phenomena, established for simple cables, are also detected for
cable nets. Although the Duffing oscillator with a cubic nonlinear term describes a simplified cable net
model, providing only the steady-state response and not the transient one, and neglecting an eventual
cable slackening, it is found to be reliable regarding the frequency and the amplitude of the load for
which nonlinear phenomena take place.

Regarding MDOF cable net systems, the non-dimensional parameter A2, which depends on the sag-to-
span ratio of the cable net and the initial strain of the cable, is an important parameter that can be
used to indicate internal resonances and modal transition, while it also determines the sequence of
the modes. Knowing the importance of this parameter, it is possible to choose appropriately the
mechanical and geometric characteristics of the cable net in order to avoid internal resonances, which
increase the oscillation amplitude activating more than one vibration modes. The semi-empirical
formulae, proposed to be used for the preliminary design stage, estimate satisfactorily the first natural
frequencies of the cable net and the boundary ring. The modelling of the boundary ring influences
significantly the symmetric vibration mode of the net, due to the ring’s in-plane mode, which induces
a symmetric oscillation to the net, while the antisymmetric modes of the net remain unaltered
whether the cable supports are considered as fixed or as flexible.

The method of the equivalent SDOF model is proved to estimate satisfactorily the response of a MDOF
cable net for common geometries of cable nets. The main advantage of this method is that it can
define with small error and minimum computational time the loading amplitude and frequency for
which nonlinear phenomena develop. It is also noted that, in order to have a superharmonic or a
subharmonic resonance, large amplitudes of the load are required. Especially for subharmonic
resonances, large initial conditions are also required. The combination of these two conditions leads to
cable tensile failure during the transient response at the beginning of the analysis. Thus, it is unlikely
for a cable net to experience a subharmonic resonance.

Applying a harmonic load on every node of a MDOF cable net, nonlinear phenomena are also verified
for different spatial load distributions. The bending of the response curve, which indicates a hardening
nonlinear behaviour, is more intense when the net is loaded antisymmetrically rather than
symmetrically. As a result, the initial conditions influence the response for a large range of the loading
frequency. The behaviour of the net, when it is uniformly loaded, is altered significantly if the
deformability of the boundary ring is also taken into consideration in the simulation, while, for
antisymmetric loading, it remains unchanged. It is concluded that the harmonic load, following any
spatial distribution, causes nonlinear phenomena to shallow and deep cable nets, with medium or low
levels of initial pretension. High levels of initial cable stress, instead, lead to a more weakly nonlinear
response.
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These nonlinear phenomena are clear and can be identified when the external excitation has only one
frequency, as in case of harmonic loads. If large oscillation amplitudes are observed, the relation
between the loading frequency and the natural frequency of the system defines the kind of resonance
that occurs. The response spectra show the activated modes and confirm internal, fundamental or
secondary resonances. Changing the frequency of the load by small steps and plotting the steady-
state response, bending of the response curve may appear, leading to the conclusion that probably
the initial conditions influence the response amplitude. Thus, the results of many numerical analyses
indicate the nonlinear behaviour.

Although loading a structure with a harmonic load, having the spatial distribution of a mode of
vibration as well as the appropriate frequency to cause resonances, provides substantial information
about the behaviour of the system, it is an ideal situation and a very conservative assumption for the
design of such structures. The actual dynamic load that affects this kind of structures is due to wind
and they should be designed for this load. Hence, if a wind load acts on a structure, including many
frequencies, it is impossible to detect such phenomena, because a single analysis cannot show the
evolution of the hardening response, or a jump phenomenon. Only the response spectra that plot the
oscillation frequencies can provide information about nonlinear phenomena such as internal or
secondary resonances.

Regarding real or artificial wind velocity diagrams, the nonlinear dynamic analyses result in large
oscillation amplitudes with respect to the static ones produced by the equivalent static method
proposed by Eurocode 1. Large oscillation amplitudes are also observed in the response spectra for
frequencies equal to the eigenfrequencies, although the main frequencies of the wind are much
smaller than the eigenfrequencies of the cable nets, even though for frequencies close to the natural
frequencies, the amplitude of the wind load is small. This leads to the conclusion that the small
frequencies with large amplitudes of the wind load cause superharmonic resonances to the net, while
a weak excitation with frequency near the eigenfrequency enforces the system to experience
fundamental resonance, although damping is considered. Quasi-static methods cannot predict these
nonlinear dynamic phenomena and thus they cannot be considered as accurate for the analysis and
design of such structures. Large differences between static and dynamic responses are observed for
all cable nets, while decreasing the parameter A?, the oscillation amplitudes become larger, proving
that this parameter influences not only the vibration modes but also the response of the cable nets to
dynamic loads.

10.3 CONTRIBUTION OF THE RESEARCH

Cable nets are routinely considered as much stiffer structures than simple cables due to the opposite
curvatures and in many cases they are treated as weakly nonlinear systems. However, this study
shows that they present many similarities with simple cables and exhibit an intense nonlinear dynamic
behaviour under certain conditions. Their response to static loads can be calculated with accuracy
performing static analyses, which take into account geometric nonlinearity, but their overall dynamic
behaviour cannot be approached by single numerical analyses. Knowing how the simple cable net
responds to harmonic loads, a similar behaviour is expected from MDOF systems. The study of the
simple cable net, thus, provides insight and useful guidelines for investigating the strong nonlinearity
of a cable net, as well as detecting and interpreting the phenomena that characterise nonlinear
systems.

It is of utmost importance to know the natural frequencies of a cable net before the final design stage
of analysis, because they provide valuable information about the system’s dynamic response, although
they are calculated by linear modal analyses. The relation between the eigenfrequencies of a system
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and the ratio of the loading frequency over the natural frequency determines whether nonlinear
resonances should be expected or not. The semi-empirical formulae proposed for the estimation of
the first natural frequencies of the cable net and the boundary ring can be useful in preliminary design
stage. With these formulae it is possible to choose appropriately the mechanical characteristics of the
cable net in order to avoid internal resonances, which may increase the oscillation amplitude.

The method of the equivalent SDOF cable net constitutes an important tool in order to confirm the
occurrence of nonlinear phenomena for specific values of the loading characteristics. Otherwise,
detecting numerically the conditions that cause a nonlinear phenomenon requires a large number of
nonlinear time-history analyses changing in very small steps the load amplitude and frequency, as well
as the initial conditions. Knowledge of the exact loading frequency and amplitude that may cause a
nonlinear response can lead to better design of such structures.

For weakly nonlinear systems equivalent static methods, using dynamic coefficients, can estimate with
satisfactory accuracy the response under dynamic loads, but for intensely nonlinear systems, the time-
history analysis, considering also geometric nonlinearity, is the only reliable method.

Designers who deal with conventional structures presenting linear behaviour are not familiar with
nonlinear dynamic phenomena. Being aware of the nature of such phenomena, they can detect and
interpret them. Changing the parameters that influence the dynamic response of a nonlinear system,
they can design such structures knowing what to look for, what to expect from a cable net system
subjected to dynamic loads and what to avoid.

10.4 SUGGESTIONS FOR FUTURE RESEARCH

Closing this thesis, some suggestions for future research are summarised:

— Parametric analyses of Computational Fluid Dynamics (CFD) are suggested to evaluate with more
accuracy the wind pressure coefficient on such roofs, changing the height of the roof, the sag-to-
span ratio, the diameter of the plan view, the basic wind velocity and the wind direction.

— It would be interesting to investigate the influence of these nonlinear phenomena on the fatigue at
the cable anchorages.

— In this research it is shown that the presence of the edge ring plays an important role in the
vibration of the net. Simulating the exact boundary conditions is necessary in order to have
accurate results. This study is based on the structure of the Peace and Friendship Stadium in
Athens, Greece, including a ring, which is seated on the pylons, being free to vibrate in-plane.
Other assumptions regarding the ring’s support (e.g. fixed on the pylons) or shape (e.g. arches
similar to the ones of the Raleigh Arena in North Carolina, U.S.A.) are expected to influence more
or less the net’s behaviour and they should also be considered.

— In this study, due to the small angles of the roof, the wind is applied vertically on each node of the
net. However, the actual direction of the wind load is perpendicular to the surface. It would be
interesting to compare the results of both assumptions, in order to evaluate the error introduced by
the vertical direction adopted.

— The main analytical solution of the simplified cable net described as a Duffing oscillator cannot
consider an eventual cable slackening. It is proposed to be studied whether this drawback could be
eliminated by considering this system as a non-smooth one, whose solution is not everywhere
differentiable, and may possess discontinuities.
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Vassilopoulou I. and Gantes C. J. Assessment of nonlinear phenomena of a
MDOF cable net using an equivalent SDOF model (in preparation)

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behavior of cable nets

subjected to wind loading” (submitted)

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic phenomena in a SDOF
model of cable net” Archive of Applied Mechanics (accepted for publication)
(www.springer.com/materials/mechanics/ ournal/419)

Vassilopoulou I. and Gantes C. J. “Nonlinear dynamic behavior of saddle form

cable nets under uniform harmonic load” £Engineering Structures Vol. 33 pp.

2762-2771. (www.sciencedirect.com/science/article/pii/S0141029611002367)

Vassilopoulou I. and Gantes C. J. “Vibration modes and natural frequencies of

saddle form cable nets” Computers and Structures Vol. 88 pp. 105-119.
(www.sciencedirect.com/science/article/pii/S0045794909001898)

Vassilopoulou I. and Gantes C. J. “Cable nets with elastically deformable edge
ring” /nternational Journal of Space Structures Vol. 20 No. 1 pp. 15-34.
(http://multi-science.metapress.com/content/qix15u7472750887)

Tassios T. P. and Vassilopoulou 1. Shear transfer capacity along a R.C. crack,

under cyclic sliding /n Befestigungstechnik Bewehrungstechnik (Rolf Eligehausen
um 60. Geburtstag) W. Fuchs H. W. Reinhardt (Ed.) Ibidem — Verlag Stuttgart

2002 pp. 405-414.

CONFERENCE PAPERS

Vassilopoulou 1. Gantes C. J. and Gkimousis |I. “Response of cable nets under
wind loads” 7" National Conference on Metal Structures Volos Greece September
29 — October 1 2011 Vol. 1 pp. 416-423.

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behaviour of saddle
shaped cable nets under wind action” /4BSE-1ASS Symposium 2011 London UK
September 20-23 2011 abstract pp.479.

Seferoglou K. Prount opoulos G. Chrysochoidis F. Fortsakis P. Vasilopoulou I.
Perleros V. “Rehabilitation of a landslide in NW Greece - from the
investigation to the geotechnical design” 15 European Conference on Soil
Mechanics and Geotechnical Egnineering Athens Greece September 12-15 2011 Vol.
3 pp.- 1395-1400.

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behaviour of a saddle
form cable net modeled by an equivalent SDOF cable net” 37 ECCOMAS
Thematic Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering — COMPDYN 2011 Corfu Greece May 26-28 2011.
Vassilopoulou I. “Natural frequencies and dynamic response of saddle form
cable nets with rigid or flexible supports” S/CON-CF International Conference:
Nonlinear Dynamics Stability ldentification and Control of Systems and Structures
University of Rome La Sapien a Rome ltaly September 21-25 20009.

Vassilopoulou I. Seferoglou K. Vayas |. “Composite railway underpass bridge in
the Tripoli - Megalopoli Highway” 6" National Conference on Metal Structures
loannina Greece October 2-4 2008 Vol. 1 pp. 418-425.
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October 2008

July 2007

July 2007

June 2007

September 2005

September 2004

May 2003

May 2002

September 2009

June 2008

February 2008

July 2007

November 2005

May 2004

July 2001

CONFERENCE PAPERS (CONTINUED)

Vassilopoulou 1. and Gantes C. J. “Sensitivity of cable nets to wind-induced
fatigue” 6" National Conference on Metal Structures loannina Greece October 2-4
2008 Vol. 2 pp. 135-141.

Vassilopoulou 1. and Gantes C. J. “Modal transition and dynamic nonlinear
response of cable nets under fundamental resonance” 8" HSTAM International
Congress on Mechanics Patras Greece July 12 — 14 2007 Vol. 2 pp. 787-794.
Vassilopoulou I. and Gantes C. J. “Vibration modes and dynamic response of
saddle form cable nets under sinusoidal excitation” EFUROMECH Colloquium
483 Geometrically Non-linear Vibrations of Structures FEUP Porto Portugal July 9 —
11 2007 pp. 129-132.

Vassilopoulou I. and Gantes C. J. “Similarity relations for nonlinear dynamic
oscillations of a cable net” First International Conference on Computational
Methods in Structural Dynamics and Earthquake Engineering — (COMPDYN2007)
Rethymno Crete Greece June 13-16 2007 abstract pp. 373.

Vassilopoulou I. Chat ifoti A. Gantes C. J. “Design and construction of the
Athens Olympic Sports Complex Entrance Canopies” 5" National Conference on
Metal Structures Xanthi Greece September 29— Oct 2 2005 Vol. 2 pp. 77-84.
Vassilopoulou 1. and Gantes C. J. “Behavior, analysis and design of cable
networks anchored to a flexible edge ring” /nternational Symposium on Shell
and Spatial Structures from Models to Reali ation (IASS 2004) Montpellier France
September 20-24 2004 abstract pp. 212-213.

Vassilopoulou 1. and Tassios T. P. Shear transfer capacity along a R.C. crack,
under cyclic sliding 762003 Symposium. Concrete Structures in Seismic Regions
Athens Greece May 6-9 2003 abstract pp. 108-109.

Vassilopoulou I. and Gantes C. J. Behaviour and preliminary analysis of cable
net structures with elastic supports 4" National Conference on Metal Structures
Patras Greece May 24-25 2002 Vol. 2 pp. 517-525.

PARTICIPATION IN SEMINARS

Marie Curie fellowship in “SICON-CF: Nonlinear Dynamics, Stability,
Identification and Control of Systems and Structures” S/CON University of
Rome La Sapien a Rome lItaly September 21-25 2009. (www.sicon.ing.univag.it)
Marie Curie fellowship in “TC3: Experimental Dynamics, Model Identification
and Damage Detection” S/CON University of Rome La Sapien a Rome Italy
June 9-13 2008.

Marie Curie fellowship in “TC2: Nonlinear Dynamics and Control of Structural
and Mechanical Systems” S/CON Vienna University of Technology Vienna
Austria February 18-22 2008.

Marie Curie fellowship in “TC1: Stability and Bifurcations of Nonlinear
Dynamical Systems” S/CON University of L Aquila Department of Structural
Hydraulic and Geotechnical Engineering L Aquila Italy July 2-6 2007.

“New codes for bridge engineering & new developments in computational
modelling”, Hellenic Center of Information and Education C. Maraveas  Partners
TDV Technische Datenverarbeitung GmbH Athens November 11 2005.
“Strengthening, restoration and reuse of historic and traditional structures
in seismic areas” Hellenic Center of Information and Education  Association of Civil
Engineers of Greece Patras May 14-15 2004.

“Wind Effects on Structures and on the Built Environment”, SOCRATES -
ERASMUS Universit degli Studi di Firen e Facolt di Ingegneria Florence lItaly July
13-21 2001.
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PRESENTATION OF SEMINARS

April 2010 Instructor of the seminar “EN 1993: Design of steel structures and EN 1994:
Design of composite steel and concrete structures — 1. Methods of analysis -
Classification of cross sections, 2. Resistance of cross-sections: Tension and
bending, applications about resistance and sensitivity issues” I[EKEM-TEE
(http://www.iekemtee.gr) Athens Greece April 12-26 2010.

March — April Instructor of the seminar “EN 1993: Design of steel structures and EN 1994:

2009 Design of composite steel and concrete structures — 1. Methods of analysis -
Classification of cross sections, 2. Resistance of cross-sections: Tension and
bending, applications about resistance and sensitivity issues” JEKEM-TEE
Athens Greece March 30 — April 14 2009.

November 2007  Instructor of the seminar “EN 1993: Design of steel structures and EN 1994:
Design of composite steel and concrete structures — Applications about
resistance and sensitivity issues” JEKEM-TEE Athens Greece November 5-14
2007.

PROFESSIONAL AND SCIENTIFIC SOCIETIES MEMBERSHIP

Technical Chamber of Greece (TEE - www.tee.gr) (1995)

Hellenic Society for Earthquake Engineering (HSEE - www.eltam.gr) (2003)

International Association for Shell and Spatial Structures (IASS - www.iass-structures.org) (2004)
International Council on Monuments and Sites (ICOMOS - www.icomoshellenic.gr) (2003)

LANGUAGES
Greek (native)
Italian: “Diploma di lingua e cultura italiana, Istituto Italiano di Cultura di Atene” (1999)
(Proficient knowledge)
English “Certificate of Proficiency in English, University of Cambridge” (1990)
(Proficient knowledge)
French “Certificat de langue frangaise — Premier Cycle, Institut Francais d’ Athénes” (1985)
(Fair knowledge)

OTHER

ualified with license in Structural Design - classification B (max. C)

ualified with license in Geotechnical Engineering Design - classification B (max. C)
P.E. Licensure in Greece (1995)
Fluent knowledge of the software: Sofistik Autocad (2D kai 3D) MS Office Cadisi ADINA v.8.4.
Working knowledge of the software: Statik3 Fagus3 Larix2 Space-32bit Othisis-32bit Micro Study
SCADA MGI Photosuite 8.06 Matlab MAPLE Easy SAP2000.
International sailing diploma (skipper) — Hellenic Sailing School (1994)

Curriculum Vitae of Isabella Vassilopoulou



BIOrPA®IKO ZHMEIQMA

ISABEAAA BASIAOMOYAOY
MOAITIKOS MHXANIKOZ (AOMOSTATIKO)
NOEMBPIOZ 2011

FENIKEZ NAHPO®OPIEX

AiglBuvan kaToikiag Aew®. Eiprivng 12 Melkn 151 21 A6riva EANGda
Huepopnvia yévvnong  12/06/1970

Tonoc yevvnong ABriva EAGda
EBvIKOTNTA EMNVIKN
E-mail isabella central.ntua.gr

2MNOYAEZ

AIdakTopIkO AidakTwp Noguppiog 2011

AinAwpa Epyaotmpio MetaMikwv KaTaokeuwv Topéag AodooTaTikng  ZXoAn MoAITikwv
Mnxavikav EBvikd MeTooBio MoAuTexveio (www.ntua.gr)
TiTAog: “Mn ypappikn OUVAHIKA anoKpIon Kal OXedIaopog JSIKTUWV
KaAwdinv".
EniBAénwv KabnynTig: X. Favtég AvanAnpwTng Kabnyntrg E.M.M.

MeTanTuxiako AopooTaTIKOG ZXeBIa0HOG Kal AvaAuon Kataokgumv (2000-2001)

AinAwpa (www.postgrad.structural.civil.ntua.gr/pclab _eng/index eng.htm)
Eidikguong Topéag AopoaTaTiknG ZXoAn MoATIKV Mnxavikawv EBvikd MeTodBio MoAuTeyveio.
(MAE) Babuog dinAwparog 9 04/10.

AinAwpaTikr Epyaocia: Zupgnepipopa kai MeAéTn AIkTUwV KaAwdiov
(epappoyn: kaAwdiwTn aTéyn ZTadiou Eiprivng kai PIAIAc).
Babuoc dinAwpatikng: 10
EniBAEnwv KaBnyntrc: X. Favteg AvanAnpwTng Kadnyntrg E.M.M.
AinAopa MoAiTikoU MnxavikoU (AopoaTaTikou) (1989-1995)
Topéag AopoaTaTikng ZXoAn MoAImikwv Mnxavikwv EBvikd MeTooBio MoAuTtexveio.
Babuoc dinAwpatog 8 29/10.
Ainhwpatikr) Epyacia: AvehaoTik AvaAuon Eninédwv MNMAaiciov unod ZeICHIKN
‘Evraon.
BaBuog dinAwpatikng: 10
EniBAénwv KaBnyntng: B. Koupolong Kabnyntng E.M.IM.
MTuyio Mavou, Qdcio Nikog ZkahkwTag ABnva Iouviog 1994. Babuog ntuyiou APIZTA.

EIAIKEYZH

AopooTaTikoG oxedIaopoG Kal avaAuon kataokeuwv. EuotaBela oTaTikoU CUCTAUATOC avToxn HEA@V Kal
OlaTopwv. Auvaikrp anokpion OUMPBATIKWV KATAOKEU®V and XahuBa wnAIOPEVO 1) MPOEVTETAUEVO
oKUpOdEUa UNd OEIOUIKEG (POPTICEIC 1 KAAWDIWTWV KATAOKEUWV MOU UMOKEIVTAI OF (POPTId AVEUOU
AauBavovTag unoyn TN YEWHETPIKA KN YPAMUIKOTNTA TOU OUCTNAUATOC. FPApMIK 1 YN YPAMMIKN OTATIKN
avaluon IDI0MOP@IKT] avaAucn (pacuaTikn avaAuon pn YPAuMIK OUVAMIKA avaAuon HE &V XpOvw
oAokAfpwan. Xpron AOYIOHIKWV NENEPACHEVWV OTOIXEIWV.

Bioypagikd Znpeinpa IoaBérag BagihonouAou



2000 — onuepa

1999 - 2001
1995 - 1999
1993 - 1995
2005 - 2011
2000 - 2007
1994 — 2009
2011

OkTwPpIog 2011
ZenTeUPpIog 2011

IoUAIOG 2011

Iavoudpiog 2010

MapTioc 2005

IoUviog 2002

ENArrEAMATIKH EMNEIPIA

EAeUBepn enayyeApaTiac. SUPMETOX) OTNV EKMOVNON OTATIKWV WEAETWV OE OTADIO
NPOKATAPKTIKNG MEAETNG MPOUEAETNG KAl OPIOTIKAC WEAETNG. MEAETEC onpayywv
MEAETEC 0DIKWV Kal G10NPOOPOMIKMV YEQUP®WY anAd OnAIOUEVWY KAl NMPOEVTETAUEVWY
Cut  Covers HOVIHWV €nevOUOEWV ONPAyYwV MHEUBPAvVOV KAAWDIWTWV OTEYWV
METAAMIKOV OTEYWV YEPAVOYEPUPWY KAAWOIWTWV IOTWV MPOKATAOKEUAOUEVWY
KTIpiwv ano onAIoPévo okupOdeda. 'EAeyXoC oAudniakwv €pywv oTo OAKA ATTIKNAC.
JUVEPYATNG O TEXVIKO HWEAETNTIKO ypAQPEi0. SUPHETOXN OTNV E€KNOVNON OTATIKOV
MEAETOV ONuoCiwv Kkal IDIWTIKQWV EPYWV (OXOAEIWV KOAUMBNTNPIWV YUudvaoTnpiwv
KATOIKI®V KAM) O 0TADIO OPIOTIKAG MEAETNG KAl OTADIO EPAPHOYNG OUUPWVA HE TOUG
eMnvikoUG kavoviopoug: Kavoviopoug QnAiopévou Zkupodépatog (K.Q.2.) kar Néog
EMNVIkOc AvTioeiopikog Kavoviopog (N.E.A.K.). MeAéTn yia anokataoTaon BAaBwv o€
KTipia nou enArfynoav ano To ogiono Tng 7™ ZentepBpiou 1999 (oxoAeia epyooTdacia
KAM). 'EAEyX0G avToxnG TOU QPEPOVTA opyaviopuoU NaAaiwv NETPIVWV KTIPIWV E aKomnod
TNV €navaypnon Toug. MeAETEG NAAKWV €ni €dAPOUG OXETWV OEEAUEVMV BIOAOYIKWV
KaBapioPwv MICIVWV KAM. JE TN JEBODO TWV NENEPATHEVWV OTOIXEIWV.

STATIKEG MeAETEG TeXVIKWV Epywv odornoiiag (YEPUPEG  Toixol avTIoTAPIENG
KIBwTIOEIDEIC oxeTOi Onpayysg Cut  Covers KAM) oUPQWVA PE TOUG YEPHAVIKOUG
kavoviopoUg DIN. MeAETEG XWPODIKTUWHATWY HETAAIKGOV 0dNywV QVEAKUOTHPWY
METAMIKOV IKPIWPATWV CUPPwva YE Tov EC-3.

Palindrome E.M.E. MaAAfvn. Metagpaon AoyoTtexvikav BIBAiwv and Tnv AyyAikn

AIAAKTIKH EMNEIPIA

SUMMETOXN OTNV NPOETOILACia onueiwocwy Kal didackaAia aoknoswv oTa pabnuara
2IAHPES KATAZKEYEZ 1 2IAHPEZ KATAZKEYEZ II oTo E.M.TI.

KaénynTpia iIraAikov napddoon pabnudtwv KaTt oikov

Aaokala mavou ato Qdcio Mouaikn EknaideuTiky  ABrva

AHMOZIEYZEIZ SE ENISTHMONIKA MNMEPIOAIKA KAI BIBAIA

Vassilopoulou 1. and Gantes C. J. Assessment of nonlinear phenomena of a
MDOF cable net using an equivalent SDOF model (npog unofoAn)
Vassilopoulou I. and Gantes C. J. “Nonlinear dynamic behavior of cable nets
subjected to wind loading” (€xel unopAnBei)
Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic phenomena in a SDOF
model of cable net” Archive of Applied Mechanics (dekTO yia dnpoagiguon)
Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behavior of saddle form
cable nets under uniform harmonic load” Engineering Structures Vol. 33 pp.
2762-2771.
Vassilopoulou 1. and Gantes C. J. “Vibration modes and natural frequencies of
saddle form cable nets” Computers and Structures Vol. 88 pp. 105-119.
Vassilopoulou 1. and Gantes C.J. “Cable nets with elastically deformable edge
ring” /nternational Journal of Space Structures Vol. 20 Number 1 pp. 15-34.
(Owpdideio Bpapeio).
Tassios T. P. and Vassilopoulou 1. Shear transfer capacity along a R.C. crack,
under cyclic sliding /n Befestigungstechnik Bewehrungstechnik (Rolf Eligehausen
um 60. Geburtstag) W. Fuchs H. W. Reinhardt (Ed.) Ibidem — Verlag Stuttgart
2002 pp. 405-414.
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SenTéuBpiog 2011

YenTePPBpiog 2011

ZenTeUPpIog 2011

Maioc 2011

SenTéPBpIog 2009

OkTwRpIoC 2008

OxTwpRpIoc 2008

IoUAIOG 2007

ToUAIoG 2007

IoUviog 2007

ZenTEPBpPIOG 2005

YenTEPPBpIog 2004

AHMOZIEYZEIZ SE ENIZTHMONIKA ZYNEAPIA

BaoidonoUhou I. Tavrtéc X. I. kal MkigoUong H. “Anokpion SIKTU®WV KAA®WJdiwv
uno popTia avépou” 7 EBviko Suvedpio Metallikwv Karaokeuwv Bolo¢ EAAdda
2enteyBoioc 29 — Oktawphpio¢c 1 2011 TOPoG 1 ogA. 416-423.

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behaviour of saddle
shaped cable nets under wind action” /ABSE-IASS Symposium 2011 London
UK ZenteuBpiog 20-23 2011 abstract pp.479.

Seferoglou K. Prount opoulos G. Chrysochoidis F. Fortsakis P. Vasilopoulou 1.
Perleros V. "“Rehabilitation of a landslide in NW Greece - from the
investigation to the geotechnical design” 15" European Conference on Soil
Mechanics and Geotechnical Egnineering A@riva EAMdda SenteuBoroc 12-15 2011
Vol. 3 pp. 1395-1400.

Vassilopoulou 1. and Gantes C. J. “Nonlinear dynamic behaviour of a saddle
form cable net modeled by an equivalent SDOF cable net” 3? ECCOMAS
Thematic Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering — COMPDYN 2011 Kepkupa EAAGda Mdiog 26-28 2011.
Vassilopoulou |. “Natural frequencies and dynamic response of saddle form
cable nets with rigid or flexible supports” S/CON-CF International Conference:
Nonlinear Dynamics Stability Identification and Control of Systems and Structures
University of Rome La Sapien a Rome Italy ZenteuBpiog 21-25 2009.
BaoilonoUAou 1. Zepépoyhou K. kal Bayiag I.  ZUPpIKTN vé@upa Katw Aiapacng
210nNPOdPOUIKWV Ypauuwv oTnv EBvikr) O30 TpinoAng - MeyaAdnoAng =T EBviko
Zuvedpio Zidnpawv Kataokeuwv Iwavviva OkTwRpliog 2-4 2008 Topog 1 oeA. 418-
425,

BaoilonoUhou I. kal Favtéc X. 1. EundBeia SIKTUWV KAAwdIwvV O KOMwon Adyw
aveponieong =T EBvikO Zuvédpio Zidnpwv Kataokeuwv Iwdvviva OkTwpplog 2-4
2008 Topog 2 oeA. 135-141. (aitnon yia Owuaideio Bpapeio).

Vassilopoulou I. and Gantes C. J. Modal transition and dynamic nonlinear response
of cable nets under fundamental resonance 8th HSTAM International Congress on
Mechanics Patras Greece July 12 — 14 2007 Vol. 2 pp. 787-794.

Vassilopoulou I. and Gantes C. J. Vibration modes and dynamic response of saddle
form cable nets under sinusoidal excitation Euromech Colloquium 483
Geometrically Non-linear Vibrations of Structures FEUP Porto Portugal July 9 — 11
2007 pp. 129-132.

Vassilopoulou 1. and Gantes C. J. Similarity relations for nonlinear dynamic
oscillations of a cable net First International Conference on Computational Methods
in Structural Dynamics and Earthquake Engineering — (COMPDYN2007) Rethymno
Crete Greece June 13-16 2007 abstract pp. 373. (Bwuaideio BpaBeio).
BaoilonoUAou |. Xat{newtn A. kai Favteg X. I.  MeAETn Kal KATAOKEUR TOU
pETaAIKOU oTeydoTpou €100dwv oto O.AKA E EBvikO Zuvédpio ZIdnpwv
Kataokeuwv AnuokprTeio MavenioTnuio =avlng 29/9-2/10 2005 Topog 2 OeA. 77-
84. (Bwpdidelo Bpapeio).

Vassilopoulou 1. and Gantes C. J. Behavior analysis and design of cable networks
anchored to a flexible edge ring International Symposium on Shell and Spatial
Structures from Models to Reali ation (IASS 2004) Montpellier France September
20-24 2004 abstract pp. 212-213.
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Maioc 2003

Maiog 2002

>enTéPBpiog 2009

IoUviog 2008

deBpoudapioc

2008

ToUAIoG 2007

Noguppiog 2005

Maiog 2004

ToUAIoG 2001

Anpiliog 2010

MdapTiog-AnpiAiog
2009

No€uBpiog 2007

AHMOZIEYZEIZ E ENIZTHMONIKA ZYNEAPIA (ZYNEXEIA)

Vassilopoulou I. and Tassios T. P. Shear transfer capacity along a R.C. crack,
under cyclic sliding 62003 Symposium: Concrete Structures in Seismic Regions
Athens Greece May 6-9 2003 abstract pp. 108-109. (Qwpdideio Bpapeio).

Vassilopoulou 1. and Gantes C.J. Behaviour and preliminary analysis of cable
net structures with elastic supports 4 E8viko Suvedpio Zidnpwv Karaokeuwv
TMavermorruo Matpwv Mdiog 24-25 2002 Topog II geh. 517-525. (Owpdideio

BpapBeio).

2YMMETOXH ZE ZEMINAPIA

YnoTpopog Marie Curie “SICON-CF: Nonlinear Dynamics,
Stability, Identification and Control of Systems and Structures” S/CON
University of Rome La Sapien a Pwun Italia ZenteuBpiog 21-25 2009.
YnoTtpogoc¢ Marie Curie “TC3: Experimental Dynamics, Model Identification
and Damage Detection” S/CON University of Rome La Sapien a Pwun Italia
Iouviog 9-13 2008.

YnoTpogog Marie Curie “TC2: Nonlinear Dynamics and Control of Structural
and Mechanical Systems” S/CON Vienna University of Technology BiEvvn
Avotpia ®efpoudpiog 18-22 2008.

YnoTpogog Marie Curie “TC1: Stability and Bifurcations of Nonlinear
Dynamical Systems” S/CON University of L Aquila Department of Structural
Hydraulic and Geotechnical Engineering [ Aquila Italia IouAiog 2-6 2007.

“New codes for bridge engineering & new developments in computational
modelling” Elnviko Kevipo [lAnpopopnons kai Emudppwons X. MapaPeag
Suvepyareg TDV Technische Datenverarbeitung GmbH ABriva NogupBpiog 11 2005.
“EnepBAcelg evioxuong, ENIOKEUNG KaAl Enavayxpnong ICTOPIKNAG Kal
napadooiaknG KATAOKEUNG OE OEIOHOYEVEG nePIBAAAov” EAMnviko Kevipo
TMAnpo@dpnong kar Empdppwons  Suldoyog lMoAimikwv Mnyavikwv EAAGdog [lMdtpa
Maiog 14-15 2004.

“Wind Effects on Structures and on the Built Environment” SOCRATES —
ERASMUS Universit degli Studi di Firen e Facolt di Ingegneria ®@Awpevria Italia
IouAiog 13-21 2001.

MAPOYZIAZH ZEMINAPION

EionynTpia osyivapiou “EN 1993: Zxediaopog Karaokeumv and XaAupBa kai EN
1994: Zxediaopog ZuppikTtov Karaokeuwv: 1. MéBodor avaAluong —
Katarain diatopov, 2. EQeAKUOMEVA Kal KAUNTOMEVA HEAN, ACKNOEIG yia
O€paTa avToXnG Kal1 euoTalslag” IEKEM-TEE Abriva 12 — 26 Anpidiou 2010.
EionynTpia osuivapiou “EN 1993: Zxediaopog Karaokeumv and XaAuBa kai EN
1994: 3Zyxediaopog ZUPNpIKTOV Kataokeuwv: 1. MEBodor availuong —
Kararain diatopav, 2. EQeAKUOMEVA Kal KAUNTOMEVA HEAN, ACKNOEIG yia
O€paTa avroxng Kal euoTaleiag” I[FKEM-TEE AGriva 30 Maptiou — 14 Anpidiou
20009.

EionynTpia osyivapiou “EN 1993: Zxediaocuog Karaokeumv and XaAupBa kai EN
1994: Zxe£6100H0G ZUPHIKTOV KaTaokeumv: ACKNOEIC yia OEpaTa avToxnc
Kal euoTadsiag” IFKEM-TEE Abriva NogupBpioc 5-14 2007.
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ZENEz TAQ=3ZEx

ApioTec yvwoelg ITahikwv “Diploma di lingua e cultura italiana - Istituto Italiano di Cultura di
Atene” (1999) (Endpkeia yAwooac)

AploTeg yvaoeig ayyAikawv * Certificate of Proficiency in English, University of Cambridge " (1990)
(Enapkeia yhwooac)

METpieg yvwoelg yaMikwy “ Certificat de langue frangaise — Premier Cycle, Institut Francais d’
Athénes” (1985)

MEAOZ ENAITEAMATIKQN KAI ENIZTHMONIKQN OPrANIZMQN

MéeAog Texvikou EmpeAnTnpiou EAAGDOC (T.E.E. - www.tee.qgr) (1995)

Méhog EMnvikoU Tunpatog AvTioeiopikng Mnxavikng (E.T.A.M. - www.eltam.gr) (2003)

MéeAog International Association for Shell and Spatial Structures (IASS - www.iass-structures.org) (2004)
MéAog International Council on Monuments and Sites (ICOMOS - www.icomoshellenic.gr) (2003)

AAAA
MeAeTnTIKO NTUYXIO KATNYopiac oTaTIKWV PEAETWV (08) B TAENG
MeAETNTIKO NTUXIO KATNYOPIAG YEWTEXVIKWV HEAETWV Kal EpeuvY (21) B TAENG
Adela aoknoews enayyEAPaTog MoAImikoU MnxavikoU atnv EAAGda (1995)
Xeipiopdg H/Y og nepiBaAov Windows 2000 XP
APIOTEG YVOOEIG TWV NpoypappaTwy Sofistik MS Office Autocad 2008 (2D kai 3D) Cadisi ADINA v.8.3
MEPIKEC YVOOEIG TWV MPOypapuaTwy Statik3 Fagus3 Larix2 Space-32bit  Othisis-32bit Micro Study
SCADA MGI Photosuite 8.06 Matlab MAPLE Easy SAP2000.
Mvwaoeig internet
METPIEG YVWOEIG NpoypappaTiopol o€ FORTRAN
Tu@AO cuoTnua dakTuAoYpaPNang aTnv EANANVIKA TNV ITAAIKN Kal TNV ayyAIKn
Algbvec dinhwpa 1oTionAoiag avoikTnic Baidoong — EAANvIkR IoTionAoikry Zx0Ar (1994)

Bioypagikd Znpeinpa IoaBérag BagihonouAou














