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Abstract—A linear quantitative structure–activity relationship has been developed for a series of para-substituted aromatic sulfon-
amides by using topological index methodologies. The compounds were studied for their carbonic anhydrase II (CAII) inhibitory
activity. A large series of topological indices were calculated and the stepwise regression method was used to derive the most sig-
nificant model. Very good results were obtained using multi-parametric regressions and showed that the information approach used
in the present work is quite useful for modeling carbonic anhydrase inhibition.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) occupy a special
place among the metallo-enzymes extensively studied in
the last decade. These enzymes are ubiquitous in all
kingdoms such as Archaea, Bacteria, algae, green plants
as well as superior animals including vertebrates, and
are encoded by five distinct, evolutionarily unrelated
gene families: the a-CAs (present in vertebrates), the
b-CAs (mainly present in Bacteria and plants), the
c-CAs (mainly in Archaea), and the recently isolated
d- and e-classes of CAs (present in marine diatoms
and chemolithoautotrophic bacteria, respectively). In
higher vertebrates, including humans, 15 different iso-
zymes were described among which the cytosolic CA
II is physiologically one of the most important
isoforms.1,2
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CAs were proved to be very important as they are in-
volved in crucial physiological processes, connected with
the catalysis of the reversible hydration of carbonic diox-
ide to bicarbonate and a proton, as these chemical species
are important in many physiological processes. This is a
crucial reaction for respiration and transport of CO2/bi-
carbonate between metabolizing tissues and excretion
sites, secretion of electrolytes in a variety of tissues and or-
gans, pH regulation and homeostasis, biosynthetic reac-
tions (gluconeogenesis, lipogenesis, and ureagenesis),
bone resorption, calcification, tumorigenicity, and many
other physiologic or pathologic processes. Due to their
important role, inhibition of these enzymes by carbonic
anhydrase inhibitors (CAIs) may be exploited for the de-
sign of therapeutic agents useful in the management and
prevention of many diseases.3–6 Sulfonamides represent
an important class of biologically active compounds.
With the sulfanilamides as the lead structure, different
classes of pharmacological agents have been obtained
such as antibacterial sulfanamides, sulfonamides that
inhibit the zinc enzyme carbonic anhydrase, the hypogly-
cemic sulfonamides extensively used in the treatment of
some forms of diabetes, antithyroid drugs, and others.7
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A great number of sulfanilamide derivatives were synthe-
sized, characterized, tested, and are widely used in clinical
medicine as pharmacological agentswith awide variety of
biological actions.8,9 More specifically, sulfonamide
inhibitors of CA are extensively used in clinical medicine
and as diagnostic tools, their main applications being in
the treatment of glaucoma, macular edema, epilepsy,
and other neurological disorders. CA inhibition with sul-
fanilamide discovered by Mann and Keilin has led to
important drugs such as the sulfamides with CA inhibito-
ry properties. Several such drugs are presently available,
such as the recently introduced topical sulfonamides dor-
zolamide and brinzolamide, in addition to the classical,
systemically acting inhibitors acetazolamide, methazola-
1. 2. 3–9.
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Scheme 1. The molecules used for this study are shown.
mide, ethoxzolamide, and dichlorophenamide which
have been employed clinically for more than 45 years.10

Sulfonamide CAIs derived from simple aromatic or het-
erocyclic sulfonamides have already shown excellent
CA inhibitory properties against many CA isozymes iso-
lated so far in diverse organisms. Many derivatives
belonging to the heterocyclic and aromatic classes of sul-
fonamides have been synthesized and investigated for
their biological activity.11 The aromatic/heterocyclic sul-
fonamides act as carbonic anhydrase inhibitors and other
types of derivatives show diuretic activity, hypoglycemic
activity, anticancer properties or may act as inhibitors
of the aspartic HIV protease being used for the treatment
of AIDS and HIV infection among others.12
 15–16.
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During the last few years, Supuran and his group has
extensively studied different aromatic sulfonamides as
potent carbonic anhydrase II inhibitors.13–15 Although
weaker CAIs as compared to heterocyclicones several
aromatic sulfonamides were proved to be strong inhibi-
tors with low KI values within the nanomolar range.
Special attention was paid to aromatic sulfonamides
substituted at the para-position as they exhibit higher
affinity with the zinc enzyme compared to an ortho-
substituted aromatic sulfonamide. This may be due to
the steric impairment of the ortho-substituent for the
binding of such compounds to the Zn(II) ion within
the enzyme active site.

Due to the biological importance of sulfonamides as po-
tent CAIs, quantitative structure–activity relationship
(QSAR) models have been proposed for the prediction
of CA inhibitory activity of different aromatic and het-
erocyclic sulfonamides using different molecular descrip-
tors. QSARs are mathematical relationships between a
set of descriptors and the biological activity of the sys-
tem being studied. QSAR models can be used as a useful
tool in drug design, as they have the potential to de-
crease the time and effort required to develop new mol-
ecules by reducing the need for costly and time-
consuming trial-and-error experiments.16
Clare, Supuran,17,18 and Khadikar19,20 have published
some very interesting models for the prediction of CA
II. In this work, a QSAR model is investigated in order
to predict the CA II inhibitory activity of para-substitut-
ed aromatic sulfonamides using topological information
indices and more specifically topological information
indices. Our objective is to develop a rapid and reliable
method to predict the CA inhibition activity.

The sulfonamides used incorporate hydrazine moieties,
ureas, sulfureas or a simple aliphatic tail. The proposed
model can be used as a first step for the formulation of
an optimization problem from which the best para-sub-
stituent will be derived.
2. Results and discussion

2.1. Data set

The first step in developingQSAR equations is to compile
a list of compounds for which the experimentally deter-
mined inhibitory activity is known. This list consists of
47 para-substituted aromatic sulfonamides collected from
the literature.21–23 The aromatic sulfonamides are pre-
sented in Scheme 1. The inhibition data are expressed in



Table 1. Experimental-predicted values

Descriptors Exp. activity KI (nM) MLR (Eq. 3) predicted activity LOO predicted activity

1vinf 0vminf
1vminf N-rings

1 2.0382 2.0759 2.7774 1 2.4116 2.1081 2.0676

2 2.1488 1.7885 2.5495 1 2.0934 2.1315 2.1408

3 1.9054 1.9551 2.6079 2 1.1139 1.3877 1.4000

4 1.9023 1.879 2.4897 2 1.1761 1.3834 1.3925

5 1.9825 2.0481 2.5069 2 0.9542 1.1510 1.1679

6 1.7729 1.8742 2.5835 2 0.8633 1.5756 1.6069

7 1.718 1.5986 2.3455 3 1.0414 0.8889 0.8591

8 1.5931 1.6358 2.4147 3 1.2553 1.0175 0.9755

9 1.5931 1.7561 2.5397 3 1.1761 0.9852 0.9532

10 1.9568 1.8262 2.6296 2 1.8261 1.4839 1.4519

11 2.1167 1.9931 2.629 2 1.7324 1.1665 1.1124

12 2.0206 1.9931 2.594 2 0.9912 1.2318 1.2475

13 2.0206 1.9931 2.7229 2 0.9777 1.3228 1.3554

14 2.0206 1.9931 2.7229 2 0.9590 1.3228 1.3571

15 2.192 2.0382 2.4997 1 1.7076 1.8058 1.8151

16 2.192 2.0382 2.4997 1 1.8808 1.8058 1.7986

17 1.7274 2.067 2.6106 1 2.3909 2.2905 2.2844

18 1.6457 2.1622 2.8222 1 2.1239 2.4210 2.4673

19 1.8228 2.2826 2.8402 1 2.3655 2.1472 2.1233

20 1.8024 2.3522 2.8278 1 2.3560 2.0879 2.0571

21 2.0079 2.1085 2.7744 1 2.4116 2.1017 2.0675

22 1.7755 2.3746 2.7933 1 2.3304 2.0663 2.0355

23 1.6457 2.1622 2.5366 1 2.3617 2.2195 2.2080

24 1.7448 2.3719 2.7472 1 1.7993 2.0652 2.0960

25 1.6955 1.6383 2.4332 2 1.5682 1.7784 1.8025

26 2.1526 2.0352 2.5583 2 1.2304 1.0408 1.0185

27 1.4519 1.6477 2.439 2 2.3802 2.0013 1.9406

28 1.4395 1.8455 2.6515 2 2.0212 1.9648 1.9568

29 1.4247 1.9374 2.6745 2 1.8751 1.9028 1.9063

30 1.7729 2.2202 2.8235 2 1.1139 1.3984 1.4350

31 1.5492 1.761 2.3078 2 1.6902 1.7041 1.7055

32 1.5198 1.9533 2.3788 2 1.6021 1.5891 1.5876

33 1.4906 2.0404 2.3764 2 1.4472 1.5275 1.5426

34 1.7749 2.0047 2.4251 2 0.9542 1.3313 1.3623

35 1.7879 2.247 2.671 2 1.8751 1.2499 1.1646

36 1.6767 1.6858 2.0404 1 2.4771 2.3174 2.2528

37 1.65 1.7296 2.2842 1 2.5051 2.4706 2.4635

38 1.65 1.9591 2.585 1 2.2304 2.4530 2.4765

39 1.6143 2.0458 2.5654 1 2.2041 2.3858 2.4008

40 2.085 2.0546 2.4508 1 1.7782 1.8551 1.8610

41 2.085 2.0546 2.4508 1 2.0414 1.8551 1.8409

42 2.085 2.0546 2.4508 1 1.6021 1.8551 1.8744

43 2.085 2.0546 2.4508 1 1.8451 1.8551 1.8558

44 2.1895 2.2281 2.5136 1 1.4472 1.6277 1.6507

45 2.1556 2.1494 2.3994 1 1.8751 1.6577 1.6257

46 1.65 2.2842 2.585 1 2.0969 2.1274 2.1310

47 1.6143 2.3459 2.5654 1 2.0414 2.0853 2.0932
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terms of nanomolar affinity (KI) for the investigated isozy-
me and are presented in the sixth column of Table 1.

2.2. Descriptors

First, the chemical structures were designed using MDL
ISIS/DRAW 2.5 and were saved as .mol files.24 The TO-
PIX25 program was used to calculate the values of 29
topological descriptors shown in Table 2. Topological
indices are 2D descriptors which take into account the
internal atomic arrangement of compounds and encode
in numerical form information about molecular size,
shape, branching, presence of heteroatoms, and multiple
bonds. Topological indices are a very useful tool for
QSAR taking into account their simplicity and rapidity
of computation.26 This is particularly valuable now as
one can analyze structures used for QSAR studies prior
to any high throughput synthesis and testing.

2.3. Statistical analysis

Once the descriptors have been computed, it is necessary
to decide which ones will be used. Among the aforemen-
tioned indices the selection of the best combinations was
made with the use of an Elimination Selection Stepwise
Regression (ES-SWR) algorithm that was developed in-
house. The aim of variable subset selection is to reach
optimal model complexity in predicting a response
variable by a reduced set of descriptors that are not
highly intercorrelated.



Table 2. Calculated descriptors

Descriptor

1 Kappa1

2 Kappa2

3 Kappa3

4 Mean Wiener

5 Wiener information index

6 Polarity

7 Gordon

8 Balaban

9 Schultz

10 Quadratic index

11 Zagreb1

12 Zagreb2

13 Wiener

14 Number of rings

15 Number of branches

16 Topological diameter

17 Topological radius

18 Xu1

19 Xu2

20 Xu3

21 Kier-Hall0 (0vm)
22 Kier-Hall1 (1vm)
23 Kier-Hallinf,0 ð0vminf Þ
24 Kier-Hallinf,1 ð1vminf Þ
25 Randic0 (0v)
26 Randic1 (1v)
27 Randicinf,0 (0vinf)
28 Randicinf,1 (1vinf)
29 Modified Randic index
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The best models that were produced are shown in Ta-
ble 3. The descriptors that were used by the models
are the mean information content based on the vertex
degree equality and the edge equality both for the di
and dmi values and the indicator parameter accounting
for the number of rings in the molecule. The details
concerning the information indices are given in
Appendix A.
Table 3. Produced models

R2

Biparametric
0vinf Æ N-rings 0.5272
1vinf Æ N-rings 0.6642
0vminf Æ N-rings 0.5375
1vminf Æ N-rings 0.4909

Triparametric
0vinfÆ

1vinfÆN-rings 0.6645
0vinf � 0vminf �N-rings 0.5777
0vinf � 1vminf �N-rings 0.5275
1vinf � 0vminf �N-rings 0.6984
1vinf �1vminf �N-rings 0.6644
0vninf � 1vminf �N-rings 0.5635

Tetraparametric
0vinf � 1vinf � 0vminf �N-rings 0.6995
0vinf � 1vinf � 1vminf �N-rings 0.6647
0vinf �0vminf � 1vminf �N-rings 0.6055
1vinf � 0vminf � 1vminf �N-rings 0.7283

Pentaparametric
0vinf �1vinf �0vminf � 1vminf �N-rings 0.7296
The correlation matrix for the aforementioned indica-
tors is presented in Table 4 and shows that there is no
significant correlation among the descriptors. From
the correlation matrix we can also conclude that none
of the aforementioned indices is highly correlated with
the activity. This means that it is not possible to obtain
a statistically significant mono-parametric model. Based
on the correlation matrix we conclude that only multi-
parametric regressions involving combinations of the
indices mentioned before may result in a statistically sig-
nificant regression expression.

Among the proposed models, the best multi-parametric
models were found to be the following:

The best bi-parametric model was:

logKI ¼ � 0:96ð�0:40Þ1vinf � 0:6852ð�0:15ÞN-rings

þ 4:57ð�0:85Þ n ¼ 47; R ¼ 0:8149;

R2 ¼ 0:6642; R2
adj ¼ 0:6489; RMS ¼ 0:2926; F ¼ 43:52.

ð1Þ
Among the tri-parametric models the best one was
found to be the following:

logKI ¼ � 0:93ð�0:39Þ1vinf � 0:56ð�0:51Þ0vminf
� 0:79ð�0:17ÞN-ringsþ 5:79ð�1:38Þ n ¼ 47;

R ¼ 0:8356; R2 ¼ 0:6984; R2
adj ¼ 0:6773;

RMS ¼ 0:2773; F ¼ 33:18. ð2Þ

The best tetra-parametric model was the following:

logKI ¼ � 0:94ð�0:37Þ1vinf � 1:00ð�0:64Þ0vminf
þ 0:71ð�0:66Þ1vminf � 0:85ð�0:17ÞN-rings

þ 4:98ð�1:52Þ n ¼ 47; R ¼ 0:8534;

R2 ¼ 0:7283; R2
adj ¼ 0:7024; RMS ¼ 0:2632;

F ¼ 28:14. ð3Þ
RMS R2
cv RMScv

0.3472 0.4379 0.3785

0.2926 0.6217 0.3106

0.3434 0.4774 0.3650

0.3603 0.4216 0.3840

0.2924 0.5938 0.3218

0.3281 0.4763 0.3654

0.3470 0.4090 0.3881

0.2773 0.6480 0.2996

0.2925 0.6059 0.3169

0.3336 0.4819 0.3634

0.2768 0.6233 0.3099

0.2924 0.5767 0.3285

0.3171 0.4875 0.3614

0.2632 0.6682 0.2908

0.2625 0.6481 0.2995



Table 4. Correlation matrix

0vinf
1vinf 0vminf

1vminf N-rings Activity

0vinf 1
1vinf 0.499582 1
0vminf 0.333857 0.231057 1
1vminf 0.082052 0.109194 0.603135 1

N-rings �0.63249 �0.29885 �0.56893 �0.13553 1

Activity 0.294774 �0.18833 0.220363 0.078274 �0.70042 1
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Finally, the penta-parametric model is shown below:

logKI ¼ 0:71ð�0:67Þ0vinf � 0:30ð�1:37Þ1vinf
� 0:90ð�0:41Þ0vminf � 1:01ð�0:65Þ1vminf
� 0:87ð�0:21ÞN-ringsþ 5:49ð�2:77Þ

n ¼ 47; R ¼ 08541; R2 ¼ 0:7296;

R2
adj ¼ 0:6966; RMS ¼ 0:2625; F ¼ 22:12. ð4Þ

The cross-validation statistical technique has been ap-
plied to estimate the quality with regard to predictive
ability of the models. This is the most common valida-
tion technique, where a number of modified data sets
are created by deleting, in each case, one or a smaller
group of objects from the data in such a way that each
object is taken away once and only once. For each re-
duced data set, the model is calculated, and responses
for the deleted objects are predicted from the model.27,28

The simplest and most general cross-validation proce-
dure is the leave-one-out technique (LOO technique),
where each object of the data set is taken away, one at
a time. In this case, given n objects, n reduced models
are developed. This technique is particularly important
as the deletion scheme is unique and the results of differ-
ent methods are easily compared.

PRESS is the prediction error sum of squares, derived
from the LOO procedure. From the PRESS statistic
the SSY (sum of squares of deviations of the experimen-
tal values from their mean), R2

CV and SPRESS statistics
can be easily calculated (Eqs. 5 and 6).

R2
CV ¼ 1� PRESS

SSY
¼ 1�

Pn
i¼1ðyexp � ypredÞ

2

Pn
i¼1ðyexp � �yÞ2

; ð5Þ

SPRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
. ð6Þ

In Table 3, the statistical values R2, RMS for the predic-
tion and R2

cv, RMScv for the cross-validation method,
are presented for each model.

In terms of the R2
cv, RMScv statistics, the tetra-paramet-

ric model that uses the descriptors 1vinf, 0vminf ,
1vminf , and

N-rings was found to be the most accurate. Since these
statistics are the most important as far as the predicting
abilities of the produced models are concerned, the re-
sults of the aforementioned tetra-parametric model are
shown in detail in Table 1. More specifically, Table 1 de-
picts the values of the four topological descriptors that
were utilized by the model, the predictions produced
by Eq. 3, and the results that were obtained using the
LOO cross-validation method for this specific set of
topological descriptors.
3. Conclusions

The inhibition of the physiologically relevant isoformCA
II can be successfully modeled using topological informa-
tion indices. Different multi-parametric models were
established among which, a tetra-parametric model with
1vinf, 0vminf ,

1vminf , and N-rings was found to be statistically
most significant. To the best of our knowledge, informa-
tion indices have never been used before for this purpose.

These indices can be considered as a quantitative mea-
sure of the lack of structural homogeneity or the diver-
sity of a graph, in this way being related to symmetry
associated with structure. They are graph-theoretical
indices that view the molecular graph as a source of dif-
ferent probability distributions to which information
theory definitions can be applied. The information con-
tent of a graph is not unique, depending on the equiva-
lence relation defined on the graph.

The mean information content used in this study is
based on partitioning graph elements in equivalence.
Elements are considered to be equivalent if their values
are equivalent. Specifically the mean information con-
tent on the edge equality is based on the equivalence
of the edge connectivity (calculated from di and dmi val-
ues) and the mean information content on the vertex de-
gree equality is based on the equivalence of the vertex
degree as shown from di and dmi values.

As a second step, we will further proceed with the opti-
mization of the para-substituent. Having solved the for-
ward problem, which is finding a statistically significant
equation using topological descriptors, our aim is, with-
in an optimization framework, to identify the structure
with activity closest to a given value.
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Appendix A. Mean information content on the edge
equality
This index is based on the partition of the edges in the
graph according to equivalence of their edge connectiv-
ity values
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E�IEx ¼ �
XG
g¼1

Bg

B
� log2

Bg

B
;

where Bg is the number of edges having the same edge
connectivity, G is the number of different connectivity
values, and B is the bond number.

In this work, the above formula was used to calculate
descriptors 1vinf and 1vminf based on the edge connectivity
derived from di and dmi values.

Mean information content on the vertex degree equality.

This index is derived from the adjacency matrix A and
based on the partition of vertices according to the vertex
degree equality.

V�IEadj;deg ¼ �
XG
g¼1

gF
A

� log2
gF
A

;

where gF is the vertex degree count, that is, the number
of vertices with the same vertex degree, A is the atom
number, and G is the maximum vertex degree value.

In this work, the above formula was used to calculate
descriptors 0vinf and 0vminf based on the vertex degree de-
rived from di and dmi values.
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