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Abstract

The characterization of mortar properties can be accomplished by the use of thermal analysis.
DTA can be used to identify various component materials and observe the reactions associated
with controlled heating of the mortar. This method reveals thermal transformations, which
include dehydration, dehydroxylation, oxidation and decomposition. In addition, crystalline
transitions can be observed, which are exothermic or endothermic in nature. With TGA,
thermogravimetric analysis, the mass of the sample is monitored (weight loss) as a function of
temperature. Weight losses at reaction temperatures near 750°C, indicate loss of CO, not from
pure CaCOQj, but from recarbonated lime.

The dehydroxylated clays acted as a “pozzolan” which imparts early strength to the mortar.
However, a more complex phenomenon occurs in crushed brick mortar, since compounds of
hydraulic type occur at the brick matrix interface also. The DTA and TG-DTG analyses identify
the dehydration of calcium alumino-silicate phases, giving clear evidence of a cementitious
mortar rather than one of pure lime.

In the present work a spectrum of thermal and XRD analysis results from ancient, Byzantine,
post-Byzantine and later historic mortars from Greece is presented and the relevant information
concerning the characterization of traditional mortars is validated

Generally, the CO, bound to carbonates and the water bound to hydraulic components (in
weightloss%) discern two groups of mortars, the typical lime and the hydraulic, respectively. The
specific classification of mortars into groups with characteristic transformations indicated by
weight loss against temperature, enables discernment of: typical lime, cementitious, with crushed

* Corresponding author.
* Presented at the 6th European Symposium on Thermal Analysis and Calorimetry, Grado, Italy, 11-16
September 1994.

0040-6031/95/809.50 © 1995 — Elsevier Science B.V. All rights reserved
SSD10040-6031(95)02571-5



780 A. Moropoulou et al./ Thermochimica Acta 269/270 (1995 ) 779-795

brick, with portlandite, with gypsum, with modern cement or of hot lime technology, mortars.
Mineralogical, microstructural, mechanical and technological data could provide further evalu-
ation criteria.

Keywords: Cementitious mortars; Crushed brick mortars; Gypsum mortars; Historic mortars;
Hydraulicity; Modern cement mortars; Portlandite mortars; TG-DTG evaluation; Thermal
transformation; Typical lime mortars

1. Introduction

References cited in literature indicate that DTA, along with TG, X-ray diffraction
techniques, electron microscopy and high-temperature microscopy; is indispensable to
all aspects of the production and application of cementitious materials [1]. More
specifically, this kind of analysis could be useful for the identification of mortars and for
determination of the degree of hydration and carbonation of limes in mortars.
Furthermore, the recarbonation properties of limestone can be systematically and
dependably studied using controlled atmosphere techniques. Hence, in the case of
historic mortars, thermal analysis could serve as a tool in their characterization, in the
process of evaluation of their state and in reverse engineering research for the
production of mortars used for restoration. In particular, historic mortars are complex
systems, in which the binding to inert material is not easily identifiable, and where
a limited amount of sample does not always permit physical separation into fragments
[2].

DTA could be used to identify various component materials of a non-fractioned
mortar and to observe the reactions associated with controlled heating of the mortar.
This method reveals thermal transformation, exothermic or endothermic in nature,
including dehydration, dehydroxylation, oxidation and decomposition. In combina-
tion with TGA, the weight loss of the sample monitored as a function of temperature,
the classification of mortars should be further investigated.

With regard to clay minerals, the endothermic peak around 100°C is due to
hygroscopic water (i.e. physically adsorbed water), whereas those appearing at about
200-250°C are attributed to “bound water” or to “hydrated interlayer cations”.
Gypsum, if present, also shows endothermic effects within the range of 120-200°C;
because of the characteristic nature of the gypsum peaks, Wiedmann [ 3] considers that
dehydration studies can be employed for quantitative and qualitative determination of
impurities in raw materials used in the gypsum industry. Related to this is the work of
Holdridge [4], which used DTA to characterize gypsum plasters. Water bound to
aluminosilicates is detected by the endothermic peaks of dehydration between 200 and
650°C.

Ca(OH), dehydration is detected between 400 and 520°C. Calcite and aragonite can
be conveniently differentiated by virtue of the non-reversible phase change that occurs
at about 470°C for aragonite [1].

The most common clay minerals (kaolinite, illite, smectite) are recognizable by their
relatively strong endothermic effects within the range 500-650°C, followed by dehyd-
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roxylation. DTA and TG analyses identify the dehydration of calcium aluminosilicate
phases, giving clear evidence of a cementitious mortar rather than one of a pure lime.
The a — § phase transition of quartz is detected at about 580°C. Also organic matter
used as an additive to promote carbonation and to improve workability, setting time
and durability of the mortars) can produce exothermic effects within the range
300-500°C [2].

Carbonates show distinctive endothermic peaks: at around 840°C (calcite) and
doublets at around 780°C and at 860°C (dolomite), whose position may vary depending
on grain size, atmosphere and other concomitant factors. They are due to the escape of
CO, during the breakdown of their structure. DTA is also capable of differentiating
high-calcium limestones, dolomites and intermediate materials such as dolomitized
limestones [1].

In lime used in building it is important that the magnesia should be hydrated, since in
its unhydrated form it is the component most likely to lead to unsoundness. In addition,
magnesia hydrated in lime contributes substantially to desirable plasticity. However,
its dehydration could be identified at 250-280°C (hydromagnesite), 350-420°C (mag-
nesia hydrate), while magnesium carbonates decompose in the range 450-520°C and
calcium carbonate, associated with it, in the range 700-900°C [2].

Weight losses at reaction temperatures near 750°C, indicate the loss of CO, not from
pure CaCQO,, but from recarbonated lime which includes some cementitious material,
in the case that the original limestone contained suitable clay minerals, the hydration of
which might have contributed to the CAH (calcium aluminate hydrate) or CSH
(calcium silicate hydrate) phases. Studies of the medieval mortars from the Gothic
cathedrals of France gives evidence of early decomposition of CaCO; to CO, between
663-713°C, revealing that illite, present in the Paris basin, became dehydroxylated
during the lime burning process [5]. These dehydroxylated clays acted as a “pozzolan”
imparting early strength to the mortar. However, a more complex phenomenon occurs
in the crushed brick mortar, since compounds of hydraulic type take place at the brick
matrix interface as well [6].

Some authors, aiming to classify several mortar types according to DTA-TG results,
suggest the supplementary use of XRD and mineralogical results and they proceed to
the analyses without performing any physical separation [2].

In the present work, DTA and TG-DTG have been used for analysis of historic
mortars, including a wide range of ancient, Byzantine, post-Byzantine and later
mortars sampled from the fortifications, monasteries and churches of Rhodes, Crete,
Corfu, Mount Athos and Constantinople (Table 1). A mortar sample from Versaille
Palace is used as a characteristic example of gypsum mortars. The classification of the
obtained data is validated by the data of the XRD, mineralogical, chemical, mechanical
and microstructural analysis performed accordingly.

2. Experimental procedure

The thermal analyses were performed with a Mettler TG 50, thermobalance, thermal
analyzer system. The equipment monitors the weight loss of the mass of a 2050 mg
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sample, when submitted to controlled heating from ambient temperature up to 1000°C
(30-1000°Cmin ') in a static air atmosphere with a temperature gradient of
10°Cmin "', Simultaneously, the values of the derivative of the weight loss in relation
to the time of heating are registered (DTG) where the main transformations (weight
losses) occur. The value of the temperature depends on the nature of the transformation
and the quantity of the substance submitted to the transformation, the heating rate and
possible interferences from other substances also present.

In parallel to the thermogravimetric analysis, in the above-mentioned temperature
range, differential thermal analysis (DTA) was performed with a Perkin—Elmer ther-
moanalyzer TG S-2 and DTA 1700. The most accurate operating condition for
obtaining quantitative results is usually with a heating rate of 10°C min " !. In order to
save time, however, at least at the preliminary stage of the DTA analyses, a rate of
20°Cmin~ ! is used, in static air atmosphere with a-alumina as reference material. The
DTA curves [7], not published here, provide information about the endothermic or
exothermic character of the temperature peaks. Hence the direct use of the DTG
results, as quantitative analyses permitted in the present work were obtained properly
at lower rates (10°C min %)

X-Ray diffraction analysis of finely pulverised samples enables the identification of
the crystalline substances present when their concentration is not very low, usually
under 5%. In general, the amorphous components (like the soluble silicates formed
during curing of the hydraulic binding material, or the volcanic ashes of the “poz-
zolan”), usually very important of the hydraulic mortars, are not identifiable or could
even create problems in the identification of the existing crystalline substances. That is
why the XRD results alone cannot be used to determine mortars, but act as supple-
mentary data. The analyses were performed with a Siemens D-500, X-ray diffrac-
tometer (with a graphite crystal monochromator and a Cu anticathode) based on an
automatic adjustment and analysis system, with Diffract-EVA quality analysis sof-
tware. Typical measurement conditions to facilitate direct comparison of various
spectra, provide a diffraction interval between 26-5 and 26—60, with a step of 0.02.

3. Results and discussion

The TG-DTG and XRD analysis results from 47 samples, selected from the 200
samples analysed, are shown in the Table 2 and Fig. 1-7. Table 2 presents the % weight
loss estimated from the TG-DTG curves within the temperature ranges selected to give
important information. Moreover Table 2 reports the hydraulic water %, calculated in
the temperature range 200-600°C, the ratio CO,/H, 0 bound to hydrauliccomponents
and the temperature of CO, decomposition.

3.1. Specific classification
Characteristic TG-DTG curves are presented in groups, as for the typical lime

(Fig. 1), crushed brick (Fig. 2), of hot lime technology (Fig. 3), cementitious (Fig. 4),
with portlandite (Fig. 1a), modern cement (Fig. 4a) and gypsum mortars (Fig. 5).
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3.1.1. Typical lime mortars (Fig. 1)

The TG demonstrates the absence of any important weight loss before the calcite
decomposition ranging between 820-840°C and releasing over 30% CO, (equivalent
to over 68% CaCO;). The mortars do not present any hygroscopic behaviour, since
they contain adsorbed water more or lessaround 1% during heating up to 120°C (mean
temperature of weight loss ~ 60°C). The XRD results show mortars consisting mainly
of calcite (~ 80%) and quartz. The binding material is finely crystallized calcite, totally
carbonated. The aggregates are mainly calcitic consisting of microfossils, fossil frag-
ments and coarse clastic quartz grains [8]. A large group of Rhodes mortars are typical
lime sand mortars of binding-to-inert ratio 1/2. In that case, two main peaks are
observed, the one portlandite (460°C) and that of calcite transferred to 765-780°C. The
extremely high levels of water bound to hydraulic components > 14%, is characteristic.
In the cases of mortars with (crystalline) portlandite present, where carbonation is
inhibited (Fig. 1a), structures of a higher density and strength result (Rhodes 33) [8].

3.1.2. Crushed brick—lime mortars (Fig. 2)

Among the great variety of traditional mortars, crushed brick mortars are of specific
interest due to their elevated bearing capacity. The resemblance of the several
homologous mortars coming from buildings from the Byzantine, Venetian and Otto-
man periods in Rhodes [9], Crete [ 10] and Hagia Sophia [117] could be a useful tool for
revealing traditional production technology. The so called “pozzolanic” character of
crushed brick mortar is attributed to the adhesion reactions of physico-chemical
character occurring at the ceramic—matrix interface [9, 12]; their nature depends both
on the type of ceramic and the calcium hydrate content of the mortar. The observed
reactions could probably be attributed to calcium silicate formations at the interface
along the brick fragment, acting as the silicate source and membrane and the lime,
which makes the interfacial surface alkaline and causes the chemical reaction [6,9].
The penetration of lime into the ceramic and the consequent reaction transforms the
microstructure of the ceramic by transforming the pore radii into smaller pores,
decreasing the total porosity and augmenting the apparent density. The reduction of
the pore radii confirms the cementitious character of the mortar matrix [10], imparting
high strength to the mortar [13].

From the XRD results, it is evident that the binding material of the samples is
exclusively calcitic, showing slight differences as far as different aggregate fragments
(quartz and plagioclase of various types) are concerned. The presence of calcium silicate
hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminum chloride hydrate
(CACH), tobermorite (Tb), illite (Il) and montmorillonite in significant content in the
matrix confirms the cementitious character of the latter. These results indicate either
interface reactions, or the origin of the lime from argillaceous limestones.

Microscopic observations give ample evidence of products of boundary reactions.
Reaction rims at the ceramic—matrix interface are dispersed in the form of veins along
the matrix, as if they fill the vacancies and discontinuities of its structure. Fine to
medium grained aggregates, mainly quartz and plagioclase, varying in % by surface,
are embedded in the calcitic matrix [9].
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Fig. 1. Typical lime mortar and mortar with portlandite (a).
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Fig. 2. Crushed brick and lime mortar.

The DTG demonstrates a series of peaks indicating: weight loss (~ 1-2%) of
adsorbed water at about 80°C; weight loss (over 3.5%) of water bound to the several
calcium aluminum silicate hydrates (CSH, CAH, Tb, CACH) of about 200-260°C,
480-520-580°C, the later when argillaceous compounds like montmorillonite or illite
are traced; and weight loss (ranging from 6-33%) of CO, during the calcite decomposi-
tion occuring between 760-820°C.

Crushed brick-lime mortars of several technologies span binding-to-inert material
ratios between 1/4, 1/3 and 1/2.5.

3.1.3. Hot lime technology mortars (Fig. 3)

From our previous results, Mount Athos mortars could be classified above the usual
tensile strength levels presented by hydraulic lime mortars, attaining even higher values
than those presented by crushed brick-lime mortars [14]. According to the X-ray
diffraction results, the mortars consist mainly of calcite with embedded quartz clastic
grains, feldspars and phyllosilicate minerals. Typically the same magnesium-argillosili-
cate minerals are found in the binder as well.

Clear evidence of a cementitious matrix is given by scanning electron micrographs
showing the typical hydraulic components. The cementitious character of the Mount
Athos mortars could be attributed to hot lime technology. Finely ground magnesium
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Fig. 3. Hot lime technology.

aluminosilicate dust of the montmorillonitic clays in the area, could have been mixed
and reacted with the in situ slaked lime in the process of the so called “pozzolanic”
reactions.

The results of thermogravimetric analysis show, after < 1% absorbed water between
50 and 120°C, a 3-6% weight loss in the temperature range between 200 and 600°C, for
all the samples, attributed to water bound to aluminum silicate hydrate or CSH
minerals (peaks 200-600°C). In the case of the sample 9, intense endothermic effects
(DTA) [14] around 400°C, indicate the dehydroxylation of clays, most probably
reacting to hydrated products with the “in situ” slaked lime. Carbonates show
distinctive endothermic peaks between 785 and 815°C, most probably due to the
decomposition of the cementitious matrix of “pozzolanic” character rich in mag-
nesium.

A mixture of 1/2.5-1/3 lime aggregates has been estimated with 1/5 active clay
admixtrues/inert aggregates.

3.1.4. Cementitious mortars ( Fig. 4)

“Opus Caementicium” or the so-called cementitious mortars are described by
Vitruvius [15] as an artificial conglomerate of gravel with sand and lime cement. The
view that the basic silicates are formed by burning and then hydrolyzed by water
yielding lime and hydrated silicates, was propounded by A. Winkler and has since been
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Fig. 4. Cementitious mortar. Modern cement mortar (a) and raw material (b).
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Fig. 4. (continued).

fully established [16]. Raw clays consist essentially of a group of hydrated aluminum
silicates, though alumina may be replaced to varying extents by ferric oxide, and to
a lesser extent by bases such as MgO, Na,O and CaO (TG of raw material, Fig. 4b). In
the case under study, a wide range of mortars from Rhodes (Hellenistic cement) [7],
from Corfu (Venetian and English period) [178] and from Byzantine and post-
Byzantine monasteries of Crete [17], present these features.

XRD results show the presence of CSH, CASH, CACH, chlorite (Chl), Tb, Prt and I.
The TG curves show a weight loss due to: adsorbed water (1-4%) at about 80°C; water
bound (3-16%) to aluminum silicate hydrates, presenting peaks at 280, 450 and
480°C—especially when CSH is detected—and at 550 and 580°C—when CASH or
CACH is detected. These are characteristic peaks of the so called “pozzonalic”
reactions. CaCO, decomposition occurs at about 740-820°C. The weight loss of CO,
varies mainly between 10 and 20% indicating lime aggregate ratios at around 1:3.

In distinction, the modern cement plaster from Hagia Sophia (Fig. 4a) shows the
characteristic peaks of transformation concerning gypsum and adsorbed water
(< 120°C), CASH (520-600°C) and CaCO, at 760°C.

3.1.5. Mortars with gypsum (Fig. 5)

For the sake of classification the Versailles Palace mortar sample was analysed to
show the characteristic peak of gypsum dehydration at 130-160°C, followed by the
peak of CaCO; decomposition at 730°C.
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Fig. 5. Gypsum mortar.

3.2. General trends

Fig. 6 presents the ratio of CO,/H,0O (hydraulic water) which inversely expresses the
hydraulic character of the mortar in relation to the CO, (weight loss %). The inverse
trend of hydraulicity of the mortar samples is shown to augment exponentially with
CO,. The cementitious mortars are concentrated at the bottom, the crushed brick and
hot lime mortars in the middle of the curve and the typical lime mortars at the upper
right in ratios of > 10% and CO, > 32%.

Fig. 7 presents weight loss % the water bound to hydraulic componentsin relation to
CO, %, two areas of mortars are discerned:

1) The typical lime mortars above the 1:2 lime/aggregate ratio, showing however,
less than 3% water bound to “hydaulic” components (weight loss between 200
and 600°C).

2) The so called “pozzolanic” mortars, including all the categories of crushed brick,
cementitious, hot lime, portlandite mortars or modern cement.

In the “pozzolanic” area two subgroups could be distinguished: one with over 10%
hydraulic water content, where the more condensed and higher strength mortars are
identified, and the other subgroup with less than 5% hydraulic water content.
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4. Conclusions

Generally the water bound to hydraulic components in combination with the CO,
(in weight loss %) discerns two groups of mortars: the typical lime and the hydraulic
type. The specific classification of mortars in groups of characteristic transformations,
indicated by weight loss against temperature, enables discrimination between typical
lime, cementitious, with crushed brick, with portlandite, with gypsum, with modern
cement or of hot lime technology, mortars.

Mineralogical, microstructural, mechanical and technological data could provide
further evaluation criteria.
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