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Abstract. Several visualization methods for eye tracking data exist to help re-

searchers from many disciplines depict data collected in eye tracking experi-

ments. Focusing on eye tracking data from observations of cartographic lines, in 

this paper we discuss early findings on a new visualization that uses inferred pol-

ylines instead of more traditional techniques such as heat maps to visualize eye 

tracking data. This visualization depicts the average line that is actually seen by 

subjects, which can be useful in the study of cartographic concepts such as the 

assessment of the effects of alternative cartographic lines presentations in maps, 

of distractions, abstraction levels and more. 
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1 Introduction and related work 

Eye tracking is a widely used methodology in many scientific fields, as it reveals im-

portant findings about the human cognitive processes during the observation of a visual 

stimulus. In cartographic research, eye tracking is a valuable tool for the execution of 

experiments related to the study of map reading and cartographic design evaluation. An 

important element of eye movement analysis is the visualization of eye tracking data 

using techniques referred to the gaze behavior of either individuals or all the subjects 

in an experiment. Considering that the amount of data collected can blur the reference 

with the visual stimulus, visualization techniques are usually applied after clustering 

the gaze recordings in fixations and saccades. A typical visualization is the scan path 

graph, where fixations are depicted as circles with radical values related to their dura-

tions, while saccades are presented as connector line segments among fixations. Other 

techniques include heat maps and scan path graphs, using variables such as duration, 

number of fixations, participant percentage etc. [1] 
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In this paper we report early progress on the depiction of the gaze route history using a 

polyline, which is feasible, as the visual trace is generated from sequential raw eye 

tracking data [2]. The nodes of such a polyline contain information about the durations 

of fixations or other statistical values, which can also be attributed to line sections that 

represent saccadic movements. Generally, the reconstruction of gaze route history can 

be very useful in the study of several cartographic concepts as a gaze polyline depicts 

the line that is actually perceived from subjects.  

 

The motivation for this work stems from methods used in the inference of graph geom-

etries such as transportation networks, from GPS tracking data. Several such methods 

rely on trajectory clustering. Some of the algorithms in the literature [3] [4] operate on 

point data and do not take the temporal aspect into consideration. Others infer curved 

paths using K-means clustering of raw tracking data along with distance measures [5]; 

others transform tracking data to discretized images using Kernel Density Estimation 

(KDE). They function well for frequently sampled and redundant track data [6], but are 

sensitive to noise. Other approaches relying on computational geometry techniques [7] 

operate on tracks of high-resolution and accuracy. The final category involves trace-

clustering approaches that derive a connected road network from vehicle trajectories 

[8] or different movement types. This work applies such a technique in eye tracking 

data to automatically extract “hubs” and construct a polyline that corresponds to the 

observed geometry of cartographic lines. 

2 Inference of Polylines from eye tracking data 

The aim of this work is to derive a single polyline geometry from sampled eye tracking 

data from multiple users. Fig. 1 plots data used in our experiment in blue color with the 

actual cartographic line that the subjects have been asked to follow, shown in black. 

 

Fig. 1. Eye tracking data example 



2.1 A first version of a proposed algorithm 

The proposed algorithm to derive the polylines from eye tracking data involves three 

steps; (i) identifying hubs, (ii) connecting hubs, and (iii) reducing the links into a single 

geometry, which are discussed in the sequel. 

 

Phase 1: Hubs and Spatial Fixation. A hub represents the spatial fixation that the eye 

creates near an area of interest. Indicators for hub recognition are the number of track-

ing samples, the number of different users and the coverage of an extended area of 

focus. The algorithm takes as input the eye tracking data and determines the k-NNs of 

each tracking sample, which are subsequently filtered according to the number of users. 

On these filtered tracking samples, we apply the DBSCAN clustering algorithm using 

a distance threshold and a minimum number of samples, which depend on the specifics 

of the experiment. The centroids of the resulting clusters are the hubs. Fig. 2 shows the 

hubs derived after applying the hubs inference algorithm in our test dataset. 

 

Phase 2: Connecting Hubs. Next, we connect hubs by links. A fringe benefit of the 

hubs computation based on spatial fixation is that for all data we know which samples 

helped in identifying hubs. To derive links we exploit this knowledge: for each hub we 

record the outgoing and/or incoming tracking portions connecting this hub to others by 

scanning all eye tracking data to discover sequences of hubs. The result of this step is 

the creation of a sample polyline set that connects hubs with links. In our representation 

of eye tracking data, all tracking samples that are also hubs are marked as such. Hence, 

performing a linear scan of all tracking data reveals the respective tracking portions that 

connect hubs. 

 

Phase 3: Compacting Links. To this point, we have hubs connected by links derived 

from eye tracking data that exhibit spatial fixation at these hubs. In a nutshell, the algo-

rithm identifies tracking portions that are close to existing links by means of a buffer 

region and merges their geometry into the existing link geometry. The size of the buffer 

region depends on the specifics of the data; in our case we used 15 pixels as buffer 

region. In this step, we neither introduce new hubs nor do we add new links. We only 

adjust the geometry of existing links using a three-step algorithm: (i) sort existing link 

samples, (ii) determine relevant tracking portions using a buffer region around link 

samples, and (iii) adjust the geometry of links based on the tracking data geometry.  

 

In our experimentation so far we first sort all links according to their length so as to 

process longer links first as they may be more significant for polyline construction, 

which remains to be further tested future work. In step (ii) the algorithm uses a buffer 

region around the examined link sample and retrieves all intersecting portions of other 

links. New links are created by interpolating link samples and introducing hubs. New 

links are assigned a weight that is the sum of the weights of the merged links. Link 

samples are updated several times during this phase. While the examined links are re-

constructed, new link samples are created to replace links in previous iterations. 



2.2 Polylines Inference Results 

The cartographic line that we try to infer consists of 6595 links (edges) and 6607 nodes. 

The edges have a length of 4041 pixels, as the reference system is in pixels. Sampling 

of eye tracking data was at 60 Hz (0.017 sec). Data comes from 3 different users with 

a total length of 89880 pixels (Fig. 1). Following the various stages of the polylines 

inference algorithm, the following output is produced. During the first phase, i.e., hubs 

extraction and connection, 109 hubs and 300 link samples are generated. The second 

polylines inference phase, i.e. compacting links, produces 119 hubs, 79 links and a 

length of 2990 pixels. This result shows that during the second phase of the algorithm, 

the number of hubs remains largely constant but only the length of the links connecting 

them is significantly reduced since we radically merge links during this phase. Fig. 3 

visualizes the inferred polylines in blue and the actual cartographic data in grey color. 

 

 

Fig. 2. Hubs Inference from Spatial Fixation 

 

Fig. 3. Inferred Polylines 

3 Further work 

We briefly presented a polyline-based visualization of eye tracking data that depicts the 

“average” cartographic line observed by subjects, along with the algorithm that is used 

to infer this polyline. Clearly, such a visualization is of little use in cases where the 

context of eye tracking experiments has no lines of some kind that subjects are required 

to follow. It is, however, quite interesting in cases that such a line really exists, as is the 

case in cartography where borders, navigation routes and all kinds of curves, are used 

to represent useful information on a map. Studying the effects of different visualization 

attributes of cartographic lines in the concentration of the eye’s attention to a central 

linear entity can benefit from using the representation of eye tracking data introduced 

in this paper. 

 

This visualization can be further improved by adding color attributes to the inferred 

polyline using calculations such as eye tracking samples data density near the line, or 



other statistical metrics. Considering that it is the mind that actually does the cognitive 

interpretation of lines observed, it is rather impossible to infer a polyline that very 

closely matches the initial cartographic line. However, studying the deviations of indi-

vidual observers’ tracks from the average polyline, and combining the results with se-

mantics from the experiment and subject context may produced some interesting re-

sults, too.  

 

Application of the proposed visualization in other kinds of lines whose eye tracking 

makes sense, as is the case with some medical images, is another area that is definitively 

worth exploring. Last but not least, the production algorithm of the polyline needs fur-

ther experimentation on bigger data sets and possibly improvement in few operational 

aspects.  All of the above are future directions of this research. 
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