ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΙΟΥΔΩΝ
«ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΣΕΙΣΜΙΚΟΣ ΕΛΕΓΧΟΣ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΜΕ ΜΕΘΟΔΟΥΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΤΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Αριστείδης Κ. Βιττοράκης
Επιβλέπων : Δρ. Χάρης Γαντές, Επίκουρος Καθηγητής ΕΜΠ

ΑΘΗΝΑ 2002
Περίληψη

Μια βασική παράμετρος για τη διαστασιολόγηση και τον έλεγχο νέων και υφισταμένων κατασκευών με χρήση κλασσικών μεθόδων ανάλυσης, είναι ο δείκτης συμπεριφοράς ι. Ο δείκτης συμπεριφοράς εισάγει την μείωση των σεισμικών επιταχύνσεων λόγω μετελαστικής συμπεριφοράς, σε σχέση με τις επιταχύνσεις που προκύπτουν υπολογιστικά σε απεριόριστα ελαστικό σύστημα. Οι τιμές του δείκτη συμπεριφοράς για νέες κατασκευές προσδιορίζονται ανάλογα με το υλικό και το δομικό σύστημα από τους ισχύοντες αντισεισμικούς κανονισμούς. Αντικείμενο ωστόσο προβληματισμού αποτελεί η τιμή του σε υφιστάμενες κατασκευές, αλλά και σε νέες, που δεν πληρούν τους απαιτούμενους κατασκευαστικούς κανόνες ή γενικότερα σε αυτές που δεν είναι δυνατός ο σχηματισμός αξιόπιστου μηχανισμού διαρροής με τη δημιουργία ικανού αριθμού πλαστικών αρθρώσεων.

Στην παρούσα εργασία γίνεται μια εισαγωγή στην ανελαστική στατική μέθοδο push-over, με την οποία υπολογίζεται ο δείκτης συμπεριφοράς σε επτά μεταλλικά πλαίσια σε σχέση με την κατακόρυφη φόρτιση και τη μεταβολή των κριτηρίων αστοχίας. Σε κάθε ένα από αυτά, ελέγχεται η «ικανότητα» τους έναντι των σεισμικών απαιτήσεων που προσδιορίζονται από το σεισμικό φάσμα του Ελληνικού Αντισεισμικού Κανονισμού, με την χρήση της Μεθόδου Φάσματος Ικανότητας (Capacity Spectrum Method) του ATC 40. Από την εφαρμογή των μεθόδων αυτών λαμβάνονται χρήσιμα συμπεράσματα για τον συντελεστή συμπεριφοράς αλλά και για την μεταβολή της «ικανότητας» των κατασκευών ανά περίπτωση.

Οι παράμετροι που απαιτούνται για την προσομοίωση των πλαισίων, όπως οι ιδιότητες των πλαστικών αρθρώσεων, ο τρόπος φόρτισης, η διαδικασία της προσομοίωσης και το θεωρητικό υπόβαθρο των μεθόδων, παρουσιάζονται σε σχετικά κεφάλαια.

Τέλος στην παρούσα εργασία παρατίθεται μια εφαρμογή στατικής ανελαστικής ανάλυσης με χρήση της μεθόδου «βήμα προς βήμα» και γίνεται σύγκριση αυτής με τα αποτελέσματα που διεξάγονται από αναλύσεις με πεπερασμένα στοιχεία.
Abstract

A key parameter in the design and evaluation of new and/or existing buildings, with the use of classic methods of analysis, is the behavior factor q. This factor introduces the reduction of seismic accelerations acting on a structure, due to ductile behavior, against those acting on a completely elastic system. The values of the behavior factor for new buildings are estimated by the valid earthquake resistance codes, according to the material and the structural system. However, its values are questionable in case of existing buildings, as well as in case of new buildings, which do not satisfy the required constructional rules, or generally on those that it is impossible to form a reliable yielding mechanism with the formation of adequate number of plastic hinges.

In the present study, we introduce the Nonlinear Static Procedure - ‘Pushover’, with the use of which we estimate the behavior factor on seven steel frames for two parameters: the vertical load and the failure criteria. In any of those frames, we check their ‘capacity’ over the seismic demands, which are determined by the seismic spectrum of the Greek Earthquake Resistance Code, using the ATC 40 Capacity Spectrum Method. By the application of these methods we draw useful conclusions for the behaviour factor, but also for the change of the ‘building ability’ for each case.

The required parameters for the simulation of the frames, like the characteristics of the plastic hinges, the loading pattern, the simulating procedure and the theoretic substratum of the methods, are demonstrated in the relevant chapters.

Finally, in the present study we present an application of nonlinear static procedure with the use of the ‘step by step’ method, and we compare the results of this method with those deducted from finite elements analysis.