
 

 
 

 

1 INTRODUCTION 

Line simplification is a filtering process that selects those critical points for retaining the overall 
shape of an original line while eliminates those trivial points. Over the past decades, many 
algorithms have been developed for line simplification purposes. Among others, Douglas-
Peucker (D-P) algorithm (Douglas and Peucker 1973) is one of the most effective algorithms in 
retaining the shape of the original line, although there are critics from different aspects (e.g. 
Visvalingham and Whyatt 1990). Dutton (1999, p.36) claims that D-P algorithm is “really only 
one global algorithm in use”, since it is able to maintain the overall shape of the original line. Li 
and Openshaw’s algorithm (1992) is another one of such algorithms, and it uses so-called 
smallest visual object to detect and retain the overall shape of a line based on the so-called 
natural principle. Wang and Muller (1998) have argued that the most algorithms are geometric 
solutions rather than cartographic ones, as these algorithms involve only filtering process. 
Therefore they developed an algorithm based on the detection of individual bends of the original 
line, and using mathematically designed measures in the course of line generalization. Herein 
the term of line generalization, different from that of line simplification, involves not only 
filtering processes but also other processes like combination and exaggeration. However what is 
common for the two terms is the detection of overall shape of a line, in order to achieve satisfied 
outcomes.  

A sound algorithm for line simplification must be based on sound shape detection, through 
which a satisfied simplification can be reached. This idea has been widely adopted by 
cartographic researchers. For instance, shape detection or structure recognition in their own term 
is the fist step in their automated generalization framework developed by Brassel and Weibel 
(1988). This paper develops an approach to line simplification based on shape detection using 
self-organizing map (SOM). SOM is an artificial neural network algorithm (Kohonen, 2001) 
that is used as a method for shape detection of the original lines based on an unsupervised 
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training process. Through it, we are able to derive a representative line that represents the 
overall shape of the original line. This representative line can be further used for vertices 
filtering process in order to select those critical vertices. SOM has been used in many fields 
such as data classification, pattern recognition, image analysis, and exploratory data analysis 
(for an overview, see Oja and Kaski 1999). In the domain of GIS and cartography, Openshaw 
and his colleagues have used SOM approach in spatial data analysis to carry out the 
classification of census data (Openshaw 1994, Openshaw et al. 1995). SOM has been used for 
selection of streets from a network – so a kind of model generalization (Jiang and Harrie 2003). 
In that study, multiple attributes of streets from semantic, geometric and topological perspective 
are considered for measuring similarity among the streets in order to group them into difference 
categories. Eventually two types of streets are detectable, i.e. those to be eliminated and those to 
be selected, for selection purpose. However this paper focuses on graphic generalization, 
assuming that a prior model generalization is done.  

The remainder of this paper is structured as follows. Section 2 presents the basic principle 
and algorithm of SOM. Section 3 describes how SOM is used for shape detection and line 
simplification with an illustrative example. Section 4 reports a case study applied to a coastline 
and a comparison study to other line simplification algorithms. Finally section 5 concludes the 
paper and points out future work.  

2 SELF-ORGANIZING MAP  

SOM is a well-developed neural network technique for data clustering and visualization. It can 
be used for projecting a large data set of a high dimension into a low dimension (usually one or 
two dimensions) while retaining the initial pattern of data samples. That is, data samples that are 
close to each other in the input space are also close to each other on the low dimensional space. 
In this sense, SOM resembles a geographic map concerning the distribution of phenomena, in 
particular referring to first law of geography: everything is related to everything else, but near 
things are more related to each other (Tobler 1970). Herewith we provide a brief intuitive 
introduction to the SOM; readers are encouraged to refer to more complete descriptions in 
literature (e.g. Kohonen 2001).  

2.1 Basic principle 

The SOM training algorithm involves essentially two processes, namely vector quantization and 
vector projection (Vesanto 1999). Vector quantization is to create a representative set of vectors, 
so called output vectors from the input vectors. In general, vector quantization reduces the 
number of vectors. This can be considered as a classification, or clustering, process. The other 
process, vector projection, aims at projecting output vectors (in d-dimensional space) onto a 
regular tessellation in lower dimensions (i.e., a SOM), where the regular tessellation consists of 
an arbitrary number of neurons. In the vector projection each output vector is projected into a 
neuron where the projection is performed as such, “close” output vectors in d-dimensional space 
will be projected onto neighbouring neurons in the SOM. This will ensure that the initial pattern 
of the input data will be present in the neurons.  

The two tasks are illustrated in figure 1, where usually the number of input vectors is greater 
than that of output vectors, i.e. kn f , and the size of SOM is the same as that of output 
vectors. It should be emphasized that for an intuitive explanation of the algorithm, we separate it 
as two tasks, which are actually combined together in SOM without being sense of one after 
another. 

2.2 The algorithm 

The above two steps, vector quantization and vector projection, constitute the basis of the SOM 
algorithm. Vector quantization is performed as follows. First the output vectors are initialized 
randomly or linearly by some values for its variables. Then in the following training step, one 
sample vector x from the input vectors is randomly chosen and the distance between it and all 



 

the output vectors is calculated. The output vector that is closest to the input vector x is called 
the Best-Matching Unit (BMU), denoted by mc: 
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where ||.||  is the distance measure. Second the BMU or winning neuron and other output 
vectors in its neighbourhood are updated to be closer to x in the input vector space. The update 
rule for the output vector i is: 
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where )(tx is a sample vector randomly taken from input vectors, mi(t) is the output vector for 
any neuron i within the neighbourhood Nc(t), and )(tα  and )(thci  are the learning rate 
function and neighbourhood kernel function respectively. 

Through the training process, all output vectors are projected on to a 1- or 2-dimensional 
space, where each neuron corresponds to an output vector that is the representative of some 
input vectors. A 2-dimensional hexagonal map lattice grid is shown in Figure 2 where each 
hexagonal cell has a uniform neighbourhood.   

 

 
Figure 1: Illustration of SOM principle 

 

 
Figure 2: The characteristics of a 10x10 SOM (t1<t2<t3 with )(thci  in equation 3) 
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3 LINE SIMPLIFICATION USING SOM 

To illustrate how SOM can be used for line simplification, we adopt a line from McMaster 
(1989) that involves 40 vertices (Figure 3). We consider the coordinates of individual vertices 
for training process. Thus the input vectors consist of x y coordinate of individual vertices 
(Table 1), noting that two ending vertices are excluded from the input vectors, as they will be 
kept in any simplification. Assume that we intend to retain 14 vertices, so we decide 14 output 
vectors or neurons, which are initialized randomly and are imposed on the top of input vectors. 
After a training process, s SOL that consists of 14 neurons (Table 2) is created to represent the 
original shape of line. We could remark that four bends are represented with the SOL, i.e. the 
black line in Figure 4.  

For simplification purpose, we further compute the distances between individual vertices and 
their best matching neuron; only those vertices with minimum distances are retained in the end. 
Figure 4 illustrates the simplification procedure. In the figure, blue line is original one with 40 
vertices; red line is simplified line with 14 vertices; black line is the representative line with 14 
neurons that are labelled with numbers; green lines show the distances between individual 
vertices and their best matching neurons. From the figure, one can note that those vertices with 
minimum distances (or maximum similarity) are indeed selected; the same vertices have also 
been highlighted in Table 1. Note that Table 1, Table 2 and the black line in Figure 4 
correspond to input vectors, output vectors and SOM respectively in Figure 1. 

This simple and straightforward example illustrates the basic procedure for line 
simplification. The result of the line simplification is interesting, for example, the simplified 
line does represent the overall shape of the original line, and the 5 bends are retained in the end. 

Figure 3: McMaster line with 40 vertices 

Figure 4: Illustration of line simplification using SOM 
 



 

Table 1: Input vectors (or 40 vertices of original line) 
ID X Y ID X Y ID X Y ID X Y 
1 0.152 -0.798 11 1.909 -1.760 21 3.549 -1.872 31 4.563 -0.067 
2 0.470 -0.474 12 1.898 -1.447 22 3.897 -1.883 32 4.894 -0.179 
3 0.807 -0.474 13 2.027 -1.453 23 4.322 -1.671 33 5.112 -0.391 
4 1.025 -0.680 14 2.033 -1.016 24 4.552 -1.241 34 5.100 -0.816 
5 1.025 -0.898 15 2.228 -0.916 25 4.557 -1.016 35 5.312 -1.040 
6 0.700 -1.223 16 2.694 -0.910 26 4.445 -0.810 36 5.419 -1.347 
7 0.694 -1.535 17 2.900 -0.916 27 4.221 -0.704 37 5.531 -1.364 
8 1.037 -1.659 18 3.130 -1.129 28 4.015 -0.503 38 5.525 -1.565 
9 1.231 -1.872 19 3.343 -1.335 29 4.009 -0.391    
10 1.685 -1.984 20 3.331 -1.441 30 4.233 -0.173    

 
 

Table 2: Output vectors (or 14 neurons of the representative line) 
ID X Y ID X Y 
1 0.701 -0.846 8 3.740 -1.431 
2 0.861 -1.132 9 4.158 -1.127 
3 1.258 -1.468 10 4.307 -0.746 
4 1.754 -1.503 11 4.476 -0.497 
5 2.181 -1.290 12 4.856 -0.527 
6 2.709 -1.184 13 5.206 -0.908 
7 3.240 -1.330 14 5.379 -1.216 

 

4 CASE STUDY AND COMPARISON RESULTS  

In order to further demonstrate the validation of the approach, we carry out a case study applied 
to the coastline of Peristera Island, a coastline characterized by a high degree of complexity. 
The coastline was digitized from a paper map of scale 1:50K with an average step of 15 meters 
(figure 5). The raw data were cleaned up from duplicate vertices, spikes, or switchbacks and 
from redundant co-linear vertices, after a ‘weeding’ process as it has been suggested by Jenks 
(1981) in order to produce the original line. The original line involves totally 2415 vertices. We 
conducted a scale-driven simplification based on six tasks with respect to the following seven 
map scales: 1:100K, 1:250K, 1:500K, 1:1M, 1:2M, and 1:5M. The number of vertices in each 
map scale is decided by “Principles of Selection” (Töpfer and Pillewizer 1966), which is 
expressed as an equation,  
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where nd is the number of objects at a derived map, nf is the number of object in original source 
map, Ms is the scale denominator of the source map, and Md is the scale denominator of the 
derived map, and the exponent x is a variable for different spatial objects, usually for linear 
objects x=2 (Töpfer and Pillewizer 1966, p. 12). Thus by applying the “Principles of Selection” 
the number of retained vertices is linearly depended by the ratio of scale denominators of source 
over derived map. The desired reduction of vertices was achieved by selecting appropriate 
tolerances with trial and error method. In Table 3 the nominal map scales, the reduction 
percentages and the number of retained vertices for the three sets of derived lines for all tasks is 
given. 

 



 

Table 3: Tasks of line simplification 
Task Nominal  Reduction  Number of retained vertices  
 map scale percentage D-P BEND SHAPE 
1 1:100K 50% 1208 1208 1208 
2 1:250K 20% 483 484 483 
3 1:500K 10% 243 247 242 
4 1:1M 5% 122 130 121 
5 1:2M 2.5% 61 62 61 
6 1:5M 1% 24 22 24 

 
 
 

 
 

Figure 5: The original line (Peristera Island coastline digitized from a map of scale 1:50K) 
 



 

We also conducted a comparison of our approach of line simplification (SHAPE) with two 
well-known line simplification algorithms, the D-P algorithm (Douglas and Peucker 1973) and 
bendsimplify (BEND) algorithm (Wang and Müller 1998). As general comment, our approach 
of line simplification when compared visually with the two other algorithms is found that it 
keeps both the overall shape and a certain level of details of the line in a balanced way. 
Assuming that, BEND algorithm is a line simplification algorithm that preserves the shape of 
the line with a cartographically satisfactory way by retaining certain bends of the line (Wang 
and Müller 1998), and that D-P algorithm is a line simplification algorithm that produces a 
result sensitive to high frequencies -see for example the criticism stated by Visvalingam and 
Whyatt (1990)- our approach of line simplification runs in the center line between them.  

 
Figure 6: The simplified lines after applying the three algorithms for all tasks 
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We claim that those who want to simplify lines in a way of both preserving the overall shape 
of the line and a certain degree of details they may find our approach more appropriate. 

5 DISCUSSION AND CONCLUSION 

This paper explored a new approach to line simplification based on shape detection using one-
dimensional SOM or self-organizing line in our term. Our study has shown that it is an effective 
approach to line simplification based on a comparison with two other algorithms. First the 
approach considers both global and local context in the training process, thus the outcome is 
comparable to that of D-P algorithm. What appears to be advantage for the approach is that it is 
flexible to decide radius changes from global to local. Second the approach can carry out scale-
driven simplification, i.e. the level of simplification is not specified by a tolerance but by the 
number of retained vertices. Despite these advantages, it is not without problems for the 
approach. It is still considered to be a filtering approach rather than cartographic approach to 
line simplification, in particular when compared to BEND algorithm. For instance, for the task 5 
with the case study, the “neck” part of the island is less than threshold that human beings can 
perceive.  
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