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INTRODUCTION 

The roughness of rock surfaces, as is well-established, is 
an important factor in a variety of rock mechanics 
problems such as, shear strength [1], flow of water [2] 
and deformation behaviour [3]. Its significance is also 
important in geophysical problems related to tectonic 
faults [4]. Dieterich [5] proposed a constitutive law of 
frictional behaviour, according to which the coefficient 
of friction is dependent on a displacement parameter 
affected by the roughness of surfaces. Based on this 
Tullis [6] suggested the use of roughness, expressed as a 
"length" quantity, in order to establish a scaling law for 
the study of in s i tu  phenomena from small-scale samples 
in the laboratory. Roughness, as a parameter in the 
above-mentioned problems, causes a scale effect be- 
haviour [7]. 

The roughness, induced by natural processes, may be 
considered as a description of the deviation from a 
smooth line or surface of Euclidean space. Fractal 
geometry provides an appropriate theoretical model to 
study the complicated geometry of natural objects in 
contradiction to Euclidean geometry which utilizes a 
more simplified approach [8]. 

The idea of examining the possible fractal character of 
the 10 typical profiles suggested by ISRM [9], has 
already been carried out by several researchers (see for 
example [10-14]). The major advantage of such studies 
is based on the fact that these profiles offer the possibility 
to correlate their classification as required by rock 
mechanics with their geometric description as provided 
by fractal geometry. 

Some drawbacks observed in previous studies are also 
discussed here. 

FRACTAL GEOMETRY 

B. Mandelbrot studied sets of mathematical functions 
of both geometric and stochastic character which he 
called fractal sets [8]. He showed, using computer 
graphic representations, that random fractal sets may be 
used as statistical models in order to simulate a wide 
range of  natural phenomena, from topographic relief to 
percolation. The basic characteristic of both non- 
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random and random fractal functions is that, although 
continuous, they are not differentiable at any point, at 
least for a certain range of scale changes [8]. 

The fractal sets are characterized by their fractal 
dimension D. Mandelbrot defines a fractal as a set with 
a fractal dimension D that lies between the topological 
D r and Euclidean one DE (DT < D < DE). 

The fractal dimension may describe the roughness of 
a phenomenon or, equivalently, the degree that its 
projection fills the Euclidean space R E. Thus, a vertical 
cut through a relief has a fractal dimension between 1 
and 2, while the fractal dimension of a surface lies 
between 2 and 3. 

An important property of many fractal sets is their 
invariance to similarity transformations (isotropic 
rescaling of lengths). These fractal sets are called self- 
similar. For such a set, points x = (xl, x2 . . . . .  XE) in 
E-dimensional space transform into new points 
x" = (rx~,  rx2 . . . . .  rXE), under the same value of scaling 
ratio r [15]. 

Still, for several fractal sets of interest, self-similarity 
does not apply. However, these sets are invariant to a 
more general form of transformation, the affine trans- 
formation, and they are called self-affine fractals. A 
point of such a fractal set x = (xl, x2 , . . .  ,xE) in E- 
dimensional space is transformed by an affine transform- 
ation into a new point x '  = (r~ x~, r:x2 . . . . .  rE XE), where 
the scaling ratios r = (rt, r2 . . . .  , rE) are not all equal 
[15]. The fractal dimension of a self-affine fractal is not 
uniquely defined [l 5-17]. Its global value is D = D T, that 
is a self-affine fractal is not fractal globally. But a local 
fractal dimension can be computed according to the 
standard procedure. This behaviour of a self-affine frac- 
tal set involves a cross-over value of the sample interval, 
where the local value of the fractal dimension passes to 
the global one [16,17]. Clearly self-affinity is a generaliz- 
ation of self-similarity. 

The characteristic relation for the fractal dimension D, 
that expresses the property of self-similarity is [8]: 

D =  log(N) (1) 
l og[1 / r (N) ]  ' 

where r ( N )  is the similarity ratio and N is the number 
of non-overlapping, self-similar parts comprising the 
fractal set, dependent on the similarity ratio. 

The relation is used in order to compute D for lines 
(or surfaces) created by purely geometric generators as 
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shown in Fig 1. The unit length in (a) is divided with 
similarity ratio r ( N ) =  1/4. The fractal curve in (b) 
comprises N = 8 parts, while in (c) the procedure is 
repeated with r(N) = 1/16 and N = 64 parts. The fractal 
dimension of such a line, according to (1), is D = 1.5. 

The exactly self-similar Von Koch curve (Fig. 1) is 
only a crude model of a coastline and it differs in one 
significant aspect. Upon magnification, segments of a 
real coastline look like--but are never exactly like--seg- 
ments at different scales. The concept of fractal dimen- 
sion, however, can also be applied to such statistically 
self-similar objects as the coastlines. This property of 
statistical self-similarity (or self-affinity) is the central 
feature of fractals in nature [18]. 

A topographic relief or a fracture surface appears to 
behave as random fractal set [8,11,17-19]. Vertical cuts 
(profiles) through such surfaces are statistically self- 
affine fractals with a local fractal dimension lying be- 
tween 1 and 2 [16-18]. However, horizontal cuts of these 
surfaces give rise to coastlines (isarithmic lines) which 
are indeed statistically self-similar and have a unique 
fractal dimension D (1 < D < 2). Therefore a unique 
value for the fractal dimension of the surface (Ds) can be 
derived as Ds = D + 1 [17]. 

METHODS FOR COMPUTING FRACTAL DIMENSION 

All computational methods involve the estimation of 
parameters of various statistical functions and data 
sampled over lines or surfaces. Such samples should 
cover a range of scales as broad as possible. In each 
method, the final step of the procedure is the least- 
squares estimation of the slope of a linear model fitted 
to the data of a double logarithmic diagram. Both the 
verification of the fractal character of a line (or a surface) 
and the reliability and the statistical significance of these 
parameters should be statistically checked, using a high 
confidence level [19]. 

Depending on whether one deals with self-similar 
fractal sets, as the isarithmic lines of a fractal surface, or 
self-affine ones, as the profiles of this surface, the fractal 
dimension may be estimated by four methods. 

Two statistical methods, namely spectral and variance 
analysis, have already been used extensively in order to 
describe the fractal behaviour of self-affine fractal sets, 
such as the profiles of the topographic relief or of a rock 
fracture surface [4,11]. 

For self-similar fractal sets, two geometric methods 
for determining the fractal dimension are available, one 
that correlates the length of a line to the sampling step 
size [and substitutes equation (1) in the case of statistical 
self-similarity] and the other based on the correlation 
between the perimeter and the area of closed curves [18]. 

I I 

(a) (b) (c) 
Fig.  I. The  f rac ta l  Von  K o c h  curve .  

All four methods involve expressions of a power law. 
The relations for fractal lines (I < D < 2), whose logar- 
ithmic expression is the final step of each method, are 
given below: 

(a) length L to sampling step size ~: 

L(~) ~ '  ~; (2) 

(b) area A to perimeter P: 

A (E) ~ P(E)2/°; (3) 

(c) normalized variance function V~ vs correlation 
distance d: 

Vz(d) d4_2D 2 ~ where V~(d) = E { ( g i - z j ) 2 } ,  (4) 
O" z 

with a~ the variance of each sample, where the 
sample size depends on the choice of the corre- 
lation distance d, between points i and j ;  

(d) power spectrum G(2) vs wavelength 2: 

G(2) ~ 25 20. (5) 

There are certain aspects that should be considered 
when the fractal dimension is used as a geometric 
parameter in order to describe the "roughness" of 
natural phenomena. 

Probably, the most important one is the clarification 
that self-affinity (anisotropic or direction-dependent 
rescaling) does not preclude scale invariance and, thus, 
fractal behaviour [16,17]. Nevertheless, the rather hazy 
conception that only self-similarity establishes fractal 
behaviour is found in papers dealing with rock mech- 
anics applications [12]. 

Profiles of a rock joint surface seem to behave as 
statistically self-affine fractals. Methods, such as method 
(a) mentioned above (and all variations such as the 
Cantor method, grid method etc. [12-14]) will result in 
identical estimations of fractal dimension D, only in the 
case of self-similar fractals (horizontal cuts of a rock 
surface), a conception that is well-established theoreti- 
cally [16,17]. These methods may be used mechanically 
for affine fractals, but the fractal dimension estimates 
will depend heavily on the position of the critical cross- 
over value along the x-axis, in other words these esti- 
mates will depend on the units of the (x, y)-axes. The 
same problem will emerge when using methods (c) and 
(d), but they should be preferred, since the raw data of 
a profile are better described by such statistical models 
[18,20]. Values of correlation distance, d or wavelength 
2 approaching the total sample length result in bending 
the best fitting line of the log-log diagram. An esti- 
mation of the fractal dimension using only this second 
part of the diagram will tend to its global value, that is 
D --* DT. 

Another topic regarding the raw data collected from 
in situ measurements of a rock joint surface is also 
important. It should be noted that data sampled along 
profiles, even if these profiles span both x-, y-directions 
of the surface in a local Cartesian system, are 1-D and 
should be treated as such. Furthermore, since a rock 
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joint surface Z(x,  y)  may well be considered as a natural 
phenomenon of random character, profiles of such a 
surface are often approached as random stationary 
processes [21]. What may be assumed as stationary here 
are the increments (zi-zj), [equation (4)], which are 
considered as having a Gaussian distribution with zero 
mean value and variance given by the expression in 
method (c), dependent only on the correlation distance 
d. The random field of the fractal surface itself Z(x,  y), 
has also stationary increments and, furthermore, the 
points (x, y) lie in an isotropic plane, where all positions 
and directions are considered statistically equivalent. 

Thus, horizontal cuts provide a collection of islands' 
coastlines which are unbounded self-similar (isotropic 
rescaling) and have only one common dimension, which 
is the local dimension of the profiles. In other words, 
horizontal cuts are not at all affected by global quan- 
tities, in contrast to the profiles, since their intrinsic scale 
is infinite [17]. 

Methods similar to the ones used for topographic 
relief would provide real 2-D data of the rock surface in 
the form z i (x~, Yi). In that case, 2-D expressions of the 
normalized variance function and power spectrum could 
be used, but such an approach is particularly demanding 
in modelling, due to the presence of anisotropy [22]. 
Creating a digital terrain model (DTM) of the rock 
surface in a computer, plotting isarithmic lines and 
applying method (b) for self-similar fractals (since the x- 
and y-directions of the surface rescale under the same 
scaling ratio) is the most stable and least ambiguous 
approach when 2-D data are available [11,18-20]. 

APPLICATIONS 

The results of two applications are presented here in 
order to verify the fractal character of the samples and 
to estimate their fractal dimension. The first application 
deals with the 10 typical roughness profiles suggested by 
ISRM [9]. The second one deals with two rock joint 
surfaces after in situ direct shear testing. 

Both statistical verification of the fractal character and 
the estimation of the fractal dimension of a set of points 
can be carried out by applying one of the four methods 
described above. Regarding the verification of fractal 
behaviour, two statistical tests are suggested [19], based 
on the parameters of the linear model that fit the data 
in the log-log space. In the first one, the value of the 
correlation coefficient p is checked with the null hypoth- 
esis: Ho(p ~ 1) at 99% confidence level [23]. In the 
second statistical test, the value of the slope b against the 
equivalent value for a Euclidean shape or surface bE is 
checked by rejecting the null hypothesis: H 0 (b = bE) at 
95% confidence level [23]. If the samples pass these two 
tests, they can be accepted as fractal sets in a statistical 
sense. At last a third test, regarding the significance of 
the slope b and, thus of the fractal dimension D of the 
sample, must be carried out. The null hypothesis in this 
case is: H 0 (b = 0) at 99% confidence level [23]. 

As mentioned above, the profiles are rescaling under 
affine transformations, in other words, these profiles can 

Table 1. Results of  the regression between the normal- 
ized variance function and correlation length for the 10 

typical roughness profiles of  ISRM 

Profile b D p 

01 1.014 + 0.002 1.493 + 0.001 0.9996 
02 0.962 +___ 0.004 1.519 + 0.002 0.9994 
03 1.281 4- 0.012 1360 + 0.006 0.9980 
04 0.957 4- 0.006 1.522 4- 0.003 0.9961 
05 1.306 _+ 0.003 1.347 4- 0.001 0.9995 
06 1.669 __.+ 0.002 1.166 + 0.001 0.9998 
07 1.585 4- 0.005 1.208 + 0.002 0.9996 
08 1.765 __ 0.002 1.118 + 0.001 0.9999 
09 1.565 + 0.005 1.218 + 0.003 0.9996 
10 1.624 4- 0.007 1.188 4- 0,004 0.9996 

be treated as self-affine fractal sets, so methods (c) and 
(d) must be used in order to verify the fractal character 
of the 10 profiles and to estimate their fractal dimension. 

At first, the 10 profiles were digitized, in order to 
acquire the raw data for the samples. The 10 typical 
roughness profiles as source figures were digitized with 
a scanner using a resolution of 85 #m. Next these raw 
data were transformed from raster to vector form using 
available software [19]. For each method, namely (c) and 
(d), two respective routines were developed in order to 
verify the fractal character and estimate the local fractal 
dimension of the 10 ISRM profiles. The calculation of 
the power spectrum is based on the algorithm of Cooley 
et al. [24]. 

Table 1 summarizes the results of the regression the 
between normalized variance function and correlation 
length for each profile. All tests for the 10 profiles passed 
successfully. It can be seen (Table 1) that the first five 
profiles (I-5) have relatively high values of their esti- 
mated fractal dimension D. For the rest (6-10), the 

I --  

I 0  -1  

I 

z 
t 0 - 2  

lO-;S 

ProfiLe: 7 

/ 

t/ 
I I I I I I I 1 " [  .... I I I l ] t l l  I 

I 0 - ~  10-2 I 0 - ~  

CorreLation d i s t a n c e  

Fig. 2. Regression of  normalized semi variance vs correlation distance. 
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estimated values of the fractal dimension D follow the 
ISRM roughness classification (Fig. 2). 

The final remark is that only the fractal character 
can be detected regarding these 10 typical roughness 
profiles. The erractic behaviour of  the first five profiles 
may be explained by the quality of source material 
(smooth figures of  a book) that causes mixing of  noise 
in the signal in the raw data, a fact that cannot be 
overcome. 

The same behaviour is even more pronounced in all 
profiles after regression between the power spectrum and 
wavelength (Fig. 3). 

Next, the area to perimeter method was carried out for 
two rock joint surfaces, from the same site after in s i tu  

shear testing, since, as it has already been stated in 
applications from other fields (i.e. cartography [19]), it 
is more stable and less ambiguous. In this case, the 
samples were examined under the property of self- 
similarity. 

The raw data have the form of  a digital model of a 
joint surface, like a DTM (Fig. 4a). Next, horizontal cuts 

of the joint surfaces should be created by plotting 
contour lines from the DTM (Fig. 4b). 

Table 2 summarizes the results of the regression 
between area and perimeter for these two samples 
(Fig. 5). All tests passed successfully. It can be seen 
(Table 2), that the two joint surfaces may be accepted 
as fractal sets in a statistical sense. 

DISCUSSION--CONCLUSIONS 

Roughness profiles appear to behave as self-affine 
random fractal sets, at least for a certain rather broad 
range of scales. Thus, rescaling of a roughness profile 
sample is possible, providing that a reliable and statisti- 
cally significant estimation of D is made. At this point, 
it should be emphasized once more, that in the case of  
self-affine random fractal sets, as the profiles, one must 
distinguish between local DE and global D G fractal 
dimension, with the latter one tending to the topological 
dimension, DT = I. 
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Fig. 4. Digital model of a rock joint  surface: (a) axonometric view; and (b) isarithmic lines. Contour  interval = 0.25 ram. 

Table 2. Results of the regression between area and 
perimeter for the two rock joint  surfaces after in situ 

shear testing 

Rock b D p 

1 1.840 _+ 0.065 1.087 + 0.038 0.9932 
2 1.818 + 0.094 1.100 + 0.057 0.9819 

Expression (1), or other equivalent forms like 
equation (2), all valid for self-similar fractal sets, have 
been used in estimating the fractal dimension of the 10 
ISRM profiles [11-14]. It was observed that if these 
profiles were considered as fractal sets, the respective 
D-values seemed to conform to the profiles' order in the 
"roughness scale", as shown in Table 3, although these 
D-values were very close to unity, located in the interval 
1.0003 < D < 1.01. In all cases (Table 3), it seems that 
these D-values approach the global dimension 
DG--* Dr = 1 of the profiles. If rather large yardstick 

lengths, compared to the curve's undulations, are used 
to trace the length of a profile, the length measured in 
effect is that of an almost horizontal line (D ~ Dr = 1), 
since the yardstick walked along the curve remains 
mostly parallel to the x-axis [16,17] (Fig. 6). Obviously, 
this effect is more pronounced for the smoother profiles, 
as shown in Table 3. On the other hand, when progress- 
ively smaller yardsticks are used the better tracing of the 
real length of the profile is possible. This dependence of 
the D-values on the choice of the yardstick length was 
also reported [12]. Thus, if the intrinsic properties of 
self-affine fractals are taken into account, all the above- 
mentioned observations verify the random self-affine 
fractal character of the 10 roughness profiles. 

In such cases, methods like the ones used in this paper, 
and especially the normalized variance function, should 
be preferred, since the increments (zc-zj) which describe 
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Fig. 5. Regression of area vs perimeter for the two rock joint specimens. 
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Table 3. Comparison of results between Refs [1 I, 12, 14] using equation (1) 

Fractal dimension JCR 
range Sakellariou et  al. [11] L e e  e t  al. [14] Maerz and Franklin [12] 

0 2 1.0003 1.0005 
2 4 1.0009 1.0017 
4-6 1.0013 1.0028 1.0029 (Fig. 8) 
6~-8 1.0032 1.0039 
8-10 1.0032 1.0044 

10-12 1.0042 1.0056 
12-14 1.0059 1.0071 
14-16 1.0081 1.0081 
16-18 1.0074 1.0096 
18-20 1.0123 1.0134 1.017 (Fig. 7) 

better the deviation of the curve from a smooth one, are 
used and, furthermore, in a second-order power form 
[equation (4)]. Such methods are more sensitive to the 
discrimination between the local and global values, but 
the dependence on the yardstick length is again present, 
as an inherent behaviour of self-affine fractal sets. 

The results given in Table 1 appear controversial since 
they do not agree with common sense in classifying the 
suggested profiles according to their roughness. Thus, 
the first profile, being almost a straight line, has a 
D-value much greater than the value of the tenth one, 
which seems to be rougher. The rougher profiles have, 
in general, smaller D-values, much closer to the unique 
and reasonable values derived by the stable area to 
perimeter method (Table 2). This behaviour can be 
explained by the fact that the noise-to-signal ratio 
introduced by the digitization with the scanner, affects 
more the ( z i - z j )  increments of the "smooth" profiles 
than of the "rough" ones. Since the variogram method 
exaggerates these increments, the erratic ones introduced 
to the "smooth" profiles give rise to unrealistic D-values 
while, for the "rough" profiles, the presence of the real 
increments overcomes the influence of the erratic ones, 
and the method provides more reasonable results. 

The above discussion may lead to the conclusion that 
the ISRM profiles should be considered as random 
self-affine fractal sets. This concept is in agreement with 
the "scale effect" observed in the behaviour of rock 

Self simiLoriLy 

SeLf affinity y=h(x) 

Fig. 6. Distinction between self-similarity and self-atllnity. 

discontinuities. Barton et al. [3] and Bandis et al. [7] 
have observed that for the shear strength of rock joint 
surfaces the following law is valid: 

JRC a E L I  -°'°2JRc0 
j-ff o = = = LL- j , (6) 

where JRC is the joint roughness coefficient, a is the 
mean inclination angle to asperities based on a 2% 
stepsize and L is the specimen's length. The subscript (0) 
indicates the reference conditions for the laboratory 
scale. 

This experimentally observed behaviour is in qualitat- 
ive agreement with the fact that if unique D-values could 
be estimated for the ISRM profiles, these profiles would 
obey the following self-affine scaling law [11,25]: 

z F L ]  2-° 

zo = L 0J ' ( 7 )  

where z is the height increment of the profile for a certain 
correlation distance L. 

tana _ F L T  -° 
ta---n ao EL0 J (8) 

Or equivalently: 

where ~ is the tilt angle corresponding to correlation 
distance L. 

Unique D-values for the above expressions could be 
estimated by the area to perimeter method, providing 
that a DTM for each respective rock joint surface is 
available. Thus, each ISRM profile would be ac- 
companied by a unique local fractal dimension DL, as a 
roughness measure, and a more objective criterion for 
roughness classification would be available. 

For practical purposes, sampling of rock joint profiles 
from in situ measurements should be carefully planned, 
so that several profiles--and for a broad range of 
sampling intervals from very short to long wave- 
lengths--should be collected. Analysis of these data as 
suggested here should follow and the derived local 
fractal dimension DL should be compared to the ones 
referring to the 10 typical ISRM profiles. 

In conclusion, the roughness scale effect, observed in 
both laboratory experiments and in situ observations, 
where profiles of rock joint surfaces are used as samples, 
may be explained by fractal geometry, since this effect is 
due to the fact that profiles obey the more general scaling 
law of self-affinity. 
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