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ABSTRACT 

In this paper the cartographic generalization procedure is reviewed from the viewpoint of the 
current achievements of information technology. Consequently, the basic concepts of fractal 
geometry theory are introduced and ways to be applied to cartographic problems are 
described. As a result empirical rules, utilized for a long period of time by cartographers, can 
be theoretically proved in the context of fractal geometry. Furthermore, techniques of line 
simplification can be applied by using fractal properties. Some examples of such applications 
are shown and discussed. As a conclusion the concept of including the fractal dimension of 
graphical objects as a parameter of object complexity when designing multi-scale spatial 
databases is introduced.   
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INTRODUCTION 

There are different ways to represent real world, like: satellite images, aerial photographs or 
maps. Although these representation media are sharing common characteristics, for 
example the length of any real world entity is reduced according to a specific ratio (the 
scale), maps are distinguished by two fundamental factors. Maps represent real world with 
graphical objects – the symbols - according to a well established graphical code (Bertin, 
1981), which is based on perceptual and cognitive aspects. Furthermore, maps represent a 
simplified part of real world according to the map generalization procedure. 

Every symbol occupies on the map surface larger space than the physical dimensions of the 
represented entity, although it is reduced by the scale ratio. This main cartographic problem 
is caused by the need that each symbol should be clearly perceived visually by the map 
user. But the space of the map is limited and unfortunately the cartographer can not include 
into the map all natural objects of the real world. The procedure of deciding which piece of 
information should be included into the map, and how it can be simplified in order to be 
symbolized and visualized by the map user, is called generalization. According to the 
International Cartographic Association a formal definition of generalization is the following: 
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“Selection and simplified representation of detail appropriate to the scale and/or the 
purpose of the map”, (I.C.A., 1973). 

In the context of digital cartographic systems and Geographic Information Systems (GIS) 
generalization gained an even wider meaning. This meaning is very well described in the 
following definition of digital generalization, proposed by McMaster and Shea (1992): 

“Digital generalization can be defined as the process of deriving, from a data source, 
a symbolically or digitally-encoded cartographic data set through the application of 
spatial and attribute transformations. Objectives of this derivation are: to reduce in 
scope the amount, type, and cartographic portrayal of the mapped or encoded data 
consistent with the chosen map purpose and intended audience; and to maintain 
clarity of presentation at the target scale”. 

Cartographers in the digital era conceive generalization as a two fold cartographic operation 
transforming digital objects, which represent real world entities. The first one, the “bright 
side” of generalization, focuses on visualization issues and is called cartographic/graphic 
generalization. The second one, the “dark side” of generalization, refers to the design and 
development of multi-scale data models and is called model/non-graphic generalization. In 
addition, researchers in the field of cartography have focused on creating sets of rules 
incorporating the cartographers’ knowledge of the generalization domain.  

The main aim of this paper is to promote the idea that all these open cartographic problems 
of generalization may find an interesting environment in the context of fractal geometry 
theory.  

 

BASIC CONCEPTS OF FRACTAL GEOMETRY 

Mandelbrot (1982) studied sets of mathematical functions of both geometric and stochastic 
character and called them fractal sets. He showed, using computer graphic representations, 
that random fractal sets may be used in order to simulate natural objects like topographic 
surfaces, coastlines etc. (Mandelbrot, 1975). The main characteristic of both non-random 
and random fractal functions is that, although continuous, they are not differentiable at any 
point, at least for a certain range of scale changes (Mandelbrot, 1982). 

The fractal sets are characterized by their fractal dimension D (Mandelbrot, 1982), whose 
value lies between the topological DT and Euclidean DE dimension (DT<D<DE). The fractal 
dimension of graphical objects may describe their complexity or, equivalently, the degree at 
which their projection fills the Euclidean space RE. 

An important property of fractal objects is their invariance to similarity transformation. These 
fractal objects are called self-similar. A bounded set of points S is self-similar with respect to 
a scaling ratio r if S is the union of N non-overlapping subsets S1, S2,…,SN, each of which is 
identical after possible translations and/or rotations to the set r(S) obtained from S by the 
similarity transform defined by 0<r<1 (Feder, 1988). The fractal dimension of self-similar 
graphical objects is given by: 

.
1ln

ln

r

ND =  

Still, for several fractal objects self-similarity does not apply. However, these graphical 
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objects are invariant to a more general form of transformation, the affine transformation, and 
they are called self-affine fractals. A bounded set of points S is self-affine with respect to a 
ratio vector r = (r1,r2,…,rE) if S is the union of N non-overlapping subsets S1, S2,…,SN, each 
of which is identical after possible translations and/or rotations to the set r(S) obtained from 
S by the affine transform defined by r (Feder, 1988). The fractal dimension of self-affine 
fractal graphical objects is not uniquely defined (Mandelbrot, 1985; Feder, 1988). Its global 
value D=DT, which means that self-affine fractal objects are not globally fractal. But a local 
fractal dimension can be computed according to a standard procedure. Clearly, self-affinity 
can be conceptualized as a generalization of the self-similarity property. 

Purely self-similar fractal curves can be created from 
geometric generators as shown in figure 1. The unit length 
in (a) is divided by the similarity ratio r(N)=1/4. The fractal 
curve in (b) comprises N=8 parts, while in (c) the 
procedure is repeated with r(N)=1/16 and N=64 parts and 
so on (see figure 1d). The fractal dimension of such a 
curve can be easily computed and is D=1.5. The exactly 
self-similar Von Koch curve, illustrated in figure1, is only a 
“crude” model of a naturally occurring graphical object, for 
example a coastline, and it differs in one significant aspect. 
Upon magnification, segments of a natural coastline look 
like – but are never exactly like – segments at different 
scales. The concept of fractal dimension, however, can 
also be applied to such statistically self-similar objects as 
the coastlines. Thus, a set S is statistically self-similar 
when S is the union of N distinct subsets each of which is 
scaled down by r from the original and is identical in all 
statistical respects to r(S)  (Feder, 1988). 

All computational methods of fractal dimension of graphical objects involve the estimation of 
parameters of various statistical functions and data sampled over lines or analytical 
surfaces. In every method, the final step is the least-squares estimation of the slope of a 
linear function fitted to the data plotted on a double logarithmic diagram (Mandelbrot, 1982). 
The verification of the fractal character of a line (or a surface) and the reliability and the 
statistical significance of these parameters should be statistically tested, using a high 
confidence level (Nakos, 1990).  

Depending on whether one deals with self-similar fractal graphical objects, like coastlines 
presented on maps or self-affine ones, like digital representations of terrain’s surface (e.g. 
DTM - Digital Terrain Model), their fractal dimension may be estimated by four methods 
(Nakos, 1990). These estimation methods are either pure geometrical (self-similar) or 
statistical (self-affine). 

The first method of estimating the fractal dimension of self-similar graphical objects is based 
on the experimental research curried out by Richardson (1961). He studied the length of 
various curves (coastlines, frontiers etc.) derived from maps with different scales, by 
measuring their length using equal sized steps. Figure 2 presents the results of his study 
plotted on a double logarithmic diagram. As it can be seen in figure 2, all cases fall on a 
straight line with negative slope. Note the exception of the circle, which actually is not a 
fractal object and thus its slope is equal to zero (pure Euclidean shape).  For Richardson the 
slope of each straight line had no theoretical interpretation. But according to Mandelbrot 

(a) 

(b) 

(c) 

(d) 

Figure 1: The Von Koch 
fractal curve. 
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(1982) the slope is an estimate of 1-D, where D is the fractal dimension. Thus: 

,)( 1 DεεL −≈  

where: L is the length of the graphical object and: ε the equal sized step used to measure 
the length. 
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It is interesting to point out that the west coast of Britain has the largest slope among the 
lines illustrated in figure 2, being simultaneously the line with the highest degree of 
complexity.  

The second method of estimating the fractal dimension of self-similar graphical objects is 
based on the correlation between the perimeter and the area of closed curves. According to 
Mandelbrot (1982) and Voss (1988), the fractal dimension D can be estimated by: 

,
2
DPA ≈  

where: A is the area of closed curves and: P their perimeter. 

Following the above method, Nakos (1996) measured the fractal dimension of the Greek 
islands’ coastlines in an attempt to quantify their degree of complexity. He found as fractal 
dimension significantly high values (1.19-1.23), which verify their high degree of complexity, 
compared with the value of 1.25 which was measured by Mandelbrot (1967) for the case of 
west coast of Britain, a rather complex coastline. 

The third method of the fractal dimension estimation deals with self-affine fractal objects and 
is based on the normalized variance function Vz. According to Mandelbrot (1982) and Voss 
(1988) the fractal dimension D is given by: 

D

z

z d
dV 24
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)( −≈  where: ( ){ }2)( jiz zzEdV −= , 

Figure 2: Length vs. step size (Richardson, 1961) 
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with: σz
2 the variance of each sample, where the sample size depends on the choice of the 

correlation distance d between points: i and j. 

The last method cited here deals with self-affine fractal objects and is based on spectral 
analysis. The fractal dimension is estimated through the relation of the power spectrum G(λ) 
versus the wavelength λ, (Mandelbrot, 1982; Voss, 1988) : 

.λ)λ( 25 DG −≈  

There are certain aspects that should be considered when the fractal dimension is used as a 
geometric parameter in order to quantify the “roughness” or “complexity” of natural occurring 
graphical objects. Although in Mandelbrot’s work the notion of a constant D, or self-similarity, 
in the natural landscape occurs repeatedly, there are researchers that reject the concept of 
self-similarity over all possible scales (Goodchild, 1980; Mark and Aronson, 1984). But self-
similarity is only one aspect of the fractal approach and most of the empirical studies show 
that self-similarity occurs for considerable wide scale ranges. This outcome allows technical 
applications in the field of cartography to be developed in the context of fractal geometry, i.e. 
line simplification (cartographic generalization). In addition, Goodchild (1987) is emphasizing 
that the fractal dimension provides a means of characterizing the effects of cartographic 
generalization and the recursive subdivision technique provides efficient ways of 
representing and organizing spatial data in digital form (model generalization). 

 

LINE SIMPLIFICATION 

Traditionally, the simplification procedure of cartographic generalization is supported by an 
empirical law, called “Principles of Selection”, and introduced by Töpfer and Pillewizer 
(1996). For the case of linear cartographic objects (for example coastlines), which are 
represented by the same width line symbols at all scales, the “Principles of Selection” can 
be expressed as follows (Jones and Abraham, 1987): 

,
s

d
sd m

m
nn =  

where: nd and ns are the numbers of line segments at the derived and source scales, and: 
md and ms the derived and source scales, respectively. 

Actually, by applying “Principles of Selection” the cartographer can estimate the number of 
the retained vertices of the simplified cartographic line. The empirical law of Töpfer and 
Pillewizer answers to the query: how many objects should be retained on the derived map, 
and does not provide any information about the query: which objects should be retained 
(McMaster, 1989). In addition, “Principles of Selection” are based only on the scales ratio (of 
the source and derived map) and do not take into account the line complexity, which means 
that two linear objects with different degree of line complexity are treated exactly in the same 
way (Nakos, 1990). The first disadvantage of “Principles of Selection” may be overcome by 
applying existing line simplification algorithms, based on geometric criteria, which preserve 
the shapes of linear objects, like the Douglas and Peucker (1973) or Visvalingam and Wyatt 
(1993) algorithms. A functional description of the above mentioned algorithms can be found 
in Weibel (1997). The second disadvantage may be overcome by introducing fractal 
geometry and more specifically the property of self-similarity into line simplification 
procedure. Nakos (1990) proved that for self-similar linear cartographic objects, “Principles 
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of Selection” can be expressed as follows: 
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where: D is the fractal dimension of the linear cartographic object. 

Nakos (1990) proposed a methodology for applying fractal geometry in line simplification 
procedure with three statistical tests, which are based on the introduced methods of 
estimating the fractal dimension. All methods result in a linear model when data are plotted 
on a double logarithmic diagram. The first one verifies the fractal character of the specific 
cartographic linear object by checking the value of the correlation coefficient ρ with the null 
hypothesis: H0(ρ≠1) at 99% confidence level. With the second test the slope of the 
correlation line b is checked against the equivalent value for a Euclidean shape bE by 
rejecting the null hypothesis: H0(b=bE) at 95% confidence level. The last statistical test deals 
with the significance value of the estimated fractal dimension D of the cartographic object by 
rejecting the null hypothesis: H0(D=1) at 99% confidence level. Consequently, one can 
simplify the linear cartographic object by applying a line simplification algorithm by 
preserving the number of vertices, which have been calculated with the help of the 
estimated fractal dimension D. 

Table1: Number of vertices of Ithaki Island coastline. 

Scale Fractal Manual “Principles of Selection” 

(1:100.000)  (2935)  

1:250.000 1081 1227 1174 

1:500.000 508 609 587 

1:1.000.000 238 340 294 

 

Following the above procedure an example is given here for simplifying the coastline of the 
island of Ithaki. The example uses a 1:100.000 scale source map and the simplification is 
examined over derived scales of 1:250.000, 1:500.000 and 1:1.000.000. By correlating the 
length of the coastline against the size of the step, the correlation coefficient is ρ=-0.9765 
and the slope of the correlation line has a value of b=-0.090±0.005. The samples passed all 
statistical tests, which means that the coastline is self-similar at all scales with fractal 
dimension D=1.090. Table 1 gives the number of vertices of the coastline under study over 
all scales for the introduced method, manual simplification and “Principles of Selection”. In 
figure 3 the three ways of simplifying the coastline from scale 1:100.000 to 1:250.000 are 
illustrated. 

Comparing the three coastlines in figure 3, one can see that although the coastline (a), with 
fractal simplification, has less number of vertices (table 1) than the coastline (c), simplified 
with “Principles of Selection”; also, it preserves the shape of the manually simplified 
coastline (b). Furthermore, one can evaluate the result of simplification by determining 
various cartometric measures (Nakos, 1999). By comparing the coastline simplified with the 
fractal method (a) and “Principles of Selection” (c) using as reference line the manually 
simplified line (b), the outcome was that line (a) produces less mean area displacement 
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(Nakos, 1999) than line (c). 

 

CONCLUSIONS 

The coastlines have been chosen as subjects of study, since they are considered as having 
a rather high degree of complexity. However, the research must be extended to include 
various complex cartographic lines in order to reach a wider acceptance. Additionally, this 
aim could be supplemented by studying various kinds of linear cartographic features (i.e. 
roads, rivers, boundaries etc.) as well. 
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