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Abstract

A novel approach to the prediction of the glass transition temperature (Tg) for high molecular polymers is presented. A new quantitative

structure–property relationship (QSPR) model is obtained using Radial Basis Function (RBF) neural networks and a set of four-parameter

descriptors,
P

MVðterÞðRterÞ, LF, DXSB and
P

PEI. The produced QSPR model (R2Z0.9269) proved to be considerably more accurate

compared to a multiple linear regression model (R2Z0.8227).

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Determination of the physical properties of organic

compounds based on their structure is a major research

subject in computational chemistry. Quantitative struc-

ture–property relationship (QSPR) correlations have been

widely applied for the prediction of such properties over

the last decades [1–3]. A breakthrough has occurred in

this field with the appearance of artificial neural networks

(ANNs).

The glass transition is the most important transition and

relaxation that occurs in amorphous polymers. It has a

significant effect on the properties and processing charac-

teristics of this type of polymers [4]. The glass transition

(Tg) is difficult to be determined because the transition

happens over a comparatively wide temperature range and

depends on the method, the duration and the pressure of the

measuring device [5,6]. Besides these difficulties, the

experiments are costly and time consuming.

In the past, numerous attempts have been made to predict

Tg for polymers by different approaches. According to
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Katrinzky et al. [7] there are two kinds of approaches,

the empirical and the theoretical. Empirical methods

correlate the target property with other physical or chemical

properties of the polymers, for example, group additive

properties (GAP) [8]. The most widely referenced model of

the theoretical estimations produced by Bicerano [6]

combines a weighted sum of structural parameters along

with the solubility parameter of each polymer. In his work, a

regression model was produced for 320 polymers but no

external data set compounds were used to validate this

model.

Cameilio et al. [9] calculated the parameters of 50

acrylates and methylacrylates with molecular mechanics

and correlated them with Tg. Katrizky et al. [10] introduced

a model for 22 medium molecular weight polymers using

four parameters. Following this work, Katrinzky et al. [7]

and Cao and Lin [11] obtained two separate models for 88

un-cross-linked homopolymers including polyethylenes,

polyacrylates, polymethylacrylates, polystyrenes, poly-

ethers, and polyoxides. The models were used as predictors

of the molar glass transition temperatures [7] (Tg/M) and

glass transition temperatures [11]. Joyce et al. [12] used

neural networks for the prediction of Tg based on monomer

structure of polymers. Another approach with neural

network was proposed by Sumpter and Noid [13] using
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the repeating unit structure as representative of the polymer.

Finally Jurs and Mattioni [14] obtained a QSPR model

which predicts Tg values for a diverse set of polymers.

An ANN-based modeling method could produce a more

accurate QSPR model compared to linear methods, since it

has the ability to approximate the possible non-linear

relationships between structural information and properties

of compounds during the training process. The resulting

model can generalize the knowledge among homologous

series without need for theoretical formulas [6]. In this work

we explore these neural network capabilities, by introducing

a new QSPR model for the prediction of Tg values that is

based on the RBF architecture. The database consists of

88 un-cross-linked homopolymers and contains the exper-

imental values of Tg and the values of the following

descriptors
P

MVðterÞðRterÞ, LF, DXSB and
P

PEI. All the

data are taken from Cao and Lin [11].
2. Modeling methodology

In this section we present the basic characteristics of the

RBF neural network architecture and the training method

that was used to develop the QSAR neural network models.
2.1. RBF network topology and node characteristics

RBF networks consist of three layers: the input layer, the

hidden layer and the output layer. The input layer collects

the input information and formulates the input vector x. The

hidden layer consists of L hidden nodes, which apply non-

linear transformations to the input vector. The output layer

delivers the neural network responses to the environment. A

typical hidden node l in an RBF network is described by a

vector x̂l, equal in dimension to the input vector and a scalar

width sl. The activity nl(x) of the node is calculated as the

Euclidean norm of the difference between the input vector

and the node center and is given by:

vlðxÞ Z kx K x̂lk (1)

The response of the hidden node is determined by

passing the activity through the radially symmetric

Gaussian function:

flðxÞ ¼ exp K
vlðxÞ

2

s 2
l

� �
(2)

Finally, the output values of the network are computed as

linear combinations of the hidden layer responses:

ŷm Z gmðxÞ Z
XL

lZ1

flðxÞwl;m; m Z 1;.;M (3)

where ½w1;m;w2;m;.;wL;m� is the vector of weights, which

multiply the hidden node responses in order to calculate the

mth output of the network.
2.2. RBF network training methodology

Training methodologies for the RBF network architec-

ture are based on a set of input–output training pairs (x(k);

y(k)) (kZ1,2,.,K). The training procedure used in this

work consists of three distinct phases:
(i)
 Selection of the network structure and calculation of

the hidden node centers using the fuzzy means

clustering algorithm [15]. The algorithm is based on

a fuzzy partition of the input space, which is produced

by defining a number of triangular fuzzy sets on the

domain of each input variable. The centers of these

fuzzy sets produce a multidimensional grid on the input

space. A rigorous selection algorithm chooses the most

appropriate knots of the grid, which are used as hidden

node centers in the produced RBF network model. The

idea behind the selection algorithm is to place the

centers in the multidimensional input space, so that

there is a minimum distance between the center

locations. At the same time the algorithm assures that

for any input example in the training set, there is at

least one selected hidden node that is close enough

according to a distance criterion. It must be empha-

sized that opposed to both the k-means [16] and the

c-means clustering [17] algorithms, the fuzzy means

technique does not need the number of clusters to be

fixed before the execution of the method. Moreover,

due to the fact that it is a one-pass algorithm, it is

extremely fast even if a large database of input–output

examples is available.
(ii)
 Following the determination of the hidden node

centers, the widths of the Gaussian activation

function are calculated using the p-nearest neighbour

heuristic [18]

sl Z
1

p

Xp

iZ1

kx̂l K x̂ik
2

 !1=2

(4)

where x̂1, x̂2,.,x̂p are the p nearest node centers to

the hidden node l. The parameter p is selected, so

that many nodes are activated when an input vector

is presented to the neural network model.
(iii)
 The connection weights are determined using linear

regression between the hidden layer responses and the

corresponding output training set.
3. Results and discussion

The data set of 88 polymers was divided into a training

set of 44 polymers, and a validation set of 40 polymers,

while 4 polymers were rejected as outliers. The selection of

the compounds in the training set was made according to the

structure of the polymers, so that representatives of a wide

range of structures (in terms of the different branching
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and length of the carbon chain) were included. The

polymers in the training set and validation sets along with

the collected from the literature [11] experimental glass

transition temperatures are presented in Tables 1 and 2,

respectively.

Structural parameters for the 84 polymers were calcu-

lated by the equations provided in the literature [11]. Two

sets of descriptors were formulated. The first one (set 1)

includes four parameters
P

MVðterÞðRterÞ, LF, DXSB andP
PEI, while the second one (set 2) incorporates only three

parameters
P

MVðterÞðRterÞ,
P

PEI and DXSB. DXSB is

related to the polarity of the repeating unit, while dipole

of the side group depends on
P

PEI [11]. These two
Table 1

Training set

A/A Name Tg(K),exp

[7]

Tg(K),train (set 1

R2Z0.9968

1 Poly(ethylene) 195 198.5551

2 Poly(butylethylene) 220 218.7587

3 Poly(cyclohexylethylene) 363 366.3575

4 Poly(methyl acrylate) 281 281.7356

5 Poly(sec-butyl acrylate) 253 253.3203

6 Poly(vinyl chloride) 348 347.5609

7 Poly(vinyl acetate) 301 300.9527

8 Poly(2-chrolostyrene) 392 387.1948

9 Poly(4-chrolostyrene) 389 384.5742

10 Poly(3-methylstyrene) 374 373.9529

11 Poly(4-fluorostyrene) 379 388.5550

12 Poly(1-pentene) 220 221.4911

13 Poly(tert-butyl acrylate) 315 313.5255

14 Poly(vinyl hexyl ether) 209 204.7662

15 Poly(1,1-dichloroethylene) 256 256.2872

16 Poly(a-methylstyrene) 409 408.4218

17 Poly(ethyl methylacrylate) 324 325.1226

18 Poly(ethyl chloroacrylate) 366 365.1200

19 Poly(tert-butyl methylacrylate) 380 380.6744

20 Poly(chlorotrifluoroethylene) 373 372.8955

21 Poly(oxyethylene) 206 198.5551

22 Poly(oxytetramethylene) 190 198.5551

23 Poly(vinyl-n-octyl ether) 194 195.1257

24 Poly(oxyoctamethylene) 203 198.5551

25 Poly(vinyl-n-pentyl ether) 207 213.3238

26 Poly(n-octyl acrylate) 208 208.4627

27 Poly(n-heptyl acrylate) 213 210.4768

28 Poly(n-hexyl acrylate) 216 218.3827

29 Poly(vinyl-n-butyl ether) 221 216.9422

30 Poly(vinylisobutyl ether) 251 252.1121

31 Poly(pentafluoroethyl ethylene) 314 314.6488

32 Poly(3,3-dimethylbutyl

methacrylate)

318 317.5529

33 Poly(vinyl trifluoroacetate) 319 319.0651

34 Poly(n-butyl a-chloroacrylate) 330 329.7446

35 Poly(heptafluoropropyl ethylene) 331 330.5015

36 Poly(5-methyl-1-hexene) 259 267.9876

37 Poly(n-hexyl methacrylate) 268 268.3445

38 Poly[p-(n-butyl)styrene] 279 278.0939

39 Poly(2-methoxyethyl methacrylate) 293 292.1270

40 Poly(4-methyl-1-pentene) 302 291.4458

41 Poly(n-propyl methacrylate) 306 304.5211

42 Poly(3-phenyl-1-propene) 333 333.0387

43 Poly(sec-butyl a-chloroacrylate) 347 348.2163

44 Poly(vinyl acetal) 355 354.5809
parameters express the intermolecular forces of the poly-

mers.
P

MVðterÞðRterÞ expresses the no free rotation part of

the side chain and LF (free length) expresses the bond count

of the free rotation part of side chain [11]. The four

descriptors are very attractive because they can be

calculated easily, rapidly and they have clear physical

meanings.

The RBF training method described in Section 2 was

implemented using the Matlab computing language in order

to produce the ANN models. It should be emphasized that

the method has been developed in-house, so no commercial

packages were utilized to build the neural network models.

For comparison purposes, a standard multivariate regression
ANN), Tg(K),train (set 2 ANN),

R2Z0.9699

Tg(K),train (set 1 linear),

R2Z0.9305

Tg(K),train (set 2 linear),

R2Z0.7978

198.5575 206.2141 180.7988

221.2788 235.0911 232.7334

358.4639 344.6778 325.4238

283.8484 275.8405 266.8474

230.8956 253.2285 253.0170

350.5647 342.3186 313.8412

302.0354 301.0322 292.5775

389.7748 365.8097 348.3518

386.5308 365.7563 348.7295

374.5706 364.4905 348.2874

385.5003 362.0613 343.8790

215.7971 244.9158 232.5792

315.9148 320.2125 321.7363

205.8718 207.1528 243.3611

256.2894 247.1680 193.4119

391.5212 401.2537 376.0410

333.8064 316.7212 312.6020

348.3090 369.4096 365.8042

355.6613 392.4762 392.3873

369.6086 370.0549 335.4887

198.5575 206.2141 180.7988

198.5575 206.2141 180.7988

202.8784 185.9801 242.6692

198.5575 206.2141 180.7988

208.3135 217.8674 243.8824

220.8631 187.1082 248.5577

221.5301 198.0531 249.2561

222.6153 209.1625 250.1351

211.9548 228.7795 244.6534

251.0763 289.1591 292.7876

321.3212 333.3871 324.1696

359.6010 365.0133 385.2956

318.1759 304.0800 311.4646

348.2495 350.1299 366.8521

322.4316 322.2799 322.6774

281.9314 285.4562 280.9634

263.7424 266.4187 302.5932

273.3399 250.3024 247.1930

289.0940 278.0316 307.6720

281.6227 295.7158 280.9432

304.7446 302.5679 308.3655

333.3597 319.1753 309.1556

348.9745 360.7427 366.9406

354.8202 356.0620 353.4776



Table 2

Validation set

A/A Name Tg(K),exp [7] Tg(K),pred (set 1 ANN),

R2Z0.9269

Tg(K),pred (set 2 ANN),

R2Z0.9252

Tg(K),pred (set 1 linear),

R2Z0.8227

Tg(K),pred (set 2 linear),

R2Z0.7097

1 Poly(ethylethylene) 228 225.7773 206.1942 254.3056 232.2911

2 Poly(cyclopentylethylene) 348 358.7344 343.5276 333.7406 312.7605

3 Poly(acrylic acid) 379 370.7699 383.7025 329.0515 303.8972

4 Poly(ethyl acrylate) 251 260.9209 246.7095 258.6331 259.2738

5 Poly(acrylonitrile) 378 345.0173 371.8758 313.8227 286.6382

6 Poly(styrene) 373 371.7688 347.9344 346.6853 326.8437

7 Poly(3-chrolostyrene) 363 384.5075 389.0822 368.3181 351.7191

8 Poly(4-methylstyrene) 374 374.1514 372.7100 361.5876 344.9300

9 Poly(propylene) 233 226.4469 187.9298 262.2846 231.5684

10 Poly(ethoxyethylene) 254 225.3849 228.6502 252.0064 247.9495

11 Poly(n-butyl acrylate) 219 245.6944 227.1540 232.2903 252.9285

12 Poly(1,1-difluoroethylene) 233 195.4623 198.3722 216.6780 184.0215

13 Poly(methyl methylacrylate) 378 353.2666 381.0222 334.3601 320.6272

14 Poly(isopropyl methylacrylate) 327 346.2991 335.9038 340.3382 329.0090

15 Poly(2-chloroethyl methyl

acrylate)

365 320.4176 374.1077 308.9656 314.1617

16 Poly(phenyl methylacrylate) 393 384.4661 383.4895 389.6478 387.7161

17 Poly(oxymethylene) 218 198.5551 198.5575 206.2141 180.7988

18 Poly(oxytrimethylene) 195 198.5551 198.5575 206.2141 180.7988

19 Poly(vinyl-n-decyl ether) 197 193.8290 194.0785 154.2539 230.9803

20 Poly(oxyhexamethylene) 204 198.5551 198.5575 206.2141 180.7988

21 Poly(vinyl-2-ethylhexyl ether) 207 203.3388 200.5523 207.2539 243.0972

22 Poly(n-octyl methylacrylate) 253 231.6752 251.2710 244.1416 300.7819

23 Poly(n-nonyl acrylate) 216 205.7941 220.5435 176.3024 248.0084

24 Poly(1-heptene) 220 215.2582 224.7551 225.0757 232.8289

25 Poly(n-propyl acrylate) 229 254.0266 233.0850 244.7675 255.3384

26 Poly(vinyl-sec-butyl ether) 253 212.4641 205.6889 239.7295 244.8458

27 Poly(2,3,3,3-tetrafluoropropylene) 315 302.9461 313.9999 376.8912 360.9749

28 Poly(N-butyl acrylamide) 319 287.7707 290.2156 292.0473 307.4908

29 Poly(3-methyl-1-butene) 323 315.5115 283.7897 306.5165 281.0895

30 Poly(sec-butyl methacrylate) 330 299.0857 283.5890 300.4798 305.8099

31 Poly(3-pentyl acrylate) 257 251.1566 230.2371 241.6161 251.4401

32 Poly(oxy-2,2-dichloromethyl

trimethylene)

265 262.6800 250.3470 239.6464 195.2553

33 Poly(vinyl isopropyl ether) 270 270.4936 252.7574 300.6332 294.0386

34 Poly(n-butyl methacrylate) 293 290.0164 285.9807 289.8661 305.7211

35 Poly(3,3,3-trifluoropropylene) 300 271.9207 316.5163 345.6684 327.9476

36 Poly(vinyl chloroacetate) 304 298.8250 345.7275 265.9810 272.7775

37 Poly(3-cyclopentyl-1-propene) 333 337.5040 338.5281 321.8972 312.2930

38 Poly(n-propyl a-chloroacrylate) 344 351.9808 348.1715 359.9544 366.4854

39 Poly(3-cyclohexyl-1-propene) 348 348.9284 351.6250 332.4757 324.8458

40 Poly(vinyl formal) 378 372.8332 369.3446 377.9002 366.2196

Table 3

Summary of the results produced by the different methods

Parameters Method Training set Validation

set
R2

train R2
pred

Figure Equation

1 Set 1 Neural network 44 40 0.9968 0.9269 1 –

2 Set 2 Neural network 44 40 0.9699 0.9252 2 –

3 Set 1 Linear 44 40 0.9305 0.8227 3 5

4 Set 2 Linear 44 40 0.7978 0.7097 4 6

5 Set 1 Cross-validation, neural

network

84-i i – 0.9269 5 –

6 Set 2 Cross-validation, neural

network

84-i i – 0.8501 – –

7 Set 1 Cross-validation, linear 84-i i – 0.8719 6 –

8 Set 2 Cross-validation, linear 84-i i – 0.7253 – –
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Fig. 2. Experimental vs predicted Tg for 40 polymers (set 2 ANN).
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method for producing linear models was also utilized. Both

neural networks and linear models were trained using the 44

individuals in the training set and were tested on the

independent validation set consisting of 40 examples. The

models produced by multiple linear regression on the two

sets of descriptors are shown next:

Tg ðKÞ Z 0:3617
X

MVterðRterÞK10:3254LF

C159:7984DXSB C9:3931SPEI C206:2141

(5)

Tg ðKÞ Z 0:4394
X

MVterðRterÞC167:2681DXSB

C2:8929SPEI C180:7988 (6)

The RBF models generated using the two sets of

descriptors consisted of 34 and 25 hidden nodes, respecti-

vely. RBF models are more complex compared to the linear

models and are not shown in the paper for brevity, but can

be available to the interested reader. The produced ANN

QSPR models for the prediction of glass transition

temperature, proved to be more accurate compared to

multiple linear regression models using both sets of

descriptors as shown in Table 3, where the results are

summarized. More detailed results can be found in Tables 1

and 2 where the estimations of the two modeling techniques

for the training examples and the predictions for the

validation examples are depicted in an example-to-example

basis. There are four columns of results in the two tables

corresponding to the two modeling methodologies and the

two sets of descriptors. Figs. 1–4 show the experimental

glass transition temperatures vs. the predictions produced by

the neural network and the multiple regression techniques in

a graphical representation format.

To further explore the reliability of the proposed method

we also used the leave-one-out cross-validation method on

the full set of the available data (excluding the outliers).

The results are summarized in Table 3 and are shown in
Fig. 1. Experimental vs predicted Tg for 40 polymers (set 1 ANN).
Figs. 5 and 6, where again the superiority of the neural

network methodology over the multiple linear regression

method is clear. It should be mentioned, that contrary to the

aforementioned results, there is a decrease in the R2 statistic

in both modeling methodologies when the three-descriptor

set is utilized. However, the R2 statistic for the neural

network methodology using the second set of descriptors is

still high, meaning that the respective neural network model

is reliable.

Summarizing the results presented in this work we can

make the following observations:
(i)
F

The modeling procedures utilized in this work (separa-

tion of the data into two independent sets and leave-

one-out cross-validation) illustrated the accuracy of the

produced models not only by calculating their fitness on

sets of training data, but also by testing the predicting

abilities of the models.
(ii)
 We showed that using the neural network methodology we

can still have a reliable prediction, when the descriptor LF is

dropped. Therefore, a three-descriptor ANN model can be

used for the prediction of the glass transition temperature at
ig. 3. Experimental vs predicted Tg for 40 polymers (set 1 linear).



Fig. 6. Experimental vs predicted Tg with cross-validation (set 1 linear).

Fig.

Fig. 4. Experimental vs predicted Tg for 40 polymers (set 2 linear).
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the expense of the increased complexity of the model

compared to the simple structure of a linear model.
4. Conclusions

The results of this study show that a practical model can be

constructed based on the RBF neural network architecture for

a set of 84 high molecular weight polymers. The most accurate

models were generated using four descriptors and resulted in

the following statistics: R2
set 1Z0:9968 for the training data,

R2
set 1Z0:9269 for the validation data and R2

set 1;CVZ0:9269

for the cross-validation method. We showed that using the

neural network approach, we can further reduce the number of

descriptors from four to three and still produce a reliable

model. The neural network models are produced based on the

special fuzzy means training method for RBF networks that

exhibits small computational times and excellent prediction

accuracies. The proposed method could be a substitute to the

costly and time-consuming experiments for determining glass
5. Experimental vs predicted Tg with cross-validation (set 1 ANN).
transition temperatures or to the approximate empirical

equations with limited reliability.
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