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Abstract

This article presents a review of existing methods for the detection of critical points cited in cartographic and computer
science literature. Moreover, a theoretical assessment of algorithm validity with regard to cartographic representation
demands is carried out. A method for the detection of critical points using the length ratio (LR) index is introduced, based
on geometric principles. Four lines (three geomorphologic and one arbitrary) selected from relevant studies are used to
check the method. Finally, the LR index is used to compare the results of two line simplification algorithms (pointremove
and bendsimplify) applied on five successive line simplification tasks on the coastline of a small island.

Keywords: critical/dominant points, line generalization, line simplification algorithms

Résumé

Dans cet article, on passe en revue les diverses méthodes de détection des points critiques souvent citées en cartographie
et en informatique. De plus, on effectue une évaluation théorique de la validité des algorithmes pour ce qui est des
exigences en matière de représentation cartographique. Une méthode de détection des points critiques à l’aide d’un indice
du rapport des longueurs est présentée selon les principes géométriques. Quatre lignes (trois géomorphologiques et une
arbitraire) provenant d’études pertinentes permettent de vérifier cette méthode. Enfin, l’indice du rapport des longueurs
est employé pour comparer les résultats de deux algorithmes de simplification de lignes (méthodes de simplification des
formes bendsimplify et de réduction du nombre de points pointremove) utilisés lors de cinq tâches successives de
simplification des lignes correspondant à la côte d’une petite ı̂le.

Mots clés: points critiques/dominants, généralisation cartographique, algorithmes de simplification de lignes

Introduction

In a study to clarify several concepts of visual perception
in the context of information theory, Fred Attneave
(1954) mentions that during the observation of an object,
the human brain receives a great number of stimuli,
which transfer a similarly large amount of information
that, in general, cannot be stored and utilized. But
humans require only a small part of this information
to recognize objects as specific individual entities.
The human brain acts in a number of ways (conscious

or not) that remove redundant stimuli, after which the
entrant information is described and encoded up to
the available storage capacity. Among others, Attneave
assumes that critical information is concentrated along
contours and especially at those points where the slope
changes most rapidly. Attneave points out that ‘‘common
objects may be represented with great economy, and
fairly striking fidelity, by copying the points at which
their contours change direction maximally, and then
connecting these points appropriately with a straight-
edge’’ (1954, 185). He concludes that the locations that
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configure the shape of a graphic object can be classified
quantitatively according to the information they transmit
to the observer. Locations that convey a large amount of
information characteristically are capable of describing
the shape of an object. This principle, articulated by
Attneave in 1954, became a research topic in cartography
as well as in the domain of computer science. In the
cartographic literature, characteristic points are usually
termed ‘‘critical points’’; the term ‘‘dominant points’’ is
used in computer science literature. In his definition of
critical points, Herbert Freeman (1978) includes those
points of a digital line that are (1) curvature maxima
and minima, (2) open line end points, (3) points of
intersection, (4) points of inflection, (5) points of
tangency, and (6) discontinuities in curvature. In
addition, critical points found as maxima, minima and
zeroes of curvature are invariant under rotations,
translations, and uniform scaling (Hoffman and
Richards 1982).

In cartography, the concept of critical points refers to
generalization and especially to line simplification. Jill
Marino (1979) underlines the existence and impact of
critical points in an interesting empirical study. In her
research, six lines representing natural phenomena with
various morphological characters were presented to a
group of cartographers and non-cartographers. Study
participants were asked to select a set of points that they
considered to be necessary and sufficient to retain the
character of the line. The statistical analysis of the results
led to three basic conclusions: (1) there is a close
agreement among the points that cartographers and
non-cartographers selected as critical, (2) the selected
points are located at places of high slope change, and (3)
the fact that the same critical points were preserved on all
three levels of generalization indicates their significance in
determining the character of the line. In another study,
George Jenks (1981) mentions that there are highly
significant points in every line that define its geographic
configuration. Subsequently, Jenks underlines their
importance arguing that ‘‘a sparse but carefully selected
set of sample points can be used to create a faithful
representation of any line’’ (1981, 4). Jenks discerns two
types of characteristic points: (1) significant economic,
cultural, and political locations, the selection of which
depends on the purpose and subject of the map; and
(2) natural, important, or basic locations that relate to
the structure of the line. These points provide the line’s
individual and distinctive form. Their location is related
to changes in the slope (direction) or to large fluctuations
of the line. In research focusing on the comparison of
three simplification algorithms through mathematical, as
well as empirical, criteria, Ellen White (1985) describes
results similar to those of Marino’s empirical study.
Some important findings yielded from this research
are the following: (1) responses from the subjects form

a rating of detection points, considering some points
to be more ‘‘critical’’ or more ‘‘important’’ than others
because they are detected more systematically than
others; and (2) points selected by cartographers and
non-cartographers are in close agreement (White 1985).
According to the results of White’s study, the slight
differences in the points selected by cartographers and
those selected by non-cartographers are due to the
perception of the observer and especially to the fact that
cartographers tend to focus more on the individual
characteristics of the lines.

In computer cartography, the concept of critical points
forms the conceptual foundation of line simplification
algorithms. Most algorithms analyse line structure using
geometrical criteria (length, areal displacement, perpen-
dicular distance, angular change, etc.), as well as
tolerances, depending on the level of simplification and
the purpose of the map. Line generalization research has
long relied on Attneave’s (1954) theory on critical points
to quantitatively assess simplification procedures (see,
e.g., McMaster 1987). The assessment of any line
simplification algorithm can be carried out by using
several quantitative criteria, such as the mathematical
measures proposed by Robert McMaster (1986).
However, there are still a few questions to be addressed:
Are the two lines, before and after generalization, visually
similar? Are the retained points really critical? Can the
derived lines be assessed aesthetically?

In the process of manual line simplification, the
cartographer examines the significance of each location
with regard to global and local criteria. The cartographer
estimates the information that every point contributes
to the line’s basic shape in relation to the level of
simplification and the line’s form. The complexity of this
process makes automation very difficult. The difficulties
are compounded by the manner in which vector data
represent, register, handle, and depict continuous
phenomena (such as lines on a map) in a digital
environment, which tends to conflict with map readers’
demands.

Every point located at a place of high slope change is not
necessarily a critical point, and, likewise, critical points
are not located only at those parts of the line. Barbara
Buttenfield (1989) states that cartographic lines should be
‘‘handled’’ differently, during the simplification process,
depending on their geomorphological nature and
character. Lines can be divided into two categories
(Buttenfield 1989): (1) those whose structure changes
with scale (scale-dependent) and (2) those whose
structure does not change (scale-invariant). If this
categorization is accepted, a rule of thumb cannot be
defined that deterministically retains or rejects points in a
simplification process. In fact, most line simplification
algorithms do not provide any options for preserving
critical points, nor do they model or assess the visual
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quality of the results. White’s (1985) research came to
similar conclusions: less than half of the critical points
identified by the subjects coincided with those detected
by what she considers the most valid line simplification
algorithm � the Douglas-Peucker algorithm (Douglas
and Peucker 1973). Khagendra Thapa (1988a, 516) states
that ‘‘some of the critical points which are likely to cause
spikes in the generalized lines must be eliminated if the
generalized lines are to be smooth, uncluttered, and
aesthetically pleasing.’’

However, the very essence of many algorithms’ structure
precludes them from properly retaining the most
characteristic points. The analysis of a line by repetitive
use of a set, specific geometric criterion, leads to results
that depend both on the criterion itself and upon the
tolerances set by the user. Furthermore, global analysis
of a line (typified by the Douglas-Peucker algorithm) can
easily fail to recognize its character at a local level.
Geoffrey Dutton (1999) underlines this fact, mentioning
that the analysis of the line as a whole for the selection of
the points that form its shape may lead to visually
unacceptable or even erroneous results. This is because
visual observation is affected by a combination of factors,
such as the level of scale change, the complexity of the
line, and the type of phenomenon represented. In
conclusion, Dutton suggests that ‘‘by segmenting line
features to be more homogenous, then applying appro-
priate algorithms and parameters to each regime individ-
ually, simplification results can always be improved’’
(1999, 36). Maheswari Visvalingam and Duncan Whyatt
(1990) similarly express the concept in a comparison the
Douglas-Peucker algorithm with their own:

Points selected by the Douglas-Peucker algorithm are not

always critical. Manual generalizations take into account

the relative importance of features. This is partly dependent

upon the purpose of the map. (224)

In computer science, especially in topics such as computer
vision, pattern recognition, and signal processing, a large
number of algorithms for detecting critical points have
been developed, mainly to address the problems of line
approximation, curve segmentation, and feature detec-
tion. The majority of these algorithms are based on
curvature computation at each point of the curve by
analysing angularity. Critical points considered are those
located at the curvature’s maxima and minima. According
to the classification of critical point detection algorithms
presented by Zhilin Li (1995), the majority of these
belongs to the ‘‘corner detection’’ category. Most early
algorithms approximated curvature based on computa-
tions of the angle � – or its cosine (cos �) – at each point I
between two points of the curve (I� k and Iþ k), with the
k parameter set by the user (Li 1995).

The concept of the ‘‘region of support’’ around each point
became a principle that would form the basis of many

algorithms coming from the computer science domain. A
precise determination of the support region is much more
important than the chosen curvature measure. Based on
this principle, and trying to avoid shortcomings from
using any parameter, a non-parametric algorithm is
developed (Teh and Chin 1989) in which the support
region of each vertex is determined on the basis of local
properties of the line. Secondarily, measures are used to
estimate curvature.

To better handle the problem of noise, and especially to
overcome the shortcoming of directly applying the
mathematical definition of curvature to discrete repre-
sentations of linear features, the original line should be
smoothed by a filter (most commonly the Gaussian filter)
before computing the curvature (Ansari and Huang 1991).
According to Philippe Cornic (1997), this approach raises
the problem of selecting the appropriate filter width,
since a rather small Gaussian filter width may lead to
insignificant detections whereas a large width may exclude
certain critical points from detection. Thus, several
researchers (Rattarangsi and Chin 1992; Pei and Lin 1992)
suggest that the lines should be smoothed by the Gaussian
filter at several levels (from minimum to maximum).

Following the concept of line analysis at a local level, new
algorithms have been developed that are not based on
the estimation of curvature for critical point detection.
Cornic (1997) introduces a non-parametric algorithm
that does not characterize each point by computing the
curvature parametrically. Instead, it applies a region of
support around each point of the line and rates the points
close to the left or right limit of the region. Finally, the
algorithm detects as critical points those gathering the
higher scores. Terence Cronin (1999) introduces a similar
algorithm, in which every point of the line is classified in
one of 18 groups, with its position and orientation
in relation to its predecessor and successor as criteria.
In general, the points are encoded as convexity (local
maxima), concavity (local minima), and run point
(straight angle). Cronin’s algorithm initially detects the
maxima and minima, filters them by using an error
budget procedure in order to discard sequences of obtuse
vertices or shallow curvature sequences, and selects the
critical points. Finally, a new method that uses wavelets to
detect critical points has been developed (Antoine and
others 1997).

Although the digital image processing domain applies the
concept of critical points differently, and linear features
are represented using raster data structures, its approx-
imation techniques are very interesting. The formulation
of methods of exclusive critical point detection in that
domain sets precedents for similar efforts in cartography.
Their main characteristic is setting a test area around
each examined vertex. Within this area, the curvature of
the line is estimated by analysing its angularity, and,
according to Attneave’s (1954) considerations, ‘‘crucial’’
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locations can be detected. Thus, the examination of
the points’ significance is carried out at a local rather than
a global level. This fact is a subject in need of further
research by cartographers. In addition, the use of
techniques for reducing the effects of discrete representa-
tion of continuous features in the computer environment
by smoothing lines differentially through filters according
to their local morphology is interesting. Finally, recent
efforts (Cornic 1997, Cronin 1999) to formulate non-
parametric algorithms that are independent of the user’s
subjective involutions and trial-and-error processes can
be considered pioneering.

Aim of the Study

This article introduces a method based on geometric
principles for detecting critical points using the length
ratio (LR) as a measure of estimation for the slope change
along the points defining a digital line. The LR index can
be calculated for each point of the line and can then be
assigned to each point. When the values of LR are scanned
from one end point to the other, several fluctuations are
observed, with local maximum values at those locations
where the line is most different from a straight line. All
vertices associated with LR values higher than a given
threshold are considered critical points. In the special case
of open lines, the two end points are also regarded as
critical points. Three geomorphological lines from the
study of Marino (1979) and the theoretical line from the
study of Thapa (1987) were used to test the proposed
method. Finally, the method was used to compare the
results of two line simplification algorithms applied on
five line simplification tasks on the coastline of Peristera
Island, a small island located at the centre of the Aegean
Sea and characterized by a high degree of shape complexity.

Description of the Method

In a digital environment, the proposed index is applied on
lines with a vector structure, that is, a discrete number
of points connected by vectors. The criterion of detecting
critical points along a line is chosen in such a way that
those vertices with high changes of line slope are located.
The central idea is to clip the line around each vertex and
determine its slope change independently, using line
length as a geometric criterion. The LR method adapts the
concept of ‘‘region of support,’’ presented in many critical
point detection algorithms originating from the field of
computer science. The line is clipped by applying a circle
centred at each vertex. The radius (R) of the circle is set
before application. Consider points P1 and P2, which are
defined as the two consecutive intersections of the line
with the circle. It is possible to estimate the length L of the
line along the path between two points and the chord
length S between them (see Figure 1). The index of length

ratio (LR) is defined as follows:

LR ¼
L

S
Such a circle may

1. intersect the line at two points P1 and P2 from
both sides of the vertex (Figure 1). In this case,
which is the most usual one for the intended
radii, the intersections P1 and P2 are detected.
Then length L is calculated (as the sum of the
intermediate rectilinear segments) as well as the
length of chord S.

2. intersect the line at one point P1 (Figure 2a).
This case can occur at the end locations of open
lines. The length L between the circle’s centre
and the intersection point is calculated, and the
chord length S is equal to the radius R.

3. intersect the line at more than two points P1, P2,
P3, . . . , Pn from both sides of the vertex
(Figure 2b). In this case, the closer intersections
to both sides of the vertex P1 and P2 are
detected. The procedure operates as in case 1.

4. intersect the line at more than two points P1, P2,
P3, . . . , Pn at one side of the vertex (Figure 2c).
In this case, the intersection closer to the vertex
P1 is detected. The procedure operates as in
case 2.

5. not intersect the line (Figure 2d). In this case, the
LR index cannot be applied and a smaller radius
is required.

Through the application of a circle with constant radius,
visiting all line vertices one after the other, the line is
equally clipped on the basis of a common measure. Thus,
a constant test area is produced for each vertex in which
the length L, the chord length S, and the LR index
are calculated. The LR index is closely related to the

Figure 1. Typical case of intersection between the line and
the circle.
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self-similar fractal dimension (Mandelbrot 1982) and thus
expresses quantitatively the degree of complexity of the
line section clipped by the circle.

Assuming that the digitization step of the line remains
approximately constant (so as to measure lengths on a
common basis) and is smaller than the circle radius, the
length L and chord S depend on the shape of the line bet-
ween the two points of intersection. The length L increases,
while the chord length S tends to decrease, as the slope
change of the line increases (see Figure 3). Consequently,

the LR index varies with the slope change of the line; as
slope change increases, the LR index increases as well. The
LR index is dimensionless, and it is always greater than or
equal to 1 (LR >¼ 1). The equality corresponds to straight-
line segments. Therefore, the LR index can be used as a
measure of the slope change variation. The vertices of the
line considered critical are defined as those associated with
local maxima of LR values (see Figure 4).

The basic principle of the proposed method of critical
point detection is the estimation of slope changes through

(a) (b)

(c) (d)

Figure 2. Four alternative cases of intersection between the line and the circle.

Figure 3. Variation of length L and chord S in relation to curvature.
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the LR index at the local level around each vertex. The size
of the circle directly affects the quality of the results, as the
circle determines the test area. If the radius is increased,
we can observe that both length L and chord length S vary
positively as long as the segment around the vertex
expands. However, their variation is not equal and
depends on the irregularity of the line. To illustrate the
above, an example of the variation of length L and chord S
over a wide range of radii (R) is presented in Figure 5,
starting from a size equal to the average step of line
digitization and advancing proportionally, for three
characteristic types of points respectively (see Figure 6).

By interpreting Figures 5 (a), (b), and (c) we can observe
that the rate of increase of length L relative to chord
length S varies more at positions with high angularity.
Specifically, the difference of length L with regard to that of
chord S appears higher at high slope changes (Figure 5a);
this difference decreases at moderate slope changes
(Figure 5b) and converges to zero at straight sections
(Figure 5c). Figure 7 illustrates the variation of percentage
increase of LR values with respect to the range of different
radii related to the average step size of the line, that is, the
sum of the lengths of the linear segments representing the
line divided by their number. When applying circles with a
radius equal to two to four times the average step size, the
maximum deviations between L and S appear; hence we
have distinguishable values of LR for critical point detec-
tion. When a circle’s radius exceeds the average step size
by about five times, LR values tend to express global
rather than local characteristics of the digitized line shape.

The values of LR can be classified into three groups (A, B,
and C), on an ordinal scale, according to the line shape
characteristics. After an empirical exploration, the follow-
ing limits of LR values are selected to define the three
groups:

� Group A (LR values ranging from 1.04 to 1.15): This group
of critical points refers to locations of smooth slopes (up to
1208) with basis vs. height ratio between 4:1 and 11:1 (see
Figure 8a).

� Group B (LR values ranging from 1.15 to 1.30): This group
of critical points refers to locations of sharp slope changes
(908–1208) with basis vs. height ratio between 3:1 and 4:1
(see Figure 8a).

� Group C (LR values greater than 1.30): This group of
critical points refers to locations of peaks with slopes less
than 908 with basis vs. height ratio smaller than 3:1 (see
Figure 8a).

It should be mentioned that according to the classification
defined above, a lower limit (threshold) for LR values
of 1.04 is used. Empirical analysis of several demo lines
varying in width according to the standards of linear
cartographic symbols and shape indicates that vertices
associated to locations with bends having a basis vs.
height ratio smaller than 11:1 can be considered critical.
Application of the LR indexes shows that these loca-
tions have LR values higher than 1.04. This lower limit
excludes from the set of critical points those vertices that
are associated to minimum slopes, straight segments, or
even ‘‘noise’’ inherent in any digital representation.

Dutton (1999) suggests that an important criterion for a
sound selection of points in a line generalization process is
the point-by-point estimation of local line sinuosity. For
this reason, Dutton introduces the statistic ‘‘Measure of
Sinuosity.’’ For each point of the line, the ratio of distance
along a digitized line between �k adjacent points to the
length of the trend line connecting these endpoints is
calculated (see Dutton 1999, 41, Figure 4). The ‘‘Sinuosity
Values’’ (SV) calculated by this method are dimensionless,
real numbers and express the slope change of the line
around each vertex. The number (k) of the adjacent points
that ‘‘participate’’ in the calculation of the SV defines the
width of the test area and therefore the values of the SV
index. Dutton concludes that a more robust estimation of
line sinuosity is obtained by calculating the average of the
SVs resulting from sequential application of the SV index
across a small range of adjacent points.

The structure of Dutton’s Measure of Sinuosity is very
similar to the LR structure. The two indexes estimate the

Figure 4. Candidate critical points in a diagram of LR values.

Byron P. Nakos and Vasilis Ch. Mitropoulos

40 cartographica (volume 40, issue 3)



irregularity of the line in a similar way. By applying a
specific transform classifier, Dutton associates the SVs
to three sinuosity levels (see Dutton 1999, 42, Figure 5).
A comparison between the three groups of the LR
values and Dutton’s classification (Figure 8b) shows
that SVs between 1.06 and 1.34 correspond to a line’s
‘‘medium sinuosity’’ areas. These values are very close to
the limits of group A and B LR values (1.04–1.15 and
1.15–1.30 respectively). Dutton indicates that SVs higher
than 1.34 correspond to ‘‘high sinuosity’’ areas. This
lower value is very close to the lower limit of LR values of
group C (1.30). It is obvious that the LR values that
correspond to the critical points of a line would coincide
with Dutton’s areas of medium and high sinuosity areas.
The LR’s lowest limit (1.04) occurs in the high levels
of the ‘‘low sinuosity’’ area. In contrast, LR values do not
exist in the remaining range of low sinuosity, as long as
critical points are not detected in areas of low slope
changes.

Finally, with the aim of estimating the irregularity
of the line at local level, two kinds of LR indexes are
defined:

� The Local LR (LLR) is calculated when a circle equal to
two times the average step of digitization is applied at
the line.

� The Average LR (ALR) is defined as the average of LR
indexes when circles with a radius equal to the average
step of digitization (R1), two times the average step of
digitization (R2), three times the average step of digitiza-
tion (R3), and four times the average step of digitization
(R4) are sequentially applied at the line. Thus, ALR is
expressed as follows:

ALR ¼
LRR1 þ LRR2 þ LRR3 þ LRR4

4

The slope change of the line is estimated at a local
level, around each vertex, by applying both indexes.

Figure 6. The three types of characteristic points (descriptions are given in the captions of Figures 5a, 5b, and 5c).

Figure 5. (a) L and S variation over a range of
different radii at a location of sharp
slope variation (point 1).

(b) L and S variation over a range
of different radii at a location of a
curve peak (point 2).

(c) L and S variation over a range
of different radii at a location of
straight section beginning (point 3).
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The difference between the two indexes is the limit of
the examined region. The slope change is estimated in a
small region around each vertex by applying the LLR.
As a result, the influence of the line’s local attributes is
high at the index. Subsequently, the ALR is applied, so
that the slope change is estimated both at an extremely
local level (R1) and at wider levels (R3, R4). Thus, the
influence of the adjacent vertices’ attributes decreases.
The importance of each vertex is estimated in a larger
range, and thus the values of ALR are more regularized
than those of the LLR. In addition, they yield more

precisely the importance of each point in the wider area of
the line.

Comparison with Relevant Studies

The credibility of the results is estimated by applying the
proposed method to lines with critical points known in
advance. Lines depicting parts of the Mancos River, the
Shenandoah River, and the Cape Argo coastline were
chosen from Marino (1979); Thapa’s theoretical line was
chosen from Thapa (1987). The first three lines represent

Figure 8a. Characteristic shapes of curves for the three groups (A, B, and C) of LR values.

Figure 8b. Comparison between groups of LR values and Dutton’s SV classification.

Figure 7. The percentage increase of the LR index over different radii at the three characteristic types of points.
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natural phenomena and constitute different geographical
and geomorphological samples. The Shenandoah River
is roughly sinusoidal, the Mancos River is characterized
by high complexity, and the Cape Argo coastline includes
both high-complexity and straight sections. The critical
points were derived from the empirical study of Marino
(1979). In the present study, the critical points related to
the first level of simplification (Marino 1979) are used
in order to include the largest possible sample. Thapa’s
(1987) theoretical line is a geometrical model, designed
to represent a large assortment of shapes (spikes, sharp
slopes, straight sections, continuous long curves, etc.) that
lines can exhibit, either independently or in combination.
The present study uses critical points produced by
Thapa’s mathematical model (1988b, 64).

The lines from studies by Marino (1979) and Thapa
(1987) were chosen in order to check the results of the
proposed method of detecting critical points directly
against a study that reflects the way humans conceptualize
and select critical points (Marino 1979) and a similar
method based on mathematical assumptions (Thapa
1987). Thus, both of them constitute sound bases for
checking the proposed method.

The raw data of the test lines were created by vectorizing
scanned images from Marino (1979) and Thapa (1987) at
a resolution of 300 dots per inch. The original lines were
created after cleaning and smoothing the raw data, in
order to be clear of redundant vertices, and smoothed
following the standard cartographic procedure (Jenks
1981). The average step sizes of the test lines are presented
in Table 1. Nevertheless, there are points of poor
digitization due to the source quality. These points were
marked and their LR values were checked in order to
prevent them from affecting the final result.

The critical point detection was conducted by applying
both LLR and ALR. The aim was to evaluate their

functionality and to compare them on the basis of known
facts. The parameters of implementation and the results
are presented in Table 1.

Table 1 shows that the LR method of detecting critical
points is in general agreement with the two relevant
studies (Marino 1979; Thapa 1987). With the exception of
the Cape Argo coastline, both LLR and ALR succeed in
detecting 90% or more of the critical points noted in these
two studies.

However, there are some cases of divergence in which the
proposed method detects critical points that were not
considered to be critical, mainly in Marino (1979); these are
referred to as ‘‘extra points’’ in Table 1. This phenomenon
is observed mainly in the Mancos River line. For example,
the LR method detects small, isolated ‘‘breaks’’ of the line
that Marino’s study participants could not discern. On the
other hand, Marino’s study set an upper limit on the
number of points participants could select. This limitation
allows us to guess that some of the extra points would
have been considered critical if participants had been
permitted to select a greater or limitless number of points.
For example, all the peaks of consecutive fluctuations in
the line are detected by the LR method; in Marino’s study,
only some of these are selected. Considering Marino’s
study as a sound test, we conclude that some of the
extra points are actually not crucial. They are located
in low-significance positions, or are derived from a
shortcoming in the LR index. However, some of the
extra points could be considered as critical, comparing
them with critical points located in similar line areas.

An examination of the total number of the critical points
detected by the application of LLR and ALR yields
important indications about the quality of the two
indexes. At first glance, it is obvious that the success
ratio of both indexes regarding the detection of the critical
points presented in the studies of Marino (1979) and

Table 1. Parameters of LR index application and results of the comparison

Line Thapa line Shenandoah River Mancos River Cape Argo Coastline

Average step size* 0.44 0.22 0.18 0.30
Radius of LLR* 0.9 0.5 0.4 0.6
Radii of ALR* 0.45, 0.9, 1.35, 1.8 0.25, 0.5, 0.75, 1 0.2, 0.4, 0.6, 0.8 0.3, 0.6, 0.9, 1.2
Known C-P 45 53 40 53
LLR

Detected 45 65 88 63
Common 41 (91%) 50 (94%) 38 (95%) 43 (81%)
Extra 4 15 50 20

ALR
Detected 45 59 72 49
Common 40 (89%) 51 (96%) 35 (88%) 38 (72%)
Extra 5 8 37 11

* In mm on the map.

Critical Point Detection Using the Length Ratio (LR) for Line Generalization

cartographica (volume 40, issue 3) 43



Thapa (1987) is almost the same (LLR gives slightly better
results for three of the four lines). With the exception of a
few cases, the critical points detected are common. The
differentiation between the two indexes consists in the
total number of points detected as critical. The number
of critical points detected by the application of ALR is
notably smaller (only in the Thapa line will both indexes
detect an equal number of points). By examining the
additional critical points detected in the application of
LLR, we can observe that a large number of them
correspond to local fluctuations of the line with minor
importance for the retention of its shape. For example,
many of these points are located in positions adjacent to
other critical points or in positions of low or medium
fluctuation preceding or following sudden ‘‘breaks’’ in the
line. In these cases, the ALR values are more regular, that
is, they do not have a local maximum but are increasing
(or decreasing) to (or from) the local maximum value
that corresponds to the point of greater slope change. The
estimation of the slope change of a larger region around
each vertex by applying ALR facilitates the detection of
critical points located in isolated, low fluctuations in the
line or in locations of low slope change. Finally, by using
ALR, the critical points located in large, wide curves can
be detected precisely at their peak (in many cases, LLR
leads to the detection of points adjacent to the peaks). A
more extensive and qualitative examination of the results
with regard to the morphology of the mapped features
yields the following observations:

THAPA’S THEORETICAL LINE

Because of the geometrical shape of Thapa’s (1987)
theoretical line, the gradation of LR values is in full
accordance with the shape of the line, especially when
examined globally. By examining the results in more
detail, we can observe that critical points of Group A
mainly correspond to small line breaks, smoothed slopes
(up to 1208), and continuous small curves of the line.
Group B consists mainly of continuous, large fluctuations
and sharp slope changes. Finally, group C corresponds to
locations of sharp breaks in slope, acute spikes, and
medium and large fluctuations. The critical points not
detected by the application of LLR and ALR are common
and are located in positions of nearly zero slope change of
the line. The extra critical points detected by application
of ALR are located in small, narrow curves of the line
(with a basis vs. height ratio equal to 5.5:1) and in peaks
of small, continuous fluctuations that could be considered
critical (Thapa’s method detects the adjacent peaks). The
same applies to the extra points detected by LLR, with the
exception of one specific point, the detection of which is
due to the index sensitivity in the local characteristics
of the line. Nevertheless, it is important that the total
number of critical points detected by the Thapa and LR

methods is the same (45). The two mathematical methods
have a satisfactory coincidence in detecting critical points.

THE SHENANDOAH RIVER LINE

For the sinuous Shenandoah River line, the success ratio
in the detection of the critical points present in Marino’s
(1979) study verges on agreement by applying both LLR
(50 of 53) and ALR (51 of 53) indexes. All the peaks of
large curves and sudden ‘‘breaks’’ that characterize the
line are detected. In fact, the LR values that correspond to
these locations belong to groups B and C and constitute
the majority. The rest of the LR values belong to group A,
corresponding to smooth slopes and sudden small
‘‘breaks’’ in the line. The points not detected by LLR
are located in solitary smooth curves and in positions of
low slope change that form bends with a basis vs. height
ratio greater than 11:1 (not detected by ALR either). ALR
fails to detect another critical point located in a position
following a narrow curve, since the index values near
it are in a decreasing rate. Some points not considered
critical in Marino’s study are detected by LLR and ALR.
Their number is not high, but they are of great interest. A
small number of these extra points are located in
positions of short, sudden ‘‘breaks’’ in the line; they
correspond to low LR values (approximately 1.05) and
were not easily perceived by the participants in Marino’s
study. The other extra points detected by LLR correspond
to local line fluctuations. The majority are located in
positions adjacent to critical points or in positions of
minimum importance for the preservation of the line’s
shape. By applying ALR, we can eliminate all these points.
The application of the LR method to the Shenandoah
River line clearly indicates how estimating the irregularity
in a range of areas around each vertex by using ALR leads
to the elimination of many ‘‘superfluous’’ critical points
detected by LLR. However, the Shenandoah River line
reveals a rarely occurring shortcoming of ALR. Five of the
eight extra points belong to group C; they are located in
positions adjacent to large peaks of crucial importance.
The problem is encountered when, for reasons relating
to the shape of the curve, the area examined for R4
exceeds the ‘‘local’’ limits. Thus, the LRR4 index is
very high and increases the value of ALR. Although this
issue is rarely encountered, it requires more thorough
research.

THE MANCOS RIVER LINE

For the Mancos River line, the majority of the points
considered critical in Marino’s (1979) study are detected
by both LR indexes (38 out of 40 using LLR and 35 out of
40 using ALR). Those that were not found are located in
parts of curves adjacent to detected critical points with
lower basis vs. height ratios (giving higher LR values).
In these areas the LR values do not have local maxima but
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are either increasing or decreasing. What characterizes the
LR index’s application to the Mancos River line is the
detection of a large number of extra points, resulting from
the shape of the specific line. The Mancos River is a line
of high complexity, having continuous wide or narrow
bends. The structure of the LR index leads to the
detection of a high proportion of these (those having a
basis vs. height ratio smaller than 11:1). However, in
Marino’s study about half of these are considered critical.
With the exception of two, the majority of the known
critical points correspond to LR values higher than 1.08.
Most of the extra points belong to Group A and fewer
to Groups B and C. In a line of high complexity, the
limitation on the number of selected points imposed by
Marino could be an easy explanation for the deviation in
the number of critical points between the two methods.
However, if we accept Marino’s study as a sound basis for
comparison, a distinct shortcoming of the LR method is
revealed: the LR index is sensitive to high-complexity
locations in the line. Application of LR to the Mancos
River shows that only positions of high slope change must
be considered crucial in similar cases. This explains the
fact that the majority of the extra points correspond to the
low values of Group A. This issue, however, requires more
thorough research.

THE CAPE ARGO COASTLINE

For the Cape Argo coastline, LR values correspond
directly to the line morphology. It is for this line that
the lowest ratio of success is achieved (43 of 53 points
using LLR and 38 of 53 using ALR) with respect to the
detection of the critical points selected in Marino’s (1979)
study. This is due mainly to the shape of the line, which
includes both high-complexity and straight sections.
Many critical points presented in Marino’s study are
located in positions of low slope change or zero change;
the LR values that correspond to these are below the
threshold. In high-complexity areas, participants in
Marino’s study selected adjacent points as critical. A
number of these are not detected by the LR index, since
their values are either increasing or decreasing. Finally,
the LR index detects certain points not considered critical
in Marino’s study. These extra points belong to all groups
of LR values. They are located in small, smooth
fluctuations of the line, in positions of abrupt slope
change, or in continuous peaks (some of which are
considered crucial in Marino’s study). Some of the extra
points detected by LLR derive from the sensibility of the
index to the local attributes of the line.

It should be mentioned that the LR method was also
applied to the raw (non-cleaned and unsmoothed) data.
This experiment showed that the same critical points were
detected. This is mainly because the parameters for the
cleaning and smoothing procedure were chosen to be

close to the digitization tolerance as well as to the lower
limit of LR values.

Test Application

The LR index was applied to the coastline of Peristera
Island, an outline characterized by a high degree of
complexity. The coastline was digitized from a paper
1:50,000-scale map with an average step size of approxi-
mately 15 m on the ground (or 0.3 mm on the map). The
raw data were cleaned of duplicate vertices, spikes,
and switchbacks after a ‘‘weeding’’ process. They were
smoothed in order to produce a working data set. Then
the data were cleaned and smoothed with parameter
values close to the digitization tolerance.

The critical point detection was conducted by applying
the ALR index. The four radii applied were 15 m, 30 m,
45 m, and 60 m on the ground (or 0.3 mm, 0.6 mm,
0.9 mm, and 1.2 mm on the map); the lower limit
(threshold) was set at 1.04. Using this method, 135
critical points were detected (5.6% of the original).
Figure 9 illustrates the original coastline and the critical
points detected.

By assessing the location of the 135 critical points, we
observe that the selected critical points satisfy the basic
principle of retaining the shape and the character of the
line. Locations of high slope change or line breaks that
are crucial to effectively represent the basic shape of the
line were successfully detected. The results of the test
application are also consistent with the concept of LR
value grouping according to shape regimes. Generally, 87
of the 135 critical points belong to group A, 28 to group
B, and 20 to group C.

Following a closer look at the detected critical points,
several observations should be discussed that refer mainly
to parts of the line with higher or lower concentrations of
critical points. First, some high concentrations of critical
points, such as those indicated with the letters D and E in
Figure 9, are identified. It seems that the LR method leads
to overestimation of critical points in regions of high
line complexity. The ALR values corresponding to these
locations do not belong to a specific LR value group. They
depend on the shape of the line. In areas of low slope
change (indicated with D in Figure 9), the ALR values
belong principally to Group A and secondarily to group
B. In positions of high slope change (indicated with E in
Figure 9), on the other hand, the ALR values belong
mainly to Groups B and C. The same behaviour is
also observed in analysing the Mancos River line,
where several vertices associated with local maxima
of the LR values were not chosen as critical in Marino’s
empirical study. This shortcoming can be explained by
the fact that the length L, and hence the LR measure,
increases in proportion with the complexity of the line.
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It seems that the LR index is more sensitive in such
situations.

The second observation concerns parts of the line with a
lower concentration of critical points, such as those
indicated with F in Figure 9. These cases consist of long,
‘‘wide’’ peninsulas with constant slope change. The LR
values corresponding to the vertices that define their

shape are constant (or have very low fluctuations) and fall
below the threshold value. The LR method is structured
in such a way as to detect positions of high slope change.
According to Attneave (1954), critical points appear in
these locations. Thus, the constant slope change penin-
sulas presented in the Peristera Island coastline do not
present any critical points.

Figure 9. The outline of the Peristera Island coastline, digitized from a 1:50,000 map, and the 135 critical points symbolized by
black dots.
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Comparison of Two Line

Simplification Algorithms

The Peristera Island coastline was generalized with two
line simplification algorithms, pointremove and bend-
simplify, using ESRI’s Arc/Info v.8.1 software platform.
Pointremove is based on the algorithm developed by
David Douglas and Thomas Peucker (1973) with some
enhancements. Douglas and Peucker introduced an
operator that eliminates the redundant points (detail)
derived from a digitization process so as to produce
sufficient abstraction of a line. The algorithm is structured
so as to retain the points located in the slope change areas
of a line and remove all other points. Bendsimplify is a
further development of the key idea presented by
Visvalingam and Whyatt (1993) and is based on research
developed by Zeshen Wang and Jean-Claude Müller
(1998). This line simplification operator aims to retain
the curved parts of a line. It is based on the detection of
the bends of a line, the analysis of their attributes, and the
elimination of the insignificant bends on the basis of their
attributes. These two algorithms were compared on the
basis of the points preserved after their application in
relation to the critical points detected on the original
coastline. A qualitative and quantitative comparison of
the retained vertices is discussed in this section. The
generalization tasks include the simplification of the
coastline at five different levels using each algorithm.
The resulting coastlines are presented at scales 1:100,000,
1:250,000, 1:500,000, 1:1,000,000, and 1:2,000,000 respec-
tively. In each case, the number of retained vertices is
defined according to ‘‘principles of selection’’ (Töpfer
and Pillewizer 1966), which in the case of coastlines is
expressed as follows:

n ¼ n0
S

S0
,

where S0 and n0 are the scale and the number of vertices
of the original map and S and n are those of the derived
map. The number of points required to represent a
generalized line does not always vary linearly with the
scale. Nevertheless, when the line and the reduction ratio
are specified, the ‘‘principles of selection’’ can be used as
an acceptable way to estimate the features of the derived
line. In the present application, the ‘‘principles of
selection’’ are used as a general accepted cartographic
rule with the sole purpose of handling the tolerance values
and defining the lines for the target scales. The tolerances
are defined to equalize the number of preserved vertices at
each level. Table 2 illustrates the parameters of the five
levels of line simplification performed; Figure 10 portrays
the simplified coastlines.

Table 3 presents the number of common points sharing
each level of simplification with the set of the detected

critical points on the original line of scale 1:50,000. For
the first level of simplification, where the number of
the retained points is high (50% of the original), the
pointremove algorithm preserves all the critical points
while bendsimplify preserves 84%. When the simplifica-
tion level is increased, the bendsimplify algorithm
percentage greatly decreases. On the second level,
bendsimplify retains less than half of the critical points
(49%). The fourth level of simplification is interesting,
since the number of vertices shaping the simplified lines
(129) is approximately equal to the number of critical
points (135). It is observed that bendsimplify preserves
only 15% of the critical points. On the fifth level, where
the vertices shaping the lines are fewer in number than the
critical points detected on the initial line, bendsimplify
retains the least critical points. On the other hand, the
pointremove algorithm detects almost all the critical points
on the second level and more than 80% on the third level.
On the fourth level, it retains 54% of the critical points.
Even on the last level, the pointremove algorithm has a
high ratio of success (35 critical points out of 61 line
vertices). Similar results can be found in White’s (1985)
research, which assessed several line simplification algo-
rithms. In assessing the validity of both algorithms in
absolute numbers, one might conclude at first glance that
the results of the bendsimplify algorithm have many
shortcomings, since a significant number of the points
selected by its application do not coincide with the
predefined critical points. But which of the critical points
does bendsimplify eliminate? And are these points of
major importance for the preservation of the basic shape
of the coastline?

The set of vertices preserved by the two simplification
algorithms that are members of the set of critical points
detected on the original line are classified into three
groups (A, B, and C) of LR values. The results are
presented in Table 4 for the five simplification tasks.
Table 4 shows that the majority of the points selected
by the bendsimplify algorithm correspond to Group A,
whereas vertices corresponding to medium or high LR
values (Groups B and C) are rarely selected. The
bendsimplify algorithm does not retain points of high
LR values after the second simplification level. In both

Table 2. Retained vertices of Peristera Island Coastline for
the five simplification tasks after applying ‘‘principles of
selection’’

Level Nominal map scale Retained vertices

1 1:100,000 1207 (50%)
2 1:250,000 485 (20%)
3 1:500,000 246 (10%)
4 1:1,000,000 129 (5%)
5 1:2,000,000 61 (2.5%)
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cases, more than 70% of the preserved vertices belong to
Group A. In fact, the majority of the values in the first
group (A) fluctuate at fairly low values (from 1.04 to
1.08). This implies that the retained vertices represent
areas of smooth slope changes (these areas usually define
the end points and the peaks of curves with large
fluctuations) that must be preserved in order to maintain
the shape of the line. The simplified lines appear
smoothed to a large extent. At the first two levels of
simplification, the bendsimplify algorithm retains all large,
wide curves (see Figure 10 and areas indicated with F in

Figure 10. Simplified lines of the Peristera Island coastline at five derived scales.

Table 3. Retained critical points after the five simplification
tasks

Level

Retained critical points

Pointremove Bendsimplify

1 135 (100%) 113 (84%)
2 130 (96%) 66 (49%)
3 114 (84%) 39 (29%)
4 73 (54%) 20 (15%)
5 35 (26%) 8 (6%)
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Figure 9). The positions of high complexity correspond-
ing to low LR values (see Figure 10 and areas indicated
with D in Figure 10) are preserved, whereas positions
corresponding high LR values (see Figure 10 and areas
indicated with E in Figure 9) are not. At subsequent
simplification levels, the high-complexity positions are
removed. Simultaneously, only very large, wide curves are
shaped (some merged with adjacent ones). Some narrow
bays and peninsulas are not retained. At the last two
simplification levels, the shape of the coastline is
approximated (resembling an outline around the outer
points of the line).

The pointremove algorithm preserves the majority of
critical points at the first two simplification levels.
Furthermore, the derived lines have the same distribution
of critical points over the three groups as the original.
Table 4 shows that the largest proportion of the retained
critical points fall into Group A, so that the characteristic
slopes of the examined line are preserved. By increasing
the level of simplification where the number of critical
points decreases, the percentage of critical points belong-
ing in Group A decreases while the percentage of critical
points belonging in Groups B and C increases. This shows
that locations with smooth slope changes are not retained,
in contrast to the high slope changes of the line. At all
levels, the pointremove algorithm retains the large, wide
curves (see Figure 10 and areas indicated with F in
Figure 9). At the last two levels, however, these curves are
shaped with the minimum number of points, resulting in a
spiky outline. The complexity of the coastline is preserved
at all levels, with a slight decrease only at the fifth level.

By comparing the two line simplification algorithms on
the basis of the critical points detected by the LR index,
we can observe many differences. This offers a rationale
for examining differences between the two algorithms
with regard to their structure and concept. In addition,
know the attributes of the critical points enables us to
acccomplish a quantitative assessment of the differentia-
tions. The critical points selected by the two algorithms
at each level of simplification and their classification
in the three groups of LR values may allow us to make

a quantitative analysis of what is perceived by the
human eye.

The retention of high-complexity areas of the line by the
pointremove algorithm can be considered a shortcoming,
especially at high levels of simplification. The retention of
the large, wide curves at small scales could be considered
as preservation of detail. The retention of points with high
LR values creates a spiky line shape, particularly at high
levels of simplification. In contrast, the bendsimplify
algorithm reduces the level of detail according to the
simplification level. In addition, it minimizes the
complexity of the line but preserves its basic shape,
since the majority of the critical points detected on
the original line that are ultimately retained belong to
Group A. Thus, summarizing differences between the two
algorithms with respect to the LR method of critical point
detection and classification, we arrive at the conclusion
that bendsimplify can be considered cartographically
more appropriate than pointremove, especially for the
depiction of lines at small scales. The lines derived after
the application of the bendsimplify algorithm can be
considered visually more aesthetic.

Concluding Remarks

The concept of critical points, presented by Attneave
(1954) as characterizing line drawings and subsequently
adopted by cartographers, has long guided research in
cartographic generalization. It is significant indirectly as a
guideline for the assessment of simplification algorithms
and directly because it often serves as their objective, given
that most simplification procedures depend, to a certain
degree, on the retention or elimination of critical points.

The method proposed here is tailored to cover the needs
of digital representation of lines in vector environments,
as opposed to Thapa’s (1987) method, which is appro-
priate only for digital lines in raster environments.
Although the theoretical background of critical points
guides line simplification by selecting points to preserve
or to eliminate, the methods of automation present many
differences.

Table 4. Retained critical points classified into the three groups of LR values after the five simplification tasks

Level

Group A Group B Group C

Pointremove Bendimplify Pointremove Bendsimplify Pointremove Bendsimplify

1 87 75 28 20 20 18
2 83 46 28 13 19 7
3 69 29 26 7 19 3
4 37 14 17 5 19 1
5 15 6 6 1 14 1

Original line 87 28 20
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The LR method is based on examining lines in
neighbourhoods around each vertex. The method incor-
porates the idea of a ‘‘region of support’’ that char-
acterizes analogous algorithms originating from the field
of image processing. Neighbourhoods are identified by a
circle of a defined radius centred at each vertex. Thus, the
slope change is not estimated directly, by measuring the
angularity; instead, it is calculated indirectly, through
geometrical analysis of the line with length as the
criterion.

The length of a line is the feature that depends on both
the morphology of the line and its sampling (Buttenfield
1985). In the method proposed here, it is estimated that
by setting the latter as ‘‘invariant,’’ the former can be
evaluated through the proposed index. Finally, the LR
method detects critical points in a manner consistent
with Attneave’s (1954) considerations. The LR index is
dimensionless and highly sensitive to irregularity varia-
tions, since the length L increases and the chord length S
decreases proportionally to such variations.

The examination of each vertex independently results in
an estimation of the local significance of each location.
The procedure effectively simulates the perceptual
(manual) process in which the significance of each
location is estimated both locally and globally. This fact
is very important for the analysis of cartographic
representations, where the represented level of detail
differs in proportion to the local morphology of the line.
Researchers such as Dutton (1999), Visvalingam and
Whyatt (1990), Buttenfield (1985, 1989), and Thapa
(1988a) have also expressed this view.

In practice, users of the LR method must define two
parameters: the radius (R) and the threshold of LR values
to be retained. At present, we suggest that the radius
be defined in proportion to the average step size of
the digitized line and that the threshold of LR values
be set at 1.04, a value that excludes from detection any
curves that are longer than they are high by a ratio of at
least 11:1.

The application of the LR index leads to results that are
comparable quantitatively to relevant studies such as
those of Marino (1979) and Thapa (1987). However, the
undesirable sensitivity of the LR index in proportion to
line complexity, as discussed in the previous sections, is a
subject for future research.

The LR index does not detect points in long, wide curves
with constant slope change. This is not a shortcoming
of the method. These ‘‘silent’’ points that shape curves
of low slope change may be of importance to the line
simplification process, but they are not considered critical
points and therefore are not detected by the LR method.
Because this method was not developed to perform line
simplification but to detect critical points, its function-
ality for this purpose can be considered satisfactory.

Finally, the LR method may facilitate research in
cartography, particularly in line simplification, line
segmentation, and multi-scale line representation. With
respect to the topic of line simplification, cartographic
research is focused on the development of an automated
generalization procedure. The LR method might be
incorporated in an automated line simplification process.
Furthermore, the method may be used to segment line
features in parts of homogenous characteristics in
complexity or uniform characteristics in shape.
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